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On the equality of generalized quasi-arithmetic means
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Dedicated to the 70th birthday of Professor Zoltán Daróczy

Abstract. Given a continuous strictly monotone function ϕ : I → R and a prob-

ability measure µ on the Borel subsets of [0, 1], the two variable mean Mϕ,µ : I2
→ I is

defined by

Mϕ,µ(x, y) := ϕ
−1
�Z 1

0

ϕ
�
tx+ (1 − t)y

�
dµ(t)

�
(x, y ∈ I.

This class of means includes quasi-arithmetic as well as Lagrangian means. The aim of

this paper is to study their equality problem, i.e., to characterize those pairs (ϕ, µ) and

(ψ, ν) such that

Mϕ,µ(x, y) = Mψ,ν(x, y) (x, y ∈ I

holds. Under at most fourth-order differentiability assumptions for the unknown func-

tions ϕ and ψ, a complete description of the solution set of the above functional equation

is obtained.

1. Introduction

Throughout this paper I will stand for a nonempty open real interval and

CM(I) will denote the class of real valued continuous strictly monotone functions

defined on I.
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Given ϕ ∈ CM(I), the two variable quasi-arithmetic mean generated by ϕ is

the function Mϕ : I2 → I defined by

Mϕ(x, y) := ϕ−1

(
ϕ(x) + ϕ(y)

2

)
(x, y ∈ I).

The systematic treatment of these means was first given by Hardy, Littlewood

and Pólya [36]. The most basic problem, the characterization of the equality of

these means, is solved by the following theorem.

Theorem A ([36]). Let ϕ, ψ ∈ CM(I). Then the means Mϕ and Mψ are

equal to each other if and only if there exist two real constants a 6= 0 and b such

that ψ = aϕ+ b.

Another class of means whose definition is related to the Lagrange mean value

theorem were introduced by Berrone and Moro [6], [5]: Given ϕ ∈ CM(I), the

two variable Lagrangian mean generated by ϕ is the function Lϕ : I2 → I defined

by

Lϕ(x, y) :=





ϕ−1

(
1

y − x

∫ y

x

ϕ(t)dt

)
if x 6= y

x if x = y

(x, y ∈ I).

The equality of these means is characterized by the following result of the

paper.

Theorem B ([6]). Let ϕ, ψ ∈ CM(I). Then the means Lϕ and Lψ are equal

to each other if and only if there exist two real constants a 6= 0 and b such that

ψ = aϕ+ b.

Both classes of means have a rich literature, see, e.g., the monographs of

Borwein–Borwein [8], Mitrinović–Pečarić–Fink [51], [52], Niculescu–

Persson [55]. The characterization of quasi-arithmetic means was solved in-

dependently by Kolmogorov [41], Nagumo [54], de Finetti [31] for the case

when the number of variables is non-fixed. For the two-variable case, Aczél [1]–

[4], proved a characterization theorem involving the notion of bisymmetry. This

result was extended to the n-variable case by Maksa–Münnich–Mokken [53].

Another characterization is due to Matkowski [49].

A recently rediscovered and blossoming subject is the investigation of the

so-called invariance equation and the Gauss-iteration related to quasi-arithmetic

means: Gauss [33], B lasińska-Lesk–G lazowska–Matkowski [7], Burai [9],

[10], Daróczy [11]–[15], Daróczy–Hajdu [16], Daróczy–Hajdu–Ng [17], Da-

róczy–Lajkó–Lovas–Maksa–Páles [18], Daróczy–Maksa [19], Daróczy–

Maksa–Páles [20], [22], Daróczy–Ng [23], Daróczy–Páles [25], [27], [26],
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[28], [30], [24], [29], Domsta–Matkowski [32], G lazowska–Jarczyk–Mat-

kowski [34], Hajdu [35], Haruki–Rassias [37], Jarczyk–Matkowski [40],

Jarczyk [38], Matkowski [47], [48], [50],

The equality problem of means in various classes of two-variable means has

been solved. We refer here to Losonczi’s works [42]–[46] where the equality of

two-variable means is characterized. A key idea in these papers, under high order

differentiability assumptions, is to calculate and then compare the partial deriva-

tives of the means at points of the form (x, x). A paper where also the regularity

properties are proved (not just assumed) is due to Daróczy–Maksa–Páles

[21], where means that are simultaneously quasi-arithmetic and arithmetic means

weighted by a weight function are determined without assuming any regularity

properties of the unknown functions. A similar problem, the mixed equality prob-

lem of quasi-arithmetic and Lagrangian means has been recently considered by

J. Jarczyk [39], where the solutions satisfying an additional convexity condition

were determined. This equality problem was completely solved by the following

result of the second author:

Theorem C ([57]). Let ϕ, ψ ∈ CM(I). Then the means Mϕ and Lψ are

equal to each other if and only if one of the following cases holds:

(i) either there exist real constants a, b, c, d with ac 6= 0 such that

ϕ(x) = ax+ b, and ψ(x) = cx+ d (x ∈ I);

(ii) or there exist real constants a, b, c, d with ac 6= 0, and q /∈ I such that

ϕ(x) = a ln |x− q| + b, and ψ(x) =
c

(x − q)2
+ d (x ∈ I);

(iii) or there exist real constants a, b, c, d with ac 6= 0, and q /∈ I such that

ϕ(x) = a
√
|x− q| + b, and ψ(x) =

c√
|x− q|

+ d (x ∈ I);

(iv) or there exist real constants a, b, c, d, p, q with ac 6= 0 and p > 0 such that

ϕ(x) = a arsinh(p(x− q)) + b and ψ(x) =
c(x− q)√

1 + p2(x − q)2
+ d (x ∈ I);

(v) or there exist real constants a, b, c, d, p, q with ac 6= 0, p > 0, and I ∩ [q −

1/p, q + 1/p] = ∅ such that

ϕ(x) = a arcosh(p(x − q)) + b and ψ(x) =
c(x− q)√

p2(x− q)2 − 1
+ d (x ∈ I);
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(vi) or there exist real constants a, b, c, d, p, q with ac 6= 0, p > 0, and I ⊆

[q − 1/p, q + 1/p] such that

ϕ(x) = a arcsin(p(x − q)) + b and ψ(x) =
c(x− q)√

1 − p2(x− q)2
+ d (x ∈ I).

In this paper, we consider the following common generalization of quasi-

arithmetic and Lagrangian means: Given a continuous strictly monotone function

ϕ : I → R and a probability measure µ on the Borel subsets of [0, 1], the two

variable mean Mϕ,µ : I2 → I is defined by

Mϕ,µ(x, y) := ϕ−1
( ∫ 1

0

ϕ
(
tx+ (1 − t)y

)
dµ(t)

)
(x, y ∈ I).

If µ = δ0+δ1
2 , then Mϕ,µ = Mϕ. If µ = Lebesgue measure on [0, 1], then

Mϕ,µ = Lϕ.

The aim of this paper is to study the equality problem of generalized quasi-

arithmetic means, i.e., to characterize those pairs (ϕ, µ) and (ψ, ν) such that

Mϕ,µ(x, y) = Mψ,ν(x, y) (x, y ∈ I) (1)

holds. Due to the complexity of the problem, we will not solve it in its natural

generality. We shall need at most fourth-order differentiability properties of the

unknown functions ϕ and ψ.

2. Notations and basic assumptions

Given a Borel probability measure µ on the interval [0, 1], we define the kth

moment and the kth centralized moment of µ by

µ̂k :=

∫ 1

0

tkdµ(t) and µk :=

∫ 1

0

(t− µ̂1)
kdµ(t) (k ∈ N ∪ {0}).

Clearly, µ̂0 = µ0 = 1 and µ1 = 0. In view of the binomial theorem, we easily

obtain

µk =

∫ 1

0

(t− µ̂1)
kdµ(t) =

∫ 1

0

k∑

i=0

(−1)i
(
k

i

)
tiµ̂k−i1 dµ(t)

=
k∑

i=0

(−1)k
(
k

i

)
µ̂iµ̂

k−i
1 (k ∈ N) (2)
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and

µ̂k =

∫ 1

0

(
(t− µ̂1) + µ̂1

)k
dµ(t) =

∫ 1

0

k∑

i=0

(
k

i

)
(t− µ̂1)

iµ̂k−i1 dµ(t)

=

k∑

i=0

(
k

i

)
µiµ̂

k−i
1 (k ∈ N). (3)

The statement of the following lemma is obvious.

Lemma 1. Let µ be a Borel probability measure on [0, 1] and k ∈ N. Then

µ2k ≥ 0 and equality can hold if and only if µ is the Dirac measure δbµ1
.

(In the sequel, δτ will denote the Dirac measure concentrated at the point

τ ∈ [0, 1].)

On the other hand, the odd-order centralized moments can be zero. One

can prove that µ2k−1 = 0 holds for all k ∈ N if and only if µ is symmetric with

respect to its first moment µ̂1, i.e., if µ(A) = µ
(
(2µ1 − A) ∩ [0, 1]

)
for all Borel

sets A ⊆ [0, 1].

To formulate the main results of this paper, we consider the cases when

the first n moments of the measures µ and ν involved in (1) are identical. For

n ∈ N∪{0,∞}, we say that the nth-order moment condition Mn holds if µ, ν are

Borel probability measures on [0, 1], furthermore,

µ̂k = ν̂k for all 1 ≤ k ≤ n. (4)

Thus the M∞ condition means that all the moments of µ and ν are equal, whence,

by well-known results of measure and approximation theory, the equality of the

two measure µ and ν follows. On the other hand, the condition M0 simply means

that µ, ν are probability measures on the Borel subsets of [0, 1]. For n ∈ N∪ {0},

we say that the exact nth-order moment condition M∗

n holds if Mn is valid but

Mn+1 fails, i.e.,

µ̂k = ν̂k for all 1 ≤ k ≤ n and µ̂n+1 6= ν̂n+1. (5)

It is obvious that, for all pairs of measures µ, ν, exactly one of the conditions

M∗

0,M
∗

1,M
∗

2, . . . ,M∞ can hold, i.e., M0 is the union of the pairwise exclusive

cases M
∗

0,M
∗

1,M
∗

2, . . . ,M∞.

In view of the formulae (2) and (3), it is immediate to see that, for n ≥ 2,

Mn holds if and only if µ̂1 = ν̂1 and µk = νk for 2 ≤ k ≤ n.

In order to describe the various regularity conditions on the two unknown

functions ϕ and ψ, for k ∈ N∪{∞}, we say that the nth-order regularity condition
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Cn holds if ϕ, ψ : I → R are n-times continuously differentiable functions with

non-vanishing first-order derivatives. For convenience, we also say that C0 holds

if ϕ, ψ : I → R are just continuous strictly monotone functions.

3. Basic results

In our first result, we compute the first partial derivatives of the mean Mϕ,µ

at a point of the diagonal of I × I under a weak regularity assumption. We note

that, by Lebesgue theorem, ϕ is differentiable almost everywhere in I, however

the derivative of ϕ can be equal to zero almost everywhere even if ϕ is strictly

increasing.

Lemma 2. Let µ be a Borel probability measure, let ϕ : I → R be a

continuous strictly monotone function and assume that ϕ is differentiable at a

point p ∈ I and ϕ′(p) 6= 0. Then ∂1Mϕ,µ(p, p) = µ̂1.

Proof. Using the differentiability of ϕ at p, one can easily see that the

function f : I → R defined by

f(x) :=

∫ 1

0

ϕ
(
tx+ (1 − t)p

)
dµ(t) (x ∈ I)

is differentiable at p and f ′(p) =
∫ 1

0
tϕ′(p)dµ(t) = ϕ′(p)µ̂1. We have that

Mϕ,µ(x, p) = ϕ−1
(
f(x)

)
and ϕ′(p) 6= 0 implies that ϕ−1 is differentiable at

ϕ(p) = f(p). Therefore, by the standard chain rule,

∂1Mϕ,µ(p, p) =
(
ϕ−1

)
′
(
f(p)

)
· f ′(p) =

1

ϕ′(p)
· ϕ′(p)µ̂1 = µ̂1. �

As an immediate consequence of the previous result, we obtain the first

necessary condition for the equality of the generalized quasi-arithmetic means.

This shows that, under weak regularity assumptions, there is no solution of the

equality problem if the exact moment condition M∗

0 holds.

Corollary 3. Assume C0 and M0. Suppose that there exists a point p ∈ I

such that ϕ and ψ are differentiable at p and ϕ′(p)ψ′(p) 6= 0. Then, in order that

Mϕ,µ = Mψ,ν be valid, it is necessary that

µ̂1 = ν̂1, (6)

i.e., M1 be satisfied.
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Proof. Using Lemma 2 twice and the equality of the meansMϕ,µ and Mψ,ν,

we get

µ̂1 = ∂1Mϕ,µ(p, p) = ∂1Mψ,ν(p, p) = ν̂1. �

The necessary condition (6) does not involve the derivatives of ϕ and ψ

explicitly. It remains an open problem to derive the necessity of (6) assuming

only the continuity and monotonicity of the functions ϕ and ψ.

In view of Corollary 3, in the rest of the paper, we may assume that the

first-order moment condition M1 holds.

In our next result, assuming C1, we obtain a characterization of the equality

(1) that does not involve the inverses of the unknown functions ϕ and ψ.

Theorem 4. Assume C1 and M1. Then Mϕ,µ = Mψ,ν holds if and only if

∫ 1

0

∫ 1

0

(t− s)ϕ′(tx+ (1 − t)y)ψ′(sx+ (1 − s)y)dµ(t)dν(s) = 0 (x, y ∈ I). (7)

Proof. Necessity. In view of the continuous differentiability of ϕ, ψ : I → R

and that ϕ′ and ψ′ do not vanish anywhere, the means Mϕ,µ and Mψ,ν are

continuously partially differentiable with respect to their variables. Thus, (1)

yields

∂1Mϕ,µ(x, y) = ∂1Mψ,ν(x, y) and ∂2Mϕ,µ(x, y) = ∂2Mψ,ν(x, y) (x, y ∈ I).

Hence,

∂1Mϕ,µ(x, y)∂2Mψ,ν(x, y) = ∂1Mψ,ν(x, y)∂2Mϕ,µ(x, y) (x, y ∈ I). (8)

By an elementary calculation, (8) can be rewritten as

∫ 1

0
tϕ′

(
tx+ (1 − t)y

)
dµ(t)

ϕ′

(
Mϕ,µ(x, y)

) ·

∫ 1

0
(1 − s)ψ′

(
sx+ (1 − s)y

)
dν(s)

ψ′

(
Mψ,ν(x, y)

)

=

∫ 1

0 (1 − t)ϕ′
(
tx+ (1 − t)y

)
dµ(t)

ϕ′

(
Mϕ,µ(x, y)

) ·

∫ 1

0 sψ
′
(
sx+ (1 − s)y

)
dν(s)

ψ′

(
Mψ,ν(x, y)

) (x, y ∈ I),

which simplifies to

∫ 1

0

tϕ′
(
tx+ (1 − t)y

)
dµ(t)

∫ 1

0

(1 − s)ψ′
(
sx+ (1 − s)y

)
dν(s)

=

∫ 1

0

(1 − t)ϕ′
(
tx+ (1 − t)y

)
dµ(t)

∫ 1

0

sψ′
(
sx+ (1 − s)y

)
dν(s) (x, y ∈ I).

(9)
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On can easily see that (9) is equivalent to (7).

Sufficiency. We have that (7) is equivalent to (9), which easily yields (8). There-

fore, it suffices to prove that (8) implies (1). For the sake of simplicity, denote

F (x, y) := Mϕ,µ(x, y), G(x, y) := Mψ,ν(x, y) (x, y ∈ I).

Due to the mean value property, we have

F (x, x) = x = G(x, x) (x ∈ I).

Thus it remains to prove F (x, y) = G(x, y) for x 6= y. Without loss of generality,

we can assume that x < y. Set z := F (x, y). Then x < z < y. By the continuity

and strict monotonicity of ϕ, we have that the mapping s 7→ F (t, s) is continuous

and strictly increasing on I for all fixed t ∈ I. Thus, for t ∈ [x, z],

F (t, z) ≤ F (z, z) = z = F (x, y) ≤ F (t, y).

Therefore, for all t ∈ [x, z], there exists a unique element s ∈ [z, y] such that

F (t, s) = z. Denote this element s by f(t). Then f is a function mapping [x, z]

into [z, y] and satisfying the identity

F (t, f(t)) = z (t ∈ [x, z]) (10)

and the boundary value conditions

f(x) = y and f(z) = z. (11)

Due to the implicit function theorem, f is continuously differentiable on [x, z].

Differentiating (10) with respect to the variable t, it follows that

f ′(t) = −
∂1F (t, f(t))

∂2F (t, f(t))
(t ∈ [x, z]).

On the other hand, by (8), we have

∂1F (t, f(t))

∂2F (t, f(t))
=
∂1G(t, f(t))

∂2G(t, f(t))
(t ∈ [x, z]),

whence it follows that

∂1G(t, f(t)) + f ′(t)∂2G(t, f(t)) = 0 (t ∈ [x, z]).

Therefore, the mapping t 7→ G(t, f(t)) is constant on [x, z]. Thus, by (11) and

the definition of z,

G(x, y) = G(x, f(x)) = G(z, f(z)) = G(z, z) = z = F (x, y).

This proves the equality of F (x, y) and G(x, y), i.e., the equality of Mϕ,µ(x, y)

and Mψ,ν(x, y), too. �
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Substituting x = y into (7) we get the condition

(
µ̂1ν̂0 − µ̂0ν̂1

)
ϕ′ψ′ = 0,

which simplifies to (6) because ϕ′ and ψ′ do not vanish anywhere. The result of

Corollary 3 states the same condition under a weaker regularity assumption.

Assuming Cn+1, we now deduce further conditions that are necessary for the

equality (1).

Theorem 5. Assume Cn+1 for some n ∈ N and M1. Then, in order that

Mϕ,µ = Mψ,ν be valid, it is necessary that

n∑

i=0

(
n

i

)(
µi+1νn−i − µiνn+1−i

)ϕ(i+1)

ϕ′
·
ψ(n+1−i)

ψ′
= 0. (12)

Conversely, if ϕ, ψ are analytic functions and (12) holds for all n ∈ N, then

Mϕ,µ = Mψ,ν is satisfied.

Proof. Denote by m the joint value of µ̂1 and ν̂1. Substituting x := u +

(1 −m)v and y := u −mv into (7), in view of Theorem 4, we can see that (7)

holds for all x, y ∈ I if and only if

Fu(v) :=

∫ 1

0

∫ 1

0

(t− s)ϕ′
(
u+ (t−m)v

)
ψ′

(
u+ (s−m)v

)
dµ(t)dν(s) = 0

(u ∈ I, v ∈ Iu),

(13)

where Iu := {v ∈ R | (1 − m)v, −mv ∈ I − u} (which is a neighborhood of

the origin). If Cn+1 holds then, for all fixed u ∈ I, the function Fu is n-times

continuously differentiable on Iu. Differentiating Fu n-times by applying the

Leibniz rule, we obtain

F (n)
u (v) =

∫ 1

0

∫ 1

0

n∑

i=0

(
n

i

)
ϕ(i+1)

(
u+ (t−m)v

)

× ψ(n+1−i)
(
u+ (s−m)v

)
(t− s)(t−m)i(s−m)n−idµ(t)dν(s).
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Now substituting v := 0, we get

F (n)
u (0)=

∫ 1

0

∫ 1

0

n∑

i=0

(
n

i

)
ϕ(i+1)(u)ψ(n+1−i)(u)(t−s)(t−m)i(s−m)n−idµ(t)dν(s)

=

n∑

i=0

(
n

i

) ∫ 1

0

∫ 1

0

(t− s)(t−m)i(s−m)n−idµ(t)dν(s)ϕ(i+1)(u)ψ(n+1−i)(u)

=

n∑

i=0

(
n

i

) ∫ 1

0

∫ 1

0

(
(t−m)i+1(s−m)n−i

− (t−m)i(s−m)n−i+1
)
dµ(t)dν(s)ϕ(i+1)(u)ψ(n+1−i)(u)

=

n∑

i=0

(
n

i

)(
µi+1νn−i − µiνn−i+1

)
ϕ(i+1)(u)ψ(n+1−i)(u).

If (13) holds, then F
(n)
u (0) = 0, whence the above formula for F

(n)
u (0) divided by

ϕ′(u)ψ′(u) yields (12).

Conversely, assume that ϕ and ψ are analytic and (12) holds for all n ∈ N.

Then, for all fixed u ∈ I, the function Fu is analytic on the open interval Iu. On

the other hand, (12) shows that F
(n)
u (0) = 0 for all n ∈ N. The equality Fu(0) = 0

is a consequence of µ̂1 = ν̂1. Therefore, due to its analyticity, the function Fu is

identically zero over Iu. Thus (13) holds, whence the equality of the means Mϕ,µ

and Mψ,ν follows. �

In the particular case n = 1, the above theorem yields the following result.

Corollary 6. Assume C2 and M1. Then, in order that Mϕ,µ = Mψ,ν be

valid, it is necessary that

|ψ′|ν2 = α|ϕ′|µ2 (14)

for some constant α > 0.

Proof. In the case n = 1, condition (12) of Theorem 5 results

(
µ1ν1 − µ0ν2

)ψ′′

ψ′
+

(
µ2ν0 − µ1ν1

)ϕ′′

ϕ′
= 0.

Using µ0 = ν0 = 1 and µ1 = ν1 = 0, the above equation can be rewritten as

−ν2
ψ′′

ψ′
+ µ2

ϕ′′

ϕ′
= 0.

After integration, it follows that

−ν2 ln |ψ′| + µ2 ln |ϕ′| = ln
(
|ψ′|−ν2 · |ϕ′|µ2

)

is a constant function, which yields (14). �



On the equality of generalized quasi-arithmetic means 417

Though we assumed C2 in Corollary 6, the necessary condition (14) involves

only the first-order derivatives of ϕ and ψ. It remains an open problem to derive

the necessity of (14) under first-order continuous differentiability.

4. The case when M∞ holds

In this section we solve the equality problem (1) if the two measures µ and ν

coincide.

Theorem 7. Assume C0 and M∞. Then Mϕ,µ = Mψ,ν holds if and only if

(i) either µ = ν = δτ for some τ ∈ [0, 1] and ϕ, ψ are arbitrary,

(ii) or µ = ν is not a Dirac measure and there exist constants a 6= 0 and b such

that

ψ = aϕ+ b. (15)

Proof. If µ = ν = δτ , then one can easily check that both sides of (1) are

equal to τx+ (1 − τ)y, hence (1) is satisfied for any functions ϕ and ψ.

It is also elementary to see that condition (ii) is sufficient for the equality of

the means Mϕ,µ and Mψ,µ.

To show the necessity of (ii), assume that Mϕ,µ = Mψ,ν and µ = ν is not

a Dirac measure. Define now the function f : ϕ(I) → R by f := ψ ◦ ϕ−1. To

prove that (15) holds for some constants a 6= 0 and b, it suffices to show that f

is affine (i.e., convex and concave at the same time). Indeed, if f is affine then

f(t) = at + b for some constants a and b. Substituting t = ϕ(x), (15) follows.

(Note that, by the strict monotonicity of f , a cannot be zero.)

If f is not affine then either it is non-convex or non-concave over J := ϕ(I).

Without loss of generality, we can assume that f is non-convex and ϕ, ψ are

strictly increasing functions. Applying the characterization of non-convexity ob-

tained in [58], it follows that there exist a point q ∈ J such that f is strictly

concave at q, i.e., there exists a positive number δ and a constant a such that, for

t ∈ ] q − δ, q[ and s ∈ ] q, q + δ[ ,

f(t) < f(q) + a(t− q) and f(s) ≤ f(q) + a(s− q).

Substituting t := ϕ(u), s := ϕ(v), and denoting p := ϕ−1(q), it follows that there

exists η > 0 such that, for u ∈ ] p− η, p[ and v ∈ ] p, p+ η[ ,

ψ(u) < ψ(p) + a(ϕ(u) − ϕ(p)) and ψ(v) ≤ ψ(p) + a(ϕ(v) − ϕ(p)). (16)
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Introduce the function ϕ̃ by ϕ̃(u) := ψ(p) + a(ϕ(u) − ϕ(p)). Then ϕ̃ is an affine

transform of ϕ, hence we have the identity Mϕ,µ = Meϕ,µ. On the other hand,

by (16), for u ∈ ] p− η, p[ and v ∈ ] p, p+ η[ ,

ψ(u) < ϕ̃(u), ψ(v) ≤ ϕ̃(v), and ψ(p) = ϕ̃(p). (17)

By our assumption, µ is not a Dirac measure, hence Mψ,µ is strictly increasing

in both variables. Using also its continuity, we can easily find x ∈ ] p − η, p[

and y ∈ ] p, p + η[ such that Mψ,µ(x, y) = p. Define τ ∈ [0, 1] by the equality

τx + (1 − τ)y = p. Using that µ is not the Dirac measure δτ , we show that

µ( ] τ, 1]) > 0. Indeed, if µ( ] τ, 1]) = 0, then µ([0, τ [ ) > 0. If t ∈ [0, τ [ then

tx+ (1 − t)y > τx + (1 − τ)y = p, hence, by the strict monotonicity of ψ,

ψ(p) = ψ
(
Mψ,µ(x, y)

)
=

∫ 1

0

ψ
(
tx+ (1 − t)y

)
dµ(t) =

∫

[0,τ ]

ψ
(
tx+ (1 − t)y

)
dµ(t)

>

∫

[0,τ ]

ψ
(
τx + (1 − τ)y

)
dµ(t) =

∫

[0,τ ]

ψ(p)dµ(t) = µ([0, τ ])ψ(p) = ψ(p),

which is a contradiction. Thus µ( ] τ, 1]) > 0 must be valid. On the other hand,

if t ∈ ] τ, 1] then p − η < x ≤ tx + (1 − t)y < τx + (1 − τ)y = p. Hence, by the

first inequality in (17), we have

ψ
(
tx+ (1 − t)y

)
< ϕ̃

(
tx+ (1 − t)y

)
(t ∈ ] τ, 1])

and, using the second inequality in (17), we also get

ψ
(
tx+ (1 − t)y

)
≤ ϕ̃

(
tx+ (1 − t)y

)
(t ∈ [0, τ ]).

Using these inequalities, µ( ] τ, 1]) > 0, and Meϕ,µ = Mϕ,µ = Mψ,µ we finally

obtain

ψ(p) = ψ
(
Mψ,µ(x, y)

)
=

∫ 1

0

ψ
(
tx+ (1 − t)y

)
dµ(t)

<

∫ 1

0

ϕ̃
(
tx+ (1 − t)y

)
dµ(t) = ϕ̃

(
Meϕ,µ(x, y)) = ϕ̃

(
Mψ,µ(x, y)

)
= ϕ̃(p),

which contradicts the last equality in (17). This contradiction proves that f is

affine. �



On the equality of generalized quasi-arithmetic means 419

5. The case when M∗

n
holds for some 2 ≤ n < ∞

In this section we characterize the equality problem (1) assuming that at

least the first two moments of the measures µ and ν are the same but the mea-

sures are not identical. The investigation of this case requires twice continuous

differentiability of the unknown functions ϕ and ψ.

Theorem 8. Assume C2 and M∗

n for some 2 ≤ n <∞. Then Mϕ,µ = Mψ,ν

holds if and only if there exist constants a 6= 0 and b such that

ψ = aϕ+ b (18)

and ϕ is a polynomial with degϕ ≤ n.

Proof. Since n ≥ 2, condition M∗

n implies that

µ2 = µ̂2 − µ̂2
1 = ν̂2 − ν̂2

1 = ν2 =: β.

If β were zero, then, by Lemma 1, µ and ν are equal to some Dirac measures δτ
and δσ (τ, σ ∈ [0, 1]), respectively. By Corollary 3, we have µ̂1 = ν̂1 which yields

that τ = σ. Hence µ = ν follows, which is impossible in the case when M
∗

n holds

for some 2 ≤ n <∞. Consequently, β cannot be zero.

By Corollary 6, we have (14), which can be rewritten as |ψ′|β = α|ϕ′|β .

Hence, ψ′ = aϕ′ for some nonzero constant a which proves (18).

Using (18), we have the identity Mψ,ν = Mϕ,ν, therefore (1) is equivalent to

the following equation

Mϕ,µ(x, y) = Mϕ,ν(x, y) (x, y ∈ I). (19)

Applying the function ϕ to both sides, we get
∫ 1

0

ϕ
(
tx+ (1 − t)y

)
d(µ− ν)(t) = 0 (x, y ∈ I). (20)

Using a recent result of Páles [56], it follows that a function ϕ satisfying the

linear functional equation (20) must be a polynomial, therefore it is infinitely

many times continuously differentiable on I. Differentiating (20) (n + 1)-times

with respect to x and then substituting y := x, we obtain
∫ 1

0

tn+1ϕ(n+1)(x)d(µ − ν)(t) = 0 (x ∈ I),

which yields (µ̂n+1 − ν̂n+1)ϕ
(n+1) = 0. By assumption M

∗

n, µ̂n+1 − ν̂n+1 cannot

be zero, hence ϕ(n+1) = 0. Therefore, ϕ must be a polynomial with degϕ ≤ n.

Now assume that ϕ is a polynomial with degϕ ≤ n. Then, for fixed x, y ∈ I,

the function f(t) := ϕ
(
tx + (1 − t)y

)
is again a polynomial of degree not bigger

than n. Thus, by M
∗

n, (20) and hence (19) follows. Now using (18), we can see

that (1) holds. �
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6. The case when M∗

1
holds

In the investigation of this case we consider two subcases.

Subcase 1: µ2ν2 = 0.

Theorem 9. Assume C2 and M∗

1 with µ2ν2 = 0. Then Mϕ,µ = Mψ,ν holds

if and only if

(i) either µ and ψ are arbitrary, ν = δbµ1
, and there exist constants a 6= 0 and b

such that

ϕ(x) = ax+ b (x ∈ I). (21)

(ii) or ν and ϕ are arbitrary, µ = δbν1 , and there exist constants c 6= 0 and d such

that

ψ(x) = cx+ d (x ∈ I), (22)

Proof. If µ2 = ν2 = 0, then µ2 = ν2, which contradicts M∗

1. Thus, only

one of the values µ2 and ν2 can be equal to zero.

In the first case, µ is equal to a Dirac measure δτ for some τ ∈ [0, 1]. By

µ̂1 = ν̂1, it follows that τ = ν̂1. Now (14) can be rewritten as |ψ′|ν2 = α, which

results that ψ′ is a constant function. Hence (22) follows for some constants a 6= 0

and b.

Conversely, one can easily check that if condition (ii) holds, then (1) is indeed

satisfied.

The case ν2 = 0 is analogous. �

Subcase 2: µ2ν2 6= 0.

In our first result, applying Theorem 5, we derive further necessary conditions

for the equality (1).

Theorem 10. Assume C2 and M1 with µ2ν2 6= 0 and assume that equality

Mϕ,µ = Mψ,ν holds. Then

ν2
ψ′′

ψ′
= µ2

ϕ′′

ϕ′
=: Φ. (23)

If C3 is valid then the function Φ : I → R introduced in (23) satisfies the differ-

ential equation (
µ3

µ2
−
ν3
ν2

)
Φ′ +

(
µ3

µ2
2

−
ν3
ν2
2

)
Φ2 = 0. (24)

If C4 is also valid, then Φ satisfies the differential equation

(
µ4

µ2
−
ν4
ν2

)
Φ′′ +

(
3µ4

µ2
2

−
3ν4
ν2
2

)
ΦΦ′ +

(
µ4 − 3µ2

2

µ3
2

−
ν4 − 3ν2

2

ν3
2

)
Φ3 = 0. (25)
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If M∗

1 holds then the three coefficients in this equation do not vanish simultane-

ously and ϕ and ψ are analytic functions.

Proof. If C2 is valid then, from (14), we get that (23) holds. By this

definition of the function Φ, we have that

ϕ′′

ϕ′
=

Φ

µ2
and

ψ′′

ψ′
=

Φ

ν2
. (26)

To show (24), assume C3. Differentiating the equalities in (26), it follows that

ϕ′′′

ϕ′
=

Φ′

µ2
+

Φ2

µ2
2

and
ψ′′′

ψ′
=

Φ′

ν2
+

Φ2

ν2
2

. (27)

In the particular case n = 2, condition (12) of Theorem 5 yields

(
µ1ν2 − µ0ν3

)ψ′′′

ψ′
+ 2

(
µ2ν1 − µ1ν2

)ϕ′′

ϕ′
·
ψ′′

ψ′
+

(
µ3ν0 − µ2ν1

)ϕ′′′

ϕ′
= 0. (28)

Using µ1 = ν1 = 0 and the identities (26), (27), equation (28) can be rewritten as

−ν3

(
Φ′

ν2
+

Φ2

ν2
2

)
+ µ3

(
Φ′

µ2
+

Φ2

µ2
2

)
= 0.

which results the differential equation (24).

If the regularity assumption C4 holds, then differentiating (27) again, one

obtains

ϕ′′′′

ϕ′
=

Φ′′

µ2
+ 3

ΦΦ′

µ2
2

+
Φ3

µ3
2

and
ψ′′′′

ψ′
=

Φ′′

ν2
+ 3

ΦΦ′

ν2
2

+
Φ3

ν3
2

. (29)

On the other hand, in the particular case n = 3, condition (12) of Theorem 5

yields

(
µ1ν3 − µ0ν4

)ψ′′′′

ψ′
+ 3

(
µ2ν2 − µ1ν3

)ϕ′′

ϕ′
·
ψ′′′

ψ′

+ 3
(
µ3ν1 − µ2ν2

)ϕ′′′

ϕ′
·
ψ′′

ψ′
+

(
µ4ν0 − µ3ν1

)ϕ′′′′

ϕ′
= 0. (30)

Using µ1 = ν1 = 0, applying (26), (27), and (29), equation (30) can be rewritten

in the following form:
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− ν4

(
Φ′′

ν2
+ 3

ΦΦ′

ν2
2

+
Φ3

ν3
2

)
+ 3µ2ν2

Φ

µ2

(
Φ′

ν2
+

Φ2

ν2
2

)

− 3µ2ν2

(
Φ′

µ2
+

Φ2

µ2
2

)
Φ

ν2
+ µ4

(
Φ′′

µ2
+ 3

ΦΦ′

µ2
2

+
Φ3

µ3
2

)
= 0,

which results (25), an at most second-order differential equation for Φ. Introduce

the notations

η :=
µ4

µ2
−
ν4
ν2
, γ :=

3µ4

µ2
2

−
3ν4
ν2
2

, δ :=
µ4 − 3µ2

2

µ3
2

−
ν4 − 3ν2

2

ν3
2

. (31)

First we show that the constants η, γ, and δ, cannot be simultaneously zero if M∗

1

holds. The equations η = 0 and γ = 0 form a system of linear equations for the

unknowns µ4, ν4. The determinant of this system is nonzero because µ2 − ν2 6= 0

by M∗

1. Thus µ4 = ν4 = 0. Then the equation δ = 0 yields µ2 = ν2, which again

contradicts M∗

1. Therefore, the coefficients in (25) do not vanish simultaneously.

To show that ϕ and ψ are analytic, in view of (26), it suffices to show that

Φ is analytic.

If η 6= 0, then (25) is an explicit second-order differential equation for Φ.

Applying the results on the analyticity of the solutions of such equations, it follows

that Φ is analytic.

If η = 0, then (25) could be rewritten as

Φ
(
γΦ′ + δΦ2

)
= 0. (32)

We show that this equation is satisfied if and only if

γΦ′ + δΦ2 = 0. (33)

Denote

J :=
{
t ∈ I : γΦ′(t) + δΦ2(t) 6= 0

}
.

Then J is an open subset of I. By (32), Φ has to be zero on J . By the openness

of J , it follows that Φ′ is also zero on J . Hence J must be empty which means

that (33) holds. If γ 6= 0, then (33) is a first-order explicit differential equation for

Φ. Thus, it follows that Φ is analytic. If γ = 0, then δ cannot be zero, therefore

Φ = 0, which again yields the analyticity of Φ. �

In our second result, we obtain a necessary and sufficient condition for the

equality problem (1) under the additional assumption that Φ satisfies a first-order

polynomial differential equation.
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Theorem 11. Assume C3 and M∗

1 with µ2ν2 6= 0. Suppose that (23) holds

and that there exists integer numbers 0 ≤ 2n ≤ k and a constant vector

(c0, . . . , cn) 6= (0, . . . , 0) such that the function Φ : I → R introduced in (23)

satisfies the following first-order polynomial differential equation

n∑

i=0

ciΦ
k−2i

(
Φ′

)i
= 0. (34)

Then Mϕ,µ = Mψ,ν holds if and only if

(i) either there exist real constants a, b, c,d with ac 6= 0 such that

ϕ(x) = ax+ b, and ψ(x) = cx+ d (x ∈ I); (35)

(ii) or there exist real constants a, b, c, d, p, q with ac(p − q) 6= 0, pq > 0 such

that

ϕ(x) = aepx + b and ψ(x) = ceqx + d (x ∈ I) (36)

and, for n ∈ N,

n∑

i=0

(
n

i

)
piqn−i

(
µi+1νn−i − µiνn+1−i

)
= 0; (37)

(iii) or there exist real constants a, b, c, d, p, q with ac(p−q) 6= 0, (p−1)(q−1) > 0,

and x0 /∈ I such that, for x ∈ I,

ϕ(x) =

{
a|x− x0|p + b, if p 6= 0

a ln |x− x0| + b, if p = 0
and

ψ(x) =

{
c|x− x0|q + d, if q 6= 0

c ln |x− x0| + d, if q = 0
(38)

and, for n ∈ N,

n∑

i=0

(
p− 1

i

)(
q − 1

n− i

)(
µi+1νn−i − µiνn+1−i

)
= 0. (39)

Proof. To solve (34), we distinguish three cases.

Case 1: Φ = 0 (which is trivially a solution of (34)). Then ϕ′′ = 0, whence

ϕ′ = a, and by (14), also ψ′ = c for some nonzero constants a and c. Therefore,

in this case, statement (i) of the theorem must be valid.
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Conversely, if (i) holds, then, for all x, y ∈ I,

Mϕ,µ(x, y) = µ̂1x+ (1 − µ̂1)y and Mψ,ν(x, y) = ν̂1x+ (1 − ν̂1)y,

hence the equality of the means follows from µ̂1 = ν̂1.

In the rest of the proof we may assume that Φ is not identically zero. Denote

by J a maximal subinterval of I where Φ does not vanish. Clearly, J is open and

nonempty and (34) can be rewritten as

n∑

i=0

ci

(
Φ′(x)

Φ2(x)

)i
= 0 (x ∈ J). (40)

Therefore, the values of the function Φ′

Φ2 on J are equal to the roots of the poly-

nomial P (x) :=
∑n

i=0 cix
i. Due to the continuity, we get that

Φ′(x)

Φ2(x)
= c (x ∈ J), (41)

where the constant c is one of the roots of the polynomial P . Now we can consider

the cases c = 0 and c 6= 0.

Case 2: c = 0. Then, (41) says that Φ′ = 0 on J . Thus, there exists a

nonzero constant p such that Φ = µ2p on J . If J were a proper subinterval of I,

then one of the endpoints of J , say α, would be contained in I. By the continuity,

we have Φ(α) = µ2p 6= 0, which results that J is not maximal. The contradiction

so obtained shows that J = I.

Using the definition of Φ, we get that ϕ′′ = pϕ′. Integrating this equality,

we can find a constant b such that ϕ′ = p(ϕ − b). This is a first-order linear

differential equation for ϕ, whose general solution is of the form ϕ(x) = aepx + b

for some constant a. Of course, ap cannot be zero, otherwise ϕ is not strictly

monotone. Using (14), it follows that ψ is also of the form stated in (36) of

(ii), where q = (µ2/ν2)p. Clearly pq = (µ2/ν2)p
2 > 0. The condition M

∗

1, i.e.,

µ2 6= ν2 implies that q 6= p. The functions ϕ and ψ are obviously analytic, hence,

Theorem 5 can be applied. Using

ϕ(j)(x)

ϕ′(x)
= pj−1,

ψ(j)(x)

ψ′(x)
= qj−1, (x ∈ I, j ∈ N),

one can see that (12) is equivalent to (37), therefore, by Theorem 5, the means

Mϕ,µ and Mψ,ν are identical if and only if (37) holds for all n ∈ N.
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Case 3: c 6= 0. Then, with the notation p := 1 + 1/(µ2c) 6= 1, (41) can be

rewritten as
Φ′(x)

Φ2(x)
=

1

µ2(p− 1)
(x ∈ J).

Integrating this equality, it follows, for some x0, that

1

Φ(x)
=

x− x0

µ2(p− 1)
(x ∈ J). (42)

Hence x0 cannot be in J . If J were a proper subinterval of I, then one of the

endpoints of J , say α, would be an element of I. By taking the limit x → α

in the above equation, it follows that Φ has a finite nonzero limit at α. By

continuity, this yields that Φ(α) = µ2(p−1)
α−x0

6= 0, showing that J is not maximal.

The contradiction so obtained proves that J = I. Applying (42) and the definition

(23) of the function Φ, we get

ϕ′′(x)

ϕ′(x)
=

Φ(x)

µ2
=

p− 1

x− x0
(x ∈ J).

Integrating this equation, it results that

ϕ′(x) =





ap|x− x0|p−1, if p 6= 0

a|x− x0|−1, if p = 0

for some constant a. After integration this yields that ϕ is of the form (38). Using

(14), we get that ψ is also of the form (38) with q := 1+(µ2/ν2)(p−1). Obviously,

(p− 1)(q− 1) = (µ2/ν2)(p− 1)2 > 0. We also have ac 6= 0 otherwise ϕ or ψ is not

strictly monotone. The condition p 6= q follows from µ2 6= ν2.

Now assume that x0 ≤ inf I (the case x0 ≥ sup I is analogous). In view

of (38), the functions ϕ and ψ are analytic and we have

ϕ(j)(x)

ϕ′(x)
= (j − 1)!

(
p− 1

j − 1

)
(x − x0)

1−j ,

ψ(j)(x)

ψ′(x)
= (j − 1)!

(
q − 1

j − 1

)
(x− x0)

1−j , (x ∈ I, j ∈ N).

Using these formulae, we can see that (12) is valid if and only if (39) holds.

Therefore, by Theorem 5, the equality of the means Mϕ,µ and Mψ,ν is equivalent

to the validity of condition (39) for all n ∈ N. �
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Subcase 2.A: µ2ν2 6= 0 and (µ3, ν3) 6= (0, 0).

Theorem 12. Assume C3 and M∗

1 with µ2ν2 6= 0 and (µ3, ν3) 6= (0, 0).

Then Mϕ,µ = Mψ,ν holds if and only if one of the alternatives (i), (ii), or (iii) of

Theorem 11 is satisfied.

Proof. By Theorem 10, we have that (24) holds. We show that (24) is

not a trivial equation, i.e., one of the coefficients different from zero. Indeed, if

both coefficients were zero, then we would get a homogeneous system of linear

equations for the unknowns µ3 and ν3. Since the determinant of this linear system

is (µ2 − ν2)/(µ2ν2)
2 6= 0 hence µ3 = ν3 = 0, which contradicts the assumption

(µ3, ν3) 6= (0, 0) of the theorem.

Thus (24) is a nontrivial first-order polynomial differential equation for Φ.

The statement now follows from Theorem 10. �

If µ3 = ν3 = 0, then the necessary condition (24) of Theorem 10 does not

result any information, Thus, we may apply differential equation (25). Unfortu-

nately, this equation can be solved explicitly if µ2ν4 = ν2µ4. In the remaining

cases, we shall use again the necessary condition (12) of Theorem 5 in the cases

n = 4 and n = 5.

Subcase 2.B: µ2ν2 6= 0, (µ3, ν3) = (0, 0), and µ2ν4 = ν2µ4.

Theorem 13. Assume C4 and M∗

1 with µ2ν2 6= 0, (µ3, ν3) = (0, 0), and

µ2ν4 = ν2µ4. Then Mϕ,µ = Mψ,ν holds if and only if one of the alternatives (i),

(ii), or (iii) of Theorem 11 is satisfied.

Proof. As we have shown in Theorem 10, the functions ϕ and ψ are analytic

on I and Φ defined by (23) satisfies

ηΦ′′ + γΦΦ′ + δΦ3 = 0, (43)

where the constants η, γ, δ are defined by (31).

Now, by µ2ν4 = ν2µ4, we have that η = 0 then, (43) is an equation of the

form (34). Thus, by Theorem 10, one of the alternatives (i), (ii), or (iii) must be

valid. �

Subcase 2.C: µ2ν2 6= 0, (µ3, ν3) = (0, 0), and µ2ν4 6= ν2µ4.

Theorem 14. Assume C4 and M∗

1 with µ2ν2 6= 0, (µ3, ν3) = (0, 0), µ2ν4 6=

ν2µ4, (µ5, ν5) 6= (0, 0), and

(µ5 − ν5)
2 + (µ4 − 3µ2ν2)

2 + (ν4 − 3µ2ν2)
2 6= 0. (44)

Then Mϕ,µ = Mψ,ν holds if and only if one of the alternatives (i), (ii), or (iii) of

Theorem 11 is satisfied.
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Proof. As we have shown in Theorem 10, the functions ϕ and ψ are analytic

on I and Φ defined by (23) satisfies (43), where the constants η, γ, δ are defined

by (31).

By condition µ2ν4 6= ν2µ4, we have that η 6= 0, therefore (43) is a second-

order differential equation that cannot be solved explicitly. However, using this

equation, the second and third (an also higher-order) derivatives of Φ can be

expressed as a polynomial of Φ and Φ′. With the notations α := −γ/η and

β := −δ/η, easily follows from (43) that

Φ′′ = αΦΦ′ + βΦ3 and Φ′′′ = α(Φ′)2 + (α2 + 3β)Φ2Φ′ + αβΦ4. (45)

In the particular case n = 4, condition (12) of Theorem 5 yields

(µ1ν4 − µ0ν5)
ψ′′′′′

ψ′
+ 4(µ2ν3 − µ1ν4)

ϕ′′

ϕ′
·
ψ′′′′

ψ′
+ 6(µ3ν2 − µ2ν3)

ϕ′′′

ϕ′
·
ψ′′′

ψ′

+4(µ4ν1 − µ3ν2)
ϕ′′′′

ϕ′
·
ψ′′

ψ′
+ (µ5ν0 − µ4ν1)

ϕ′′′′′

ϕ′
= 0.

(46)

Differentiating (29), we get that

ϕ′′′′′

ϕ′
=

Φ′′′

µ2
+ 4

ΦΦ′′

µ2
2

+ 3
(Φ′)2

µ2
2

+ 6
Φ2Φ′

µ3
2

+
Φ4

µ4
2

,

ψ′′′′′

ψ′
=

Φ′′′

ν2
+ 4

ΦΦ′′

ν2
2

+ 3
(Φ′)2

ν2
2

+ 6
Φ2Φ′

ν3
2

+
Φ4

ν4
2

.

(47)

Now using µ1 = ν1 = µ3 = ν3 = 0, and (47), equation (46) simplifies to the

following (at most) third-order differential equation for Φ:

(
µ5

µ2
−
ν5
ν2

)
Φ′′′ + 4

(
µ5

µ2
2

−
ν5
ν2
2

)
ΦΦ′′ + 3

(
µ5

µ2
2

−
ν5
ν2
2

)
(Φ′)2

+6

(
µ5

µ3
2

−
ν5
ν3
2

)
Φ2Φ′ +

(
µ5

µ4
2

−
ν5
ν4
2

)
Φ4 = 0.

Substituting the formulae from (45) into the above equation, we get

(
µ5

µ2
−
ν5
ν2

)(
α(Φ′)2 + (α2 + 3β)Φ2Φ′ + αβΦ4

)
+ 4

(
µ5

µ2
2

−
ν5
ν2
2

)(
αΦ2Φ′ + βΦ4

)

+3

(
µ5

µ2
2

−
ν5
ν2
2

)
(Φ′)2 + 6

(
µ5

µ3
2

−
ν5
ν3
2

)
Φ2Φ′ +

(
µ5

µ4
2

−
ν5
ν4
2

)
Φ4 = 0.
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Finally, we obtain the following (at most) first-order differential equation for Φ:

(
3 + αµ2

µ2
2

µ5 −
3 + αν2
ν2
2

ν5

)
(Φ′)2

+

(
6 + 4αµ2 + (α2 + 3β)µ2

2

µ3
2

µ5 −
6 + 4αν2 + (α2 + 3β)ν2

2

ν3
2

ν5

)
Φ2Φ′

+

(
1 + 4βµ2

2 + αβµ3
2

µ4
2

µ5 −
1 + 4βν2

2 + αβν3
2

ν4
2

ν5

)
Φ4 = 0. (48)

In the next step we show that the three constant coefficients in this equation

cannot be simultaneously zero. Indeed, if all these coefficients are zero then,

using that (µ5, ν5) 6= (0, 0), we can see that the following two vectors in R
3 are

linearly dependent:

u=(u1, u2, u3) :=

(
3 +αµ2

µ2
2

,
6 +4αµ2 +(α2 +3β)µ2

2

µ3
2

,
1 +4βµ2

2 +αβµ3
2

µ4
2

)

v=(v1, v2, v3) :=

(
3 + αν2
ν2
2

,
6 + 4αν2 + (α2 + 3β)ν2

2

ν3
2

,
1 + 4βν2

2 + αβν3
2

ν4
2

)
. (49)

Therefore, their vectorial product is zero, i.e., uivj = ujvi for all 1 ≤ i < j ≤ 3.

The equations corresponding to the cases (i, j) = (1, 2) and (i, j) = (1, 3) are

µ2

(
3 + αµ2

)(
6 + 4αν2 + (α2 + 3β)ν2

2

)
= ν2

(
3 + αν2

)(
6 + 4αµ2 + (α2 + 3β)µ2

2

)

and
µ2

2

(
3 + αµ2

)(
1 + 4βν2

2 + αβν3
2

)
= ν2

2

(
3 + αν2

)(
1 + 4βµ2

2 + αβµ3
2

)
.

After some calculations, simplifying also by the factor µ2 − ν2 6= 0, we arrive at

6α(µ2 + ν2) + (α2 − 9β)µ2ν2 + 18 = 0 (50)

and

α(µ2
2 + ν2

2 + µ2ν2) + αβµ2
2ν

2
2 + 3(µ2 + ν2) = 0. (51)

Multiplying (50) by (µ2+ν2), (51) by 6, and subtracting the equations so obtained,

finally dividing by µ2ν2 6= 0, we get

(α2 − 9β)(µ2 + ν2) − 6αβµ2ν2 + 6α = 0. (52)

Using the formulae

α = −
γ

η
= −

3(µ4ν
2
2 − ν4µ

2
2)

µ2ν2(µ4ν2 − ν4µ2)
,
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β = −
δ

η
= −

µ4ν
3
2 − ν4µ

3
2 + 3µ2

2ν
2
2 (µ2 − ν2)

µ2
2ν

2
2 (µ4ν2 − ν4µ2)

, (53)

equations (50) and (52) can be rewritten in the form

9(µ2 − ν2)
(
3µ2ν2(µ4ν2 − ν4µ2) + µ4ν4(µ2 − ν2)

)

(µ4ν2 − ν4µ2)2
= 0,

9(µ2 − ν2)
2
(
3µ2ν2(µ4ν2 + ν4µ2) − µ4ν4(µ2 + ν2)

)

µ2ν2(µ4ν2 − ν4µ2)2
= 0,

respectively. Using µ2 − ν2 6= 0 and µ4ν2 − ν4µ2 6= 0, we get

3µ2ν2(µ4ν2 − ν4µ2) + µ4ν4(µ2 − ν2) = 0,

3µ2ν2(µ4ν2 + ν4µ2) − µ4ν4(µ2 + ν2) = 0.

Adding up, and subtracting these two equations, we obtain

6µ4µ2ν
2
2 − 2µ4ν4ν2 = 0, 6ν4µ

2
2ν2 − 2µ4ν4µ2 = 0,

whence it follows that

µ4 = ν4 = 3µ2ν2. (54)

In this case, (53) simplifies to

α = −3

(
1

µ2
+

1

ν2

)
, β = −

(
1

µ2
2

+
1

ν2
2

)
.

Therefore, for the vectors u and v defined in (49), we get

u = v =

(
−3

µ2ν2
,

6(µ2 + ν2)

µ2
2ν

2
2

,
3(µ2

2 + ν2
2) − µ2

2ν
2
2

µ3
2ν

3
2

)
.

Thus, the differential equation (48) reduces to the following form

−3

µ2ν2
(µ5 − ν5)(Φ

′)2 +
6(µ2 + ν2)

µ2
2ν

2
2

(µ5 − ν5)Φ
′Φ2

+
3(µ2

2 + ν2
2 ) − µ2

2ν
2
2

µ3
2ν

3
2

(µ5 − ν5)Φ
4 = 0.

The coefficients of this equation can simultaneously vanish if and only if µ5=ν5.

However, this equality, together with (54) contradicts the condition (44) of the

theorem. The contradiction so obtained shows that the coefficients of (48) cannot

be identically zero under the assumptions of the theorem. Thus, (48) is a non-

trivial first-order polynomial differential equation of the form (34). Therefore, it

follows that ϕ and ψ satisfy one of the alternatives of Theorem 11. �
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If either µ5 = ν5 = 0 or µ5 = ν5 and µ4 = ν4 = 3µ2ν2, then (48) is useless,

thus we need to apply the necessary condition (12) of Theorem 5 in the case

n = 5.

Theorem 15. Assume C4 and M∗

1 with µ2ν2 6= 0, (µ3, ν3) = (0, 0),

µ2ν4 6= ν2µ4,

(µ6, ν6, 0) 6=

(
5µ2µ

2
4

6µ2
2 − µ4

,
5ν2ν

2
4

6ν2
2 − ν4

, 3µ2ν2(ν2µ4 −µ2ν4)− (µ2 − ν2)µ4ν4

)
(55)

and
(
µ6, ν6, 0) 6=

(
F

E
,
G

E
, D

)
, (56)

where

D := 45µ7
2ν

7
2 (µ2 − ν2)

3(µ2ν4 − µ4ν2)
4
(
(µ2 − ν2)µ4ν4 + 3µ2ν2(µ2ν4 − µ4ν2)

)
(
ν2(µ2 − ν2)(2µ2 − ν2)(µ2 − 2ν2)(7µ2 − 8ν2)µ

2
4ν4

+ µ2(µ2 − ν2)(2µ2 − ν2)(µ2 − 2ν2)(8µ2 − 7ν2)µ4ν
2
4

− 6µ2
2ν

2
2 (µ2 + ν2)(6µ

2
2 − 5µ2ν2 + 6ν2

2)µ4ν4

− 6µ2ν
3
2 (µ2 − 2ν2)(7µ

2
2 + µ2ν2 − ν2

2)µ2
4

− 6µ3
2ν2(2µ2 − ν2)(µ

2
2 − µ2ν2 − 7ν2

2)ν2
4 + 45µ3

2ν
4
2 (µ2 − ν2)(7µ2 − 2ν2)µ4

+ 45µ4
2ν

3
2(µ2 − ν2)(2µ2 − 7ν2)ν4

)
,

E := 4ν2
2(µ2 − ν2)(µ2 − 2ν2)

2µ3
4ν4 + 4µ2

2(µ2 − ν2)(2µ2 − ν2)
2µ4ν

3
4

+ µ2ν2(µ2 − ν2)(7ν
2
2 − 22µ2ν2 + 7µ2

2)µ
2
4ν

2
4 − 6µ2ν

4
2(2µ2 + ν2)(µ2 − 2ν2)µ

3
4

− 6µ4
2ν2(µ2 + 2ν2)(2µ2 − ν2)ν

3
4 + 3µ2

2ν
3
2(7µ2

2 − 24µ2ν2 − ν2
2)µ2

4ν4

+ 3µ3
2ν

2
2 (µ2

2 + 24µ2ν2 − 7ν2
2)µ4ν

2
4 + 90µ3

2ν
3
2(µ2 − ν2)(µ2ν4 − ν2µ4)

2,

F := 3µ2ν2(µ2ν4 − µ4ν2)
(
µ2

2ν2ν4 − µ2µ4ν
2
2 + (3ν2 − 3µ2)µ4ν4

)
(
6µ3

2ν2ν4 − 6µ2
2µ4ν

2
2 + µ2(7µ2 − 2ν2)µ4ν4 + 5ν2(µ2 − 2ν2)µ

2
4

)
,

G := 3µ2ν2(µ2ν4 − µ4ν2)
(
µ2

2ν2ν4 − µ2µ4ν
2
2 + (3ν2 − 3µ2)µ4ν4

)

(6µ2
2ν

2
2ν4 − 6µ2µ4ν

3
2 + ν2(2µ2 − 7ν2)µ4ν4 + 5µ2(2µ2 − ν2)ν

2
4 ). (57)

Then Mϕ,µ = Mψ,ν holds if and only if either one of the alternatives (i), (ii), (iii)

of Theorem 11 is satisfied.

Proof. Following the argument of the proof of the previous theorem, we

get that the functions ϕ and ψ are analytic on I and Φ defined by (23) satisfies
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(43), where the constants η, γ, δ are defined by (31). We have η 6= 0, and, with

the notations α := −γ/η and β := −δ/η, (43) yields (45) and

Φ′′′′ = (4α2 + 6β)Φ(Φ′)2 + (α3 + 9αβ)Φ3Φ′ + (α2β + 3β2)Φ5. (58)

Differentiating (47), we get that

ϕ′′′′′′

ϕ′
=

Φ′′′′

µ2
+ 5

ΦΦ′′′

µ2
2

+10
Φ′Φ′′

µ2
2

+10
Φ2Φ′′

µ3
2

+15
Φ(Φ′)2

µ3
2

+10
Φ3Φ′

µ4
2

+
Φ5

µ5
2

,

ψ′′′′′′

ψ′
=

Φ′′′′

ν2
+ 5

ΦΦ′′′

ν2
2

+10
Φ′Φ′′

ν2
2

+ 10
Φ2Φ′′

ν3
2

+ 15
Φ(Φ′)2

ν3
2

+ 10
Φ3Φ′

ν4
2

+
Φ5

ν5
2

.

(59)

In the particular case n = 5, condition (12) of Theorem 5 yields

(µ1ν5 − µ0ν6)
ψ′′′′′′

ψ′
+ 5(µ2ν4 − µ1ν5)

ϕ′′

ϕ′
·
ψ′′′′′

ψ′
+ 10(µ3ν3 − µ2ν4)

ϕ′′′

ϕ′
·
ψ′′′′

ψ′

+10(µ4ν2 −µ3ν3)
ϕ′′′′

ϕ′
·
ψ′′′

ψ′
+ 5(µ5ν1 −µ4ν2)

ϕ′′′′′

ϕ′
·
ψ′′

ψ′
+ (µ6ν0 − µ5ν1)

ϕ′′′′′′

ϕ′
=0.

Now using µ1 = ν1 = µ3 = ν3 = 0, and the identities (26), (27), (29), (45), (47),

(58), and (59), we obtain

− ν6

(
Φ′′′′

ν2
+ 5

ΦΦ′′′

ν2
2

+ 10
Φ′Φ′′

ν2
2

+ 10
Φ2Φ′′

ν3
2

+ 15
Φ(Φ′)2

ν3
2

+ 10
Φ3Φ′

ν4
2

+
Φ5

ν5
2

)

+ 5µ2ν4
Φ

µ2
·

(
Φ′′′

ν2
+ 4

ΦΦ′′

ν2
2

+ 3
(Φ′)2

ν2
2

+ 6
Φ2Φ′

ν3
2

+
Φ4

ν4
2

)

− 10µ2ν4

(
Φ′

µ2
+

Φ2

µ2
2

)
·

(
Φ′′

ν2
+ 3

ΦΦ′

ν2
2

+
Φ3

ν3
2

)

+ 10µ4ν2

(
Φ′′

µ2
+ 3

ΦΦ′

µ2
2

+
Φ3

µ3
2

)
·

(
Φ′

ν2
+

Φ2

ν2
2

)

− 5µ4ν2

(
Φ′′′

µ2
+ 4

ΦΦ′′

µ2
2

+ 3
(Φ′)2

µ2
2

+ 6
Φ2Φ′

µ3
2

+
Φ4

µ4
2

)
·

Φ

ν2

+ µ6

(
Φ′′′′

µ2
+5

ΦΦ′′′

µ2
2

+ 10
Φ′Φ′′

µ2
2

+ 10
Φ2Φ′′

µ3
2

+ 15
Φ(Φ′)2

µ3
2

+ 10
Φ3Φ′

µ4
2

+
Φ5

µ5
2

)
= 0,

Using now the formulae (45) and (58), the above equation reduces to the following

first-order differential equation for Φ:

(A1µ6 +A2ν6 +A3)Φ(Φ′)2 + (B1µ6 +B2ν6 +B3)Φ
3Φ′

+ (C1µ6 + C2ν6 + C3)Φ
5 = 0, (60)
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where

A1 := µ2
2ν

5
2

(
(4α2 + 6β)µ2

2 + 15αµ2 + 15
)

A2 := −µ5
2ν

2
2

(
(4α2 + 6β)ν2

2 + 15αν2 + 15
)

A3 := −5µ3
2ν

3
2

(
(αν2 + 3)µ2

2ν4 − (αµ2 + 3)µ4ν
2
2)

B1 := µ2ν
5
2

(
(α3 + 9αβ)µ3

2 + (5α2 + 25β)µ2
2 + 10αµ2 + 10

)

B2 := −µ5
2ν2

(
(α3 + 9αβ)ν3

2 + (5α2 + 25β)ν2
2 + 10αν2 + 10

)

B3 := 5µ2
2ν

2
2

(
(α2ν2

2 + 4αν2 + βν2
2 + 4)µ3

2ν4 − (α2µ2
2 + 4αµ2 + βµ2

2 + 4)µ4ν
3
2

+ (2αµ2
2 + 6µ2)µ4ν

2
2 − (2αν2

2 + 6ν2)µ
2
2ν4

)

C1 := ν5
2

(
(α2β + 3β2)µ4

2 + 5αβµ3
2 + 10βµ2

2 + 1
)

C2 := −µ5
2

(
(α2β + 3β2)ν4

2 + 5αβν3
2 + 10βν2

2 + 1
)

C3 := 5µ2ν2
(
(αβν3

2 + 4βν2
2 + 1)µ4

2ν4 − (αβµ3
2 + 4βµ2

2 + 1)µ4ν
4
2

+ (2µ3
2β + 2µ2)µ4ν

3
2 − (2ν3

2β + 2ν2)µ
3
2ν4

)
.

If the coefficients in equation (60) vanish simultaneously, then µ6, ν6 and ξ = 1 is

a nontrivial solution of the following system of homogeneous linear equations

A1µ6 +A2ν6 +A3ξ = 0, B1µ6 +B2ν6 +B3ξ = 0,

C1µ6 + C2ν6 + C3ξ = 0. (61)

Therefore, the value D defined in (57), which is the determinant D of this system

has to be zero. The constant D was factorized by using the Maple 9 symbolic

package. Thus, in order that D be zero, we have two possibilities. The first

(simpler) case is when

(µ2 − ν2)µ4ν4 + 3µ2ν2(µ2ν4 − µ4ν2) = 0.

Then, again using Maple 9, we get the following values for the solutions µ6 and

ν6 of the linear system (61):

µ6 =
5µ2µ

2
4

6µ2
2 − µ4

, ν6 =
5ν2ν

2
4

6ν2
2 − ν4

.

This, however, contradicts the assumption (55). Thus, in this case the three

coefficients of (60) cannot vanish simultaneously.
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The second case is when the last factor of D is zero, i.e., when

ν2(µ2 − ν2)(2µ2 − ν2)(µ2 − 2ν2)(7µ2 − 8ν2)µ
2
4ν4

+ µ2(µ2 − ν2)(2µ2 − ν2)(µ2 − 2ν2)(8µ2 − 7ν2)µ4ν
2
4

− 6µ2
2ν

2
2 (µ2 + ν2)(6µ

2
2 − 5µ2ν2 + 6ν2

2)µ4ν4

− 6µ2ν
3
2 (µ2 − 2ν2)(7µ

2
2 + µ2ν2 − ν2

2)µ2
4

− 6µ3
2ν2(2µ2 − ν2)(µ

2
2 − µ2ν2 − 7ν2

2)ν2
4 + 45µ3

2ν
4
2 (7µ2 − 2ν2)(µ2 − ν2)µ4

+ 45µ4
2ν

3
2(µ2 − ν2)(2µ2 − 7ν2)ν4 = 0.

Calculating with the help of the Maple 9 package, we get the following values for

the unknowns µ6 and ν6:

µ6 =
F

E
, ν6 =

G

E
,

where E,F , and G are given by (57). In view of condition (56), we get again a

contradiction. Thus, in this case, the three coefficients of (60) cannot be simul-

taneously zero

Therefore, in each case, Φ satisfies a nontrivial first order polynomial differ-

ential equation of the form (34). Hence, one of the alternatives of Theorem 11

must be valid. �

7. Applications

In this section we demonstrate some possible applications of our results.

Example 1. Consider the functional equation

ϕ−1

(
ϕ
(

2x+y
3

)
+ ϕ

(
x+2y

3

)

2

)
= ψ−1

(
ψ(x) + 16ψ

(
x+y

2

)
+ ψ(y)

18

)
, (62)

where ϕ, ψ : I → R are continuous strictly monotone functions.

Equation (62) is an obvious particular case of the equality problem (1), where

the measures µ and ν are given by

µ =
δ1/3 + δ2/3

2
and ν =

δ0 + 16δ1/2 + δ1

18
.

Then, µ̂1 = ν̂1 = 1
2 and, for k ∈ N,

µk =
(−1)k + 1

2 · 6k
and νk =

(−1)k + 1

18 · 2k
.
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Hence

µ1 = 0, µ2 =
1

36
, µ3 = 0, µ4 =

1

1296
, . . . ,

ν1 = 0, ν2 =
1

36
, ν3 = 0, ν4 =

1

144
, . . . .

Thus the exact moment condition M∗

3 holds. If C4 is assumed, then, by Theorem 8,

ϕ, ψ : I → R satisfy (62) if and only if there exist constants a 6= 0 and b such that

ψ = aϕ+ b

and ϕ is an arbitrary strictly monotone polynomial with degϕ ≤ 3.

It remains an open problem to find the solutions of (62) under the regularity

assumption C0 only.

Example 2. Consider the functional equation

ϕ−1

(
2ϕ(x) + ϕ(y)

3

)
= ψ−1

( ∫ 1

0

2tψ(tx+ (1 − t)y)dt

)
, (63)

where ϕ, ψ : I → R are continuous strictly monotone functions.

Equation (63) is also a particular case of the equality problem (1), where the

measures µ and ν are now given by

µ =
δ0 + 2δ1

3
and dν(t) = 2tdt.

Then, µ̂1 = ν̂1 = 2
3 and, for k ∈ N, we have

µk =

∫ 1

0

(
t−

2

3

)k
dµ(t) =

(−2)k + 2

3k+1

and

νk =

∫ 1

0

2t
(
t−

2

3

)k
dt =

6k + 10 − (−2)k+3

(k + 1)(k + 2)3k+2
.

Hence

µ1 = 0, µ2 =
2

9
, µ3 = −

2

27
, µ4 =

2

27
. . . ,

ν1 = 0, ν2 =
1

18
, ν3 = −

1

135
, ν4 =

1

135
, . . . .

Thus the exact moment condition M∗

1 holds. Since µ3 6= 0 6= ν3, Theorem 12 can

be applied. If C3 is assumed, then, one of the alternatives (i), (ii), and (iii) of

Theorem 11 holds.
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If the alternative (i) is valid then there exist real constants a, b, c, d with

ac 6= 0 such that ϕ and ψ are given by (35), i.e., they are affine functions. In this

case, the means Mϕ,µ(x, y) and Mψ,ν(x, y) are equal to the weighted arithmetic

mean 2x+y
3 .

If (ii) were valid, then there exist real constants a, b, c, d, p, q with

acpq(p − q) 6= 0 such that (36) and (37) hold for all n ∈ N. In the case n = 1,

(37) yields

q(µ1ν1 − µ0ν2) + p(µ2ν0 − µ1ν1) = 0, (64)

whence q = 4p. If n = 2, then (37) implies

q2(µ1ν2 − µ0ν3) + pq(µ2ν1 − µ1ν2) + p2(µ3ν0 − µ2ν1) = 0, (65)

resulting q2 = 10p2, which contradicts q = 4p.

If (iii) is valid then there exist real constants a, b, c, d, p, q with

ac(p− 1)(q− 1)(p− q) 6= 0 and x0 /∈ I such that (38) and (39) hold for all n ∈ N.

In the case n = 1, (39) yields

(q − 1)(µ1ν1 − µ0ν2) + (p− 1)(µ2ν0 − µ1ν1) = 0, (66)

whence q = 4p− 3. If n = 2, then (39) implies

(q − 1)(q − 2)

2
(µ1ν2 − µ0ν3) + (p− 1)(q − 1)(µ2ν1 − µ1ν2)

+
(p− 1)(p− 2)

2
(µ3ν0 − µ2ν1) = 0, (67)

which results p = 0 and q = 4p − 3 = −3. Instead of showing now that (39)

holds for all n ≥ 3, we prove that the functions ϕ, ψ : I → R given by (38) satisfy

(63). For simplicity, we assume that x0 = 0 ≤ inf I. Then ϕ(x) = a lnx + b and

ψ(x) = cx−3 + d.

On one hand, we have

ϕ−1

(
2ϕ(x) + ϕ(y)

3

)
= 3

√
x2y.

On the other hand,

ψ−1

( ∫ 1

0

2tψ(tx+ (1 − t)y)dt

)
=

( ∫ 1

0

2t

(tx + (1 − t)y)3
dt

)
−

1
3

=

(
2t(y − x) − y

(y − x)2(tx+ (1 − t)y)2

∣∣∣∣
t=1

t=0

)
−

1
3
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=

(
2(y − x) − y

(y − x)2x2
−

−y

(y − x)2y2

)
−

1
3

=

(
1

x2y

)
−

1
3

= 3
√
x2y,

which proves the equality in (63).

Example 3. Consider the functional equation

ϕ−1

(
2ϕ(x) + ϕ(y)

3

)
= ψ−1

(
4ψ(x) + 4ψ

(
x+y

2

)
+ ψ(y)

9

)
, (68)

where ϕ, ψ : I → R are continuous strictly monotone functions.

Equation (68) is an obvious particular case of the equality problem (1), where

the measures µ and ν are given by

µ =
δ0 + 2δ1

3
and ν =

δ0 + 4δ1/2 + 4δ1

9
.

Then, µ̂1 = ν̂1 = 2
3 and, for k ∈ N, we have

µk =

∫ 1

0

(
t−

2

3

)k
dµ(t) =

(−2)k + 2

3k+1

and

νk =

∫ 1

0

(
t−

2

3

)k
dν(t) =

(−4)k + 4(−1)k + 4 · 2k

9 · 6k
.

Hence

µ1 = 0, µ2 =
2

9
, µ3 = −

2

27
, µ4 =

2

27
. . . ,

ν1 = 0, ν2 =
1

9
, ν3 = −

1

54
, ν4 =

1

36
, . . . .

Thus the exact moment condition M∗

1 holds. Since µ3 6= 0 6= ν3, Theorem 12 can

be applied. If C3 is assumed, then, one of the alternatives (i), (ii), and (iii) of

Theorem 12 holds.

Clearly, if (i) holds, then ϕ and ψ are affine functions and the two means on

the left and right hand sides of (68) are equal to the weighted arithmetic mean
2x+y

3 .

If (ii) holds, then there exist constants a, b, c, d, p, q with acpq(p−q) 6= 0 such

that (36) and (37) are satisfied for all n ∈ N. In the case n = 1, (37) simplifies

to (64), which results q = 2p. Instead of showing that (37) holds for all n ≥ 2,

we prove that the functions ϕ and ψ given by (36) are solutions of (68). Indeed,

ϕ−1

(
2ϕ(x) + ϕ(y)

3

)
=

1

p
ln

(
2epx + epy

3

)
=

1

2p
ln

(
2epx + epy

3

)2
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=
1

2p
ln

(
4e2px + 4e2p

x+y

2 + e2py

9

)

=
1

q
ln

(
4eqx + 4eq

x+y

2 + eqy

9

)
= ψ−1

(
4ψ(x) + 4ψ

(
x+y

2

)
+ ψ(y)

9

)
.

In this case, we can also see that the means on the two sides of (39) are weighted

exponential means.

If (iii) were valid then there exist real constants a, b, c, d, p, q with

ac(p− 1)(q− 1)(p− q) 6= 0 and x0 /∈ I such that (38) and (39) hold for all n ∈ N.

In the case n = 1, (39) simplifies to (66) whence q = 2p − 1 follows. If n = 2,

then (39) yields (67) which results p = 1 contradicting the conditions on the

parameters. Therefore, there is no solution of (68) in the case (iii).
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[14] Z. Daróczy, Quasi-arithmetic elements of a given class of means, Publ. Math. Debrecen
65, no. 3–4 (2004), 317–322.
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[23] Z. Daróczy and C. T. Ng, A functional equation on complementary means, Acta Sci.
Math. (Szeged) 66 (2000), 603–611.
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[58] Zs. Páles, Nonconvex functions and separation by power means, Math. Inequal. Appl. 3,
no. 2 (2000), 169–176.

ZITA MAKÓ
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