On continuous solutions and stability of a conditional Goła̧b-Schinzel equation

By NICOLE BRILLOUËT-BELLUOT (Nantes) and JANUSZ BRZDȨK (Kraków)

This paper is dedicated to Professor Zoltán Daróczy on the occasion of his 70th birthday

Abstract

We determine the continuous solutions $f: \mathbb{R} \rightarrow \mathbb{R}$ of the functional equation $$
f(x+f(x) y) f(x) f(y)[f(x+f(x) y)-f(x) f(y)]=0 \quad(x, y \in \mathbb{R}) .
$$

We also give some remarks on nonstability of the Goła̧b-Schinzel equation.

Let \mathbb{R} denote the set of reals. The Gołąb-Schinzel functional equation $$
\begin{equation*} f(x+f(x) y)=f(x) f(y)) \tag{1} \end{equation*}
$$

has been introduced by S . Go乇A̧B and A. Schinzel in [17], for functions f : $\mathbb{R} \rightarrow \mathbb{R}$. For continuous functions with more general domains (Hilbert space) the equation has been studied for the first time by Z. DarócZy in [15], where he has obtained a very elegant description of solutions. For further details concerning equation (1) refer e.g. to [1]-[3], [19]-[22] and to the survey paper [5].

This paper has been motivated by the talk of R. Ger at the 44th ISFE (see [16]), in which he stated that the problem of solving the following two conditional

[^0]equations
\[

$$
\begin{array}{ll}
f(x+f(x) y)=f(x) f(y) & \text { whenever } f(x+f(x) y) \neq 0, \\
f(x+f(x) y)=f(x) f(y) & \tag{3}\\
\text { whenever } f(x) f(y) \neq 0
\end{array}
$$
\]

(e.g. in the class of functions $f: \mathbb{R} \rightarrow \mathbb{R}$) is of interest and arises naturally in the study of stability of (1). Namely, investigating Hyers-Ulam stability of (1) in the sense of R. GER we come across the following two conditional inequalities (see e.g. [11])

$$
\begin{array}{ll}
\left|\frac{f(x) f(y)}{f(x+f(x) y)}-1\right| \leq \varepsilon & \text { whenever } f(x+f(x) y) \neq 0 \\
\left|\frac{f(x+f(x) y)}{f(x) f(y)}-1\right| \leq \varepsilon & \text { whenever } f(x) f(y) \neq 0 \tag{5}
\end{array}
$$

for a given $\varepsilon>0$ (for the information on the stability of functional equations see [18]; stability of (1) has been investigated in [11], [12], [13]). It is easily seen that those two inequalities are strictly connected with equations (2) and (3): e.g. every solution of (2) ((3), respectively) satisfies (4) ((5), respectively) and one could expect that every $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying (4) ((5), respectively) is close, in some sense, to a solution of (2) ((3), respectively).

Note that every solution $f: \mathbb{R} \rightarrow \mathbb{R}$ of either of those two conditional equations is a solution of the functional equation

$$
\begin{equation*}
f(x+f(x) y) f(x) f(y)[f(x+f(x) y)-f(x) f(y)]=0 \tag{6}
\end{equation*}
$$

Thus solving (6) we obtain all solutions of (2) and (3) as well; moreover (see Corollary 2), in this way, we also solve the equations

$$
\begin{align*}
f(y) f(x+f(x) y) & =0, \tag{7}\\
f(x) f(y) f(x+f(x) y) & =0 . \tag{8}
\end{align*}
$$

In this paper we determine the continuous solutions $f: \mathbb{R} \rightarrow \mathbb{R}$ of (6). Our results correspond to the recent papers [10], [19], [20], [21], [22] on conditional versions of (1). The main tool in our proof is the well known theorem of J. Aczél [1] (see also [14]), concerning the continuous cancellative associative operations on a real interval; or more precisely the following consequence of it.

Theorem 1. Let L be a nontrivial real interval and let $\circ: L \times L \rightarrow L$ be a continuous cancellative associative operation. Then the operation is commutative.

For some further examples of applications of the Aczél theorem in solving some functional equations of similar type see [4], [6], [7], [8], [9].

We start with some Lemmas. In what follows we assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a nonconstant continuous solution of the functional equation (6) and $I:=\{x \in$ $\mathbb{R}: f(x) \neq 0\}$. Please note that $I \neq \mathbb{R}$, because otherwise f is a solution of (1) and consequently $f \equiv 1$ (see e.g. [5, Proposition 2$]$).

Lemma 1. Let J be a nontrivial interval included in I with $x+f(x) y \in J$ for all $x, y \in J$. Then there is $c \in \mathbb{R}$ with $f(x)=c x+1$ for $x \in J$.

Proof. Write $A(x, y):=x+f(x)$ for $x, y \in \mathbb{R}$. Then $A: J \times J \rightarrow J$ is a continuous and associative operation, cancellative on both sides (cf. e.g. [9, p. 5] or [6]). By Theorem 1, A is a commutative operation, which means that

$$
\begin{equation*}
x+f(x) y=y+f(y) x \quad \text { for } x, y \in J \tag{9}
\end{equation*}
$$

Let $y \in J \backslash\{0\}$ and $c:=(f(y)-1) y^{-1}$. Then (9) implies the statement.
Lemma 2. The following two statements hold.
(i) The function $g: \mathbb{R} \rightarrow \mathbb{R}$, given by: $g(x)=f(-x)$, is a solution of equation (6).
(ii) Let $a>0$ and $f(x)<0$ for $x>a$. Then $f(y) \geq 0$ for $y<0$.

Proof. Since (i) is obvious we prove only (ii). For the proof by contradiction suppose that there is $y<0$ with $f(y)<0$ and take $x>a$. Then $f(x)<0$, which means that $x+f(x) y>x>a$. Hence $f(x+f(x) y)<0$ and $f(x) f(y)>0$. Consequently $f(x) f(y) f(x+f(x) y) \neq 0$ and, by (1), we have $f(x+f(x) y)=$ $f(x) f(y)$, which gives the contradiction.

Lemma 3. Let (a, b) be a connected component of I. Then $a=-\infty$ or $b=+\infty$.

Proof. For the proof by contradiction suppose $-\infty<a<b<+\infty$. The continuity of f implies $f(a)=f(b)=0$.

Suppose that there are $\alpha, \beta \in(a, b)$ with $\alpha+f(\alpha) \beta \leq a$. Since $b+f(b) \beta=b$, by the continuity of f, there is $\gamma \in[\alpha, b)$ such that $\gamma+f(\gamma) \beta=a$. Let $\gamma_{0}=$ $\sup \{\gamma \in[\alpha, b): \gamma+f(\gamma) \beta=a\} \geq \alpha>a$. Again, the continuity of f implies $\gamma_{0}+f\left(\gamma_{0}\right) \beta=a$, and therefore $\gamma_{0} \in(a, b)$.

Let $\gamma_{1}=\inf \left\{\gamma \in\left[\gamma_{0}, b\right]: \gamma+f(\gamma) \beta=b\right\}$. For all $x \in\left(\gamma_{0}, \gamma_{1}\right)$ we have: $x+f(x) \beta \in(a, b)$ and consequently $f(x) f(\beta)=f(x+f(x) \beta)$. So, as x goes
to $\gamma_{0}+0$, we get $0 \neq f\left(\gamma_{0}\right) f(\beta)=f\left(\gamma_{0}+f\left(\gamma_{0}\right) \beta\right)=f(a)=0$, which gives the contradiction.

Thus we have shown $\alpha+f(\alpha) \beta>a$ for $\alpha, \beta \in(a, b)$. Similarly (see Lemma 2(i)), we prove $\alpha+f(\alpha) \beta<b$ for $\alpha, \beta \in(a, b)$. So, by Lemma 1, there is $c \in \mathbb{R}$ with $f(x)=c x+1$ for $x \in(a, b)$. This is a contradiction, because $f(a)=f(b)=0$.

Corollary 1. $I \in\{(-\infty, b) \cup(a,+\infty),(a,+\infty),(-\infty, a)\}$ for some $a, b \in \mathbb{R}$, $b \leq a$.

Lemma 4. Let $a \in \mathbb{R},(a,+\infty) \subseteq I$ and $f(a)=0$. Then one of the following two statements holds.
(i) $a<0, x+f(x) y>a$ for every $x, y>a$ and

$$
\begin{equation*}
f(x)=1-\frac{x}{a} \quad \text { for } x>a \tag{10}
\end{equation*}
$$

(ii) $a>0, x+f(x) y \leq a$ for every $x, y>a$ and

$$
\begin{equation*}
f(x) \leq 1-\frac{x}{a} \quad \text { for } x>a \tag{11}
\end{equation*}
$$

Proof. First we show that either $x+f(x) y>a$ for $x, y>a$ or $x+f(x) y \leq a$ for $x, y>a$. For the proof by contradiction suppose $X_{1}:=x_{1}+f\left(x_{1}\right) y_{1} \leq a$ and $X_{2}:=x_{2}+f\left(x_{2}\right) y_{2}>a$ for some $x_{1}, y_{1}, x_{2}, y_{2}>a$. We consider only the case $x_{1} \leq x_{2}, y_{1} \leq y_{2}$; the cases where $x_{1}>x_{2}$ or $y_{1}>y_{2}$ are analogous.

The continuity of f implies that $A\left(\left[x_{1}, x_{2}\right] \times\left[y_{1}, y_{2}\right]\right)$ is an interval containing [$\left.X_{1}, X_{2}\right]$. Therefore, there are $\alpha_{1} \in\left[x_{1}, x_{2}\right]$ and $\beta_{1} \in\left[y_{1}, y_{2}\right]$ with

$$
A\left(\alpha_{1}, \beta_{1}\right)=a+\frac{X_{2}-a}{2}
$$

Now, $A\left(\left[x_{1}, \alpha_{1}\right] \times\left[y_{1}, \beta_{1}\right]\right)$ is an interval containing the interval $\left[X_{1}, \frac{a+X_{2}}{2}\right]$. So, there exist $\alpha_{2} \in\left[x_{1}, \alpha_{1}\right]$ and $\beta_{2} \in\left[y_{1}, \beta_{1}\right]$ such that

$$
A\left(\alpha_{2}, \beta_{2}\right)=a+\frac{X_{2}-a}{2^{2}}
$$

In this way, we construct two decreasing sequences, $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ in $\left[x_{1}, x_{2}\right]$ and $\left\{\beta_{n}\right\}_{n \in \mathbb{N}}$ in $\left[y_{1}, y_{2}\right]$, such that

$$
A\left(\alpha_{n}, \beta_{n}\right)=a+\frac{X_{2}-a}{2^{n}}
$$

We have: $f\left(A\left(\alpha_{n}, \beta_{n}\right)\right)=f\left(\alpha_{n}\right) f\left(\beta_{n}\right)$ for all $n \in \mathbb{N}$. Let $x_{0}=\lim _{n \rightarrow+\infty} \alpha_{n} \in$ $\left[x_{1}, x_{2}\right]$ and $y_{0}=\lim _{n \rightarrow+\infty} \beta_{n} \in\left[y_{1}, y_{2}\right]$. As n goes to $+\infty$, we get: $f(a)=0=$ $f\left(x_{0}\right) f\left(y_{0}\right) \neq 0$, which gives the contradiction.

- If $x+f(x) y>a$ for all $x, y>a$, we apply Lemma 1 to $J=(a,+\infty)$. Then the continuity of f at a implies $a \neq 0$ and

$$
f(x)=1-\frac{x}{a} \quad \text { for } \quad x \geq a
$$

Suppose that $a>0$ and take $x, y>a$. Then $(x-a)(y-a)>0$, whence $x+y-\frac{x y}{a}<a$. Consequently we have $x+f(x) y<a$. This contradiction proves that $a<0$.

- Suppose now:

$$
\begin{equation*}
x+f(x) y \leq a \quad \text { for } \quad x, y>a \tag{12}
\end{equation*}
$$

Clearly $x=y=0$ in (12) implies $a \geq 0$. Further, with $a=0$, (12) gives $x+f(x) y \leq 0$ for $x, y>0$ and consequently, with $y \rightarrow 0+$, we get a contradiction. Therefore $a>0$. Moreover, as $y \rightarrow a+0$, from (12) we get

$$
f(x) \leq 1-\frac{x}{a} \quad \text { for } \quad x \geq a
$$

From Lemmas 2(i) and 4 we easily derive the following result.
Lemma 5. If $b \in \mathbb{R},(-\infty, b) \subseteq I$ and $f(b)=0$, then one of the following two conditions holds.
(i) $b>0, x+f(x) y<b$ for $x, y<b$, and

$$
\begin{equation*}
f(x)=1-\frac{x}{b} \quad \text { for } x<b \tag{13}
\end{equation*}
$$

(ii) $b<0, x+f(x) y \geq b$ for $x, y<b$, and $f(x) \leq 1-\frac{x}{b}$ for $x<b$.

Lemma 6. Let $a, b \in \mathbb{R}, 0<b \leq a, f(a)=0$, and (11) and (13) hold. Then $a=b$ and

$$
\begin{equation*}
f(x)=1-\frac{x}{a} \quad \text { for } x \in \mathbb{R} \tag{14}
\end{equation*}
$$

Proof. Take $x, w \in(a,+\infty)$. Then, by (11), $f(x)<0$ and $f(w)<0$, whence there exists $y_{0}>a$ such that $x+f(x) y, w+f(w) y \in(-\infty, b)$ for $y>y_{0}$. Consequently, in view of (13), for every $y>y_{0}$,

$$
0 \neq f(x) f(y)=f(x+f(x) y)=1-\frac{x+f(x) y}{b}
$$

and

$$
0 \neq f(w) f(y)=f(w+f(w) y)=1-\frac{w+f(w) y}{b}
$$

which implies that

$$
\frac{b-x}{b f(x)}-\frac{y}{b}=f(y)=\frac{b-w}{b f(w)}-\frac{y}{b}
$$

Thus we have proved that there is $c \in \mathbb{R} \backslash\{0\}$ with $b-x=c f(x)$ for $x \in(a,+\infty)$. Now writing $\alpha=-\frac{1}{c}$ and $\beta=\frac{b}{c}$ we have $f(x)=\alpha x+\beta$ for $x \in(a,+\infty)$. Since f is continuous and $f(a)=0$, we have $\beta=-a \alpha$. Therefore

$$
\begin{equation*}
f(x)=\alpha(x-a) \quad \text { for } x \in(a,+\infty) \tag{15}
\end{equation*}
$$

Let $x \in(a,+\infty)$. There is $\bar{y} \in(a,+\infty)$ with $x+f(x) y<b$ for $y>\bar{y}$. Thus, for $y>\bar{y}$,

$$
\alpha^{2}(x-a)(y-a)=f(x) f(y)=f(x+f(x) y)=1-\frac{x+\alpha(x-a) y}{b}
$$

and consequently $b \alpha(x-a)\left(\alpha(y-a)+\frac{y}{b}\right)=b-x$, which yields $\alpha=-\frac{1}{b}$.
So we have proved that $-\frac{a}{b}(x-a)=(b-x)$ for $x>a$, whence $a=b$. This, (13), and (15) yield (14).

Lemma 7. Let $a, b \in \mathbb{R}, b \leq a$, and $I=(-\infty, b) \cup(a,+\infty)$. Then $a=b \neq 0$ and (14) holds.

Proof. In view of Lemma 2(i) it is enough to consider only the case $a \geq 0$. Then, according to Lemma 4, condition (11) holds, which means that $f(x)<0$ for $x>a$. Hence, in view of Lemma 2(ii), $f(y) \geq 0$ for $y<0$. On account of Lemma 5 , this is possible only if $b>0$ and (13) is valid. Consequently Lemma 6 yields the statement.

Now we are in a position to prove the main result.
Theorem 2. A continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ is a solution of equation (6) if and only if one of the following four conditions holds.
$(\alpha) f \equiv 0$.
(β) There is $c \in \mathbb{R}$ such that

$$
f(x)=\max \{c x+1,0\} \quad \text { for } x \in \mathbb{R}
$$

or

$$
f(x)=c x+1 \quad \text { for } x \in \mathbb{R}
$$

(γ) There is $a \in(0, \infty)$ such that

$$
f(x) \leq 1-\frac{x}{a} \quad \text { for } x \in(a, \infty)
$$

and

$$
f(x)=0 \quad \text { for } x \in(-\infty, a]
$$

(δ) There is $b \in(-\infty, 0)$ such that

$$
f(x) \leq 1-\frac{x}{b} \quad \text { for } x \in(-\infty, b)
$$

and

$$
f(x)=0 \quad \text { for } x \in[b, \infty]
$$

Proof. First assume that one of conditions $(\alpha)-(\delta)$ holds; we show that then f is a solution of equation (6). The cases where (α) or (β) is valid are trivial, because then f is a solution of the Gołąb-Schinzel equation (see e.g. [3], [5], [17]). So, in view of Lemma 2(i), it remains to consider the case of (γ).

Take $x, y \in \mathbb{R}$ with $f(x) f(y) \neq 0$. This means that $x, y \in(a, \infty)$, whence $(x-a)(y-a)>0$. Consequently $x+\left(1-\frac{x}{a}\right) y<a$, which implies that $x+f(x) y<a$. Hence $f(x+f(x) y)=0$ and therefore (6) holds.

Now assume that f is a solution of (6) and $f \not \equiv 0$. If f is constant, i.e., $f \equiv \gamma \neq 0$, then, by (6), $\gamma=\gamma^{2}$, whence $\gamma=1$. So (β) holds with $c=0$.

Now assume that f is not constant; then, in view of [5, Proposition 2], $I \neq \mathbb{R}$. Consequently, by Corollary 1 , there exist $a, b \in \mathbb{R}, b<a$, such that $I \in\{(a, \infty),(-\infty, b),(-\infty, b) \cup(a, \infty)\}$.

First consider the case where $I=(a, \infty)$. If $a>0$, then, according to Lemma 4, (γ) holds. If $a<0$, then Lemma 4 implies (β). The case where $I=(-\infty, b)$ is analogous on account of Lemma 2(i).

In the case where $I=(-\infty, b) \cup(a, \infty)$ it is enough to use Lemma 7 .
Corollary 2. 1° Every continuous $f: \mathbb{R} \rightarrow \mathbb{R}$, satisfying (2) or (3), is a solution of (1).
2° Continuous $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies (7) if and only if (α) or (γ) or (δ) holds.
3° Continuous $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies (8) if and only if (α) or (γ) or (δ) holds.
Proof. Suppose that (γ) or (δ) holds. Then taking $y=0$ and $f(x) \neq 0$ we obtain that (2) does not hold. Next, arguing as in the proof of Theorem 2, we show that $f(x+f(x) y)=0$ for $x, y \in \mathbb{R}$ with $f(x) f(y) \neq 0$. Hence (3) does not hold, either; but equations (7) and (8) are fulfilled. Taking $x=y=0$ we see that functions given by (β) do not satisfy (7) nor (8).

Remark 1. It follows from Corollary 2 that a continuous $f: \mathbb{R} \rightarrow \mathbb{R}$ is a solution of (6) if and only if it is a solution of (1) or of (8). This is no longer true if f is discontinuous at least at one point. Namely the function $f: \mathbb{R} \rightarrow \mathbb{R}$, given by

$$
f(x)= \begin{cases}1, & \text { if } x \geq 0 \\ 0, & \text { if } x<0\end{cases}
$$

satisfies (6) and it is neither a solution of (1) (take $x=2, y=-1$) nor of (8) (take $x=y=1$).

Remark 2. J. Chudziak [11, Theorem 1] has proved that every, continuous at 0 , function $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfies (4) and (5) is a solution of (1) or it is bounded. This is not the case if we replace conditions (4) and (5) by the following weaker one

$$
\begin{gather*}
\left|\frac{f_{0}(x) f_{0}(y)}{f_{0}\left(x+f_{0}(x) y\right)}-1\right| \leq \varepsilon \quad \text { and } \quad\left|\frac{f_{0}\left(x+f_{0}(x) y\right)}{f_{0}(x) f_{0}(y)}-1\right| \leq \varepsilon \tag{16}\\
\text { for } x, y \in \mathbb{R}, f_{0}\left(x+f_{0}(x) y\right) f_{0}(x) f_{0}(y) \neq 0
\end{gather*}
$$

The following two examples show this.
Example 1. Let $f_{0}: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
f_{0}(x)= \begin{cases}x+1, & \text { if } x \geq 1 \\ 0, & \text { if } x<1\end{cases}
$$

It is easy to check that $f_{0}\left(x+f_{0}(x) y\right)=f_{0}(x) f_{0}(y)$ for $x, y \in[1, \infty)$, which means that (16) holds with any $\varepsilon>0$, but f_{0} is not a solution of (1) (take e.g. $x=2, y=-\frac{1}{4}$) nor it is bounded. Moreover, for every solution $f: \mathbb{R} \rightarrow \mathbb{R}$ of the Gołąb-Schinzel equation (1), we have

$$
\sup _{x \in \mathbb{R}}\left|f(x)-f_{0}(x)\right| \geq 1,
$$

because either $f(\mathbb{R})=\{0\}$ or $f(0)=1$.
However, f_{0} satisfies (6).
Example 2. Let $\varepsilon \in(0,1)$ and $f_{0}: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
f_{0}(x)= \begin{cases}x, & \text { if } x \geq \frac{1}{\varepsilon} \\ 0, & \text { if } x<\frac{1}{\varepsilon}\end{cases}
$$

It is easy to check that (16) holds, but f_{0} is not a solution of (1) or of (6) (take e.g. $x=y=\frac{1}{\varepsilon}$), nor it is bounded. Moreover, analogously as in Example 2, for every solution $f: \mathbb{R} \rightarrow \mathbb{R}$ of equation (1), we obtain

$$
\sup _{x \in \mathbb{R}}\left|f(x)-f_{0}(x)\right| \geq 1
$$

We also have the following example.
Example 3. Let $\varepsilon \in(0,1), k \in\left[\frac{1}{1+\varepsilon}, 1+\varepsilon\right], k \neq 1$, and $f_{0}: \mathbb{R} \rightarrow \mathbb{R}$ be given by: $f_{0}(x)=k$ for $x \in \mathbb{R}$. Then

$$
1-\varepsilon<\frac{1}{1+\varepsilon} \leq k \leq \varepsilon+1<\frac{1}{1-\varepsilon}
$$

which means that f_{0} is a continuous solution of (16), but it is not a solution of (6). We do not know if there exist an unbounded continuous solution $f_{0}: \mathbb{R} \rightarrow \mathbb{R}$ of (16) that do not satisfy equation (6).

References

[1] J. Aczél, Sur les opérations définies pour nombres réels, Bull. Soc. Math. France 76 (1949), 59-64.
[2] J. Aczél and J. Schwaiger, Continuous solutions of the Goła̧b-Schinzel equation on the nonnegative reals and on related domains, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 208 (1999, 2000), 171-177.
[3] N. BrillouËt and J. Dhombres, Équations fonctionnelles et recherche de sous-groupes, Aequationes Math. 31 (1986), 253-293.
[4] N. Brillouët-Belluot and B. Ebanks, Localizable composable measures of fuzziness II, Aequationes Math. 60 (2000), 233-242.
[5] J. BRZdȩk, Goła̧b-Schinzel functional equation and its generalizations, Aequationes Math. 70 (2005), 14-24.
[6] J. BRZDȩk, On continuous solutions of some functional equations, Glasnik Mat. 30(50) (1995), 261-267.
[7] J. Brzdȩk, On the Baxter functional equation, Aequationes Math. 52 (1996), 105-111.
[8] J. BRZDȨk, On some conditional functional equations of Goła̧b-Schinzel type, Ann. Math. Siles. 9 (1995), 65-80.
[9] J. BrZdझ̧K, On continuous solutions of a conditional Goła̧b-Schinzel equation, Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. 138 (2001, 2002), 3-6.
[10] J. Brzdȩk and A. Mureńko, On a conditional Goła̧b-Schinzel equation, Arch. Mat. (Basel) 84 (2005), 503-511.
[11] J. Chudziak, Approximate solutions of the Gołạb-Schinzel functional equation, J. Approx. Theory 136 (2005), 21-25.
[12] J. Chudziak, Stability of the generalized Goła̧b-Schinzel equation, Acta Math. Hung. 113 (2006), 133-144.

450 N. Brillouët-Belluot and J. Brzdȩk : Solutions of the Goła̧b-Schinzel equation
[13] J. Chudziak and J. Tabor, On the stability of the Goła̧b-Schinzel functional equation, J. Math. Anal. Appl. 302 (2005), 196-200.
[14] R. Craigen and Z. Páles, The associativity equation revisited, Aequationes Math. $\mathbf{3 7}$ (1989), 306-312.
[15] Z. Daróczy, Az $f[x+y f(x)]=f(x) f(y)$ függvenyegyenlet folytones megoldasairol Hilbert - terekben, Matematikai Lapok 17 (1966), 339-343.
[16] R. Ger, Gołab-Schinzel equation almost everywhere, Report of Meeting (The Forty-forth International Symposium on Functional Equations, May 14-20, 2006, Louisville, Kentucky, USA, Aequationes Math. 73 (2007), 178.
[17] S. Go乇A̧B and A. Schinzel, Sur l'équation fonctionnelle $f(x+y f(x))=f(x) f(y)$, Publ. Math. Debrecen 6 (1959), 113-125.
[18] D. H. Hyers, G. Isac and T. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Boston, Basel, Berlin, 1998.
[19] P. Kahlig and J. Matkowski, A modified Gołab-Schinzel equation on a restricted domain (with applications to meteorology and fluid mechanics), Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 211 (2002, 2003), 117-136.
[20] M. Sablik, A conditional Gołạb-Schinzel equation, Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. 137 (2000, 2001), 11-15.
[21] L. Reich, Über die stetigen Lösungen der Goła̧b-Schinzel-Gleichung auf $\mathbb{R}_{\geq 0}$, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 208 (1999, 2000), 165-170.
[22] L. Reich, Über die stetigen Lösungen der Gołạb-Schinzel-Gleichung auf \mathbb{R} und auf $\mathbb{R}_{\geq 0}$, Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. 138 (2001, 2002), 7-12.

NICOLE BRILLOUËT-BELLUOT
ECOLE CENTRALE DE NANTES
DÉPARTEMENT D'INFORMATIQUE ET DE MATHÉMATIQUES
1 RUE DE LA NOË, B.P. 92101
44321 NANTES CEDEX 3
FRANCE
E-mail: Nicole.Belluot@ec-nantes.fr

JANUSZ BRZDȨK
DEPARTMENT OF MATHEMATICS
PEDAGOGICAL UNIVERSITY
PODCHORA̧ŻYCH 2
30-084 KRAKÓW
POLAND
E-mail: jbrzdek@ap.krakow.pl

[^0]: Mathematics Subject Classification: 39B12, 39B22, 39B82.
 Key words and phrases: Gołąb-Schinzel functional equation, conditional functional equation, continuous solution; Hyers-Ulam stability, continuous associative operation.

