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Local solutions of an alternative Cauchy equation

By GIAN LUIGI FORTI (Milano) and LUIGI PAGANONI (Milano)

1. Introduction

In a previous paper [8] we studied the alternative Cauchy equation

(1) g(xy) 6= g(x)g(y) implies f(xy) = f(x)f(y) ,

where f, g are unknown functions from a group (X, ·) into a group (S, ·)
(For the motivation of (1) and some related problems see [4]–[6], [10]–[14]).
Among the results there is a complete description of the solutions of (1)
when (X, ·) = (Rn,+) and one of the two functions, say g, satisfies a
suitable topological condition (weaker than continuity).

It is well known (see [1]–[3], [7]) that each solution of the local Cauchy
equation

f(x + y) = f(x)f(y), (x, y) ∈ T

where T := {(x, y) ∈ R2 : x, y, x + y ∈ I}, I = (0, 1) and f : I → S, has
a unique extension to an additive function on the whole R. Hence it is
natural to ask if this is also true for the local version of (1), i.e. if each
pair of functions f, g : I → S, solution of the local alternative equation

(2) g(x + y) 6= g(x)g(y) implies f(x + y) = f(x)f(y)

for all (x, y) ∈ T ,

can be extended to a pair of functions f̂ , ĝ : R→ S satisfying the alterna-
tive equation

(2′) ĝ(x + y) 6= ĝ(x)ĝ(y) implies f̂(x + y) = f̂(x)f̂(y)

for all (x, y) ∈ R2 .

In the present paper we prove that under suitable hypotheses on one
of the two functions f and g the answer is affirmative.
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2. Notations and preliminary results

Denote by Z and N0 the classes of the integers and the non-negative
integers respectively, and by pi : R × R → R, i = 1, 2, 3, the maps given
by :

p1(x, y) = x, p2(x, y) = y, p3(x, y) = x + y .

Given an open interval E ⊂ R and a function ϕ : E → S, we define

(3) Ωϕ := {(x, y) ∈ (E × E) ∩ p−1
3 (E) : ϕ(x + y) 6= ϕ(x)ϕ(y)}

and

Aϕ := {(x, y) ∈ (E × E) ∩ p−1
3 (E) : ϕ(x + y) = ϕ(x)ϕ(y)}.

A◦ϕ and Ω◦ϕ denote the interior of Aϕ and Ωϕ respectively.
A function ϕ : E → S is said locally affine in x ∈ E if there exists

a ∈ Hom(R, S) such that ϕ(x+u) = ϕ(x)a(u) for all u in an open interval
U 3 0. (Note that the homomorphism a may depend on the point x). A
function ϕ : E → S is said locally affine in an interval V ⊂ E if it is locally
affine in each point of V .

We shall use the following simple properties:

Lemma 1. i) If (x0, y0) ∈ A◦ϕ then ϕ is locally affine in x0, y0, x0 +y0.

ii) If V ⊂ R is an open interval and ϕ is locally affine in each point of V ,
then there exist a ∈ Hom(R, S) and α ∈ S such that

ϕ(x) = αa(x), x ∈ V.

iii) Let J,K,L be open intervals and

ϕ(x) =





αa(x), x ∈ J

βb(x), x ∈ K

γc(x), x ∈ L

, a, b, c ∈ Hom(R, S).

If there exists (x0, y0) ∈ A◦ϕ with x0 ∈ J, y0 ∈ K, x0 + y0 ∈ L, then

γ = αβ and b(x) = c(x) = β−1a(x)β.

Proof. i) Take U = (−ε, ε) such that (x0, y0) + (U × U) ⊂ A◦ϕ. If
for all u ∈ U we define

a(u) = (ϕ(x0))−1ϕ(x0 + y0 + u)(ϕ(y0))−1 and

b(u) = (ϕ(y0))−1a(u)ϕ(y0) ,
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then by the property ϕ(x0 + y0 + u) = ϕ(x0 + u)ϕ(y0) = ϕ(x0)ϕ(y0 + u)
we get

ϕ(x0 + u) = ϕ(x0)a(u), ϕ(y0 + u) = a(u)ϕ(y0) = ϕ(y0)b(u)

ϕ(x0 + y0 + u) = ϕ(x0)ϕ(y0)b(u) = ϕ(x0 + y0)b(u), u ∈ U .

Furthermore, since

a(u + v) = (ϕ(x0))−1ϕ(x0 + y0 + u + v)(ϕ(y0))−1 =

= (ϕ(x0))−1ϕ(x0 + u)ϕ(y0 + v)(ϕ(y0))−1 = a(u)a(v)

for all u, v ∈ U×U with u+v ∈ U , a is the restriction of a homomorphism
from R into S; the same is also true for b.

ii) Fix x0 ∈ V ; then there is a0 ∈ Hom(R, S) such that

ϕ(x0 + u) = ϕ(x0)a0(u) = ϕ(x0)a0(−x0)a0(x0 + u) = α0a0(x0 + u)

for all u in a suitable neighbourhood Ux0 of the origin. Denote by F0 the
set of all x ∈ V for which there exists a neighbourhood Ux of the origin
such that

ϕ(x + u) = α0a0(x + u), u ∈ Ux.

Let x1 ∈ x0 + Ux0 and let Vx1 be a neighbourhood of the origin such that
x1 + Vx1 ⊂ x0 + Vx0 . We have

ϕ(x1 + v) = α0a0(x0 + (x1 − x0) + v) = α0a0(x1 + v), v ∈ Vx1 ;

thus the set F0 is open. Since ϕ is locally affine in each point of V , also
the set V \ F0 is open. The connectedness of V implies F0 = V .

iii) Let (x0, y0) ∈ A◦ϕ with x0 ∈ J, y0 ∈ K, x0 + y0 ∈ L; then

γc(x0)c(y0) = ϕ(x0 + y0) = ϕ(x0)ϕ(y0) = αa(x0)βb(y0)

and so, for all u ∈ R such that y0 + u ∈ K and x0 + y0 + u ∈ L,

γc(x0)c(y0)c(u) = γc(x0)c(y0 + u) = ϕ(x0 + y0 + u) = ϕ(x0)ϕ(y0 + u) =

= αa(x0)βb(y0)b(u) = γc(x0)c(y0)b(u).

It follows b = c and γc(x0) = αa(x0)β.
Take now u ∈ R such that x0 + u ∈ J and x0 + y0 + u ∈ L. Then

γc(x0)c(u)c(y0) = ϕ(x0 + u + y0) = ϕ(x0 + u)ϕ(y0) =

= αa(x0)a(u)βc(y0) = γc(x0)β−1a(u)βc(y0) .

So we deduce c(x) = β−1a(x)β and, since (x0, y0) ∈ Aϕ, γ = αβ.
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3. Local solutions

A pair (f, g) is called a trivial solution of (2) if either f or g is the
restriction of a homomorphism of R into S. In the following we find the
non-trivial solutions of (2) under the assumption that one of the two func-
tions, say g, satisfies the following property:

(4) pi(Ωg) = pi(Ω◦g), i = 1, 2 .

Remark 1. a) The hypothesis (4) is the same condition under which
in [8] we solved the functional equation (2′).

b) Note that condition (4) is obviously satisfied when S is a topological
group and g is continuous. Furthermore there are noncontinuous functions
satisfying (4): a “typical example” (see [5], [6], [10]) is the real function
g(x) = [x] (integral part of x). It can be easily proved that if (S, ·) = (R, +)
then condition (4) is fulfilled by every function g : I → R satisfying the
following properties:

i) the set D of the points of discontinuity of g is at most countable;
ii) for each x0 ∈ D there exists lim

x→x−0
g(x) and g is right-continuous;

iii) for each x0 ∈ D either g(x0 + y) − g(x0) − g(y) = 0 for all y ∈ I or
g(x0 + y)− g(x0)− g(y) assumes at least two distinct non-zero values.

Define

(5) W := I \ (
p1(Ωg) ∪ p2(Ωg)

)
.

By (4) the set W is closed in I and is characterized by the property

(6) W = {t ∈ I : ∀x ∈ (0, 1− t), g(x + t) = g(x)g(t) = g(t)g(x)}.
Note that, since Ωg ⊂ Af , by (4) and Lemma 1-i) f is locally affine in each
point of I \W .

Theorem 1. All the solutions of (2) with W = ∅ or W = I are trivial.

Proof. If W = ∅, the function f is locally affine in I and, by Lemma
1-ii), f(x) = αa(x). Since ∅ 6= Ωg ⊂ Af we have α = e (the unit element
of (S, ·)) and so f is the restriction of a homomorphism.

If W = I, then g is obviously the restriction of a homomorphism. ¤

Therefore from now on we assume that (f, g) is a solution of (2) with

∅ 6= W 6= I .
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Lemma 2. Let t ∈ W and (x, y) ∈ T . If (x + nt, y + mt̄ ) ∈ T for
some m,n ∈ Z, then

(x, y) ∈ Ωg ⇐⇒ (x + nt, y + mt̄ ) ∈ Ωg.

Proof. Obviously it is enough to consider the case m,n ≥ 0. By (6)
we have

g(x + nt + y + mt̄ ) = g(x + y + (m + n)t̄ ) = g(x + y)g(t̄ )m+n

g(x + nt̄ ) = g(x)g(t̄ )n, g(y + mt̄ ) = g(y)g(t̄ )m .

Therefore, since g(t̄ ) commutes with g(y) for all y ∈ (0, 1− t̄ ), we obtain

g(x + y + (m + n)t̄ )
[
g(x + nt̄ )g(y + mt̄ )

]−1 =

= g(x + y)g(t̄ )n+mg(t̄ )−mg(y)−1g(t̄ )−ng(x)−1 =

= g(x + y)g(y)−1g(x)−1 = g(x + y)
[
g(x)g(y)

]−1
. ¤

Lemma 3. Let t̄ ∈ W and let g̃ : R→ S be defined as follows:

(7) g̃(x) = g(x− nt̄ )g(t̄ )n if nt̄ < x ≤ (n + 1)t̄, n ∈ Z .

Then g is the restriction of g̃ on I and the set

Hg̃ := {t ∈ R : ∀x ∈ R, g̃(t + x) = g̃(t)g̃(x) = g̃(x)g̃(t)}
is a subgroup of R with t̄ ∈ Hg̃.

Proof. By (6) the function g is the restriction of g̃ on I. We now
prove (as in [8]) that Hg̃ is a subgroup of R.

Since g̃(0) = e we have 0 ∈ Hg̃. Let t ∈ Hg̃; then

e = g̃(0) = g̃(t− t) = g̃(t)g̃(−t)

and so g̃(−t) = [g̃(t)]−1. Moreover, for every x ∈ R we have
g̃(x) = g̃(t− t + x) = g̃(t)g̃(x− t) = g̃(x− t)g̃(t)

and so g̃(x− t) = g̃(−t)g̃(x) = g̃(x)g̃(−t), i.e. −t ∈ Hg̃.
Finally, let t1, t2 ∈ Hg̃; for every x ∈ R we get

g̃(t1 + t2 + x) =

{
g̃(t1)g̃(t2 + x) = g̃(t1)g̃(t2)g̃(x) = g̃(t1 + t2)g̃(x)
g̃(t2 + x)g̃(t1) = g̃(x)g̃(t2)g̃(t1) = g̃(x)g̃(t1 + t2)

i.e. t1 + t2 ∈ Hg̃.
Let x ∈ R and let n ∈ Z such that nt̄ < x ≤ (n + 1)t̄; from (7) we

have
g̃(t̄ + x) = g(t̄ + x− (n + 1)t̄ )g(t̄ )n+1, g̃(x) = g(x− nt̄ )g(t̄ )n

and so t̄ ∈ Hg̃.
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Lemma 4. Assume ∅ 6= W 6= I. The set W has a minimum τ (> 0).

Proof. Since W is closed in I, if W ∩ (0, 1/2) = ∅ then τ := inf W ∈
W . Otherwise let t ∈ W ∩ (0, 1/2) and assume it is not the minimum of
W . Let g̃ be the function defined by (7). Since t̄ < 1/2, the open square
(0, t̄ )2 is contained in T and so

(8) Ωg ∩ (0, t̄ )2 = Ωg̃ ∩ (0, t̄ )2 .

By Lemma 2 the set Ωg satisfies the equalities

(0, t̄ ) \W =
( ⋃

i=1,2

pi(Ωg)
)
∩ (0, t̄ ) =

⋃

i=1,2

pi

(
Ωg ∩ (0, t̄ )2

)
.

Moreover, since Hg̃ = R \ (p1(Ωg̃) ∪ p2(Ωg̃)), by construction the set Ωg̃

satisfies the similar equalities

(0, t̄ ) \Hg̃ =


 ⋃

i=1,2

pi (Ωg̃)


 ∩ (0, t̄ ) =

⋃

i=1,2

(
pi(Ωg̃) ∩ (0, t̄ )2

)
.

By (8) we get

(8) (0, t̄ ) \W = (0, t̄ ) \Hg̃ .

Since we have assumed W 6= I, by using again Lemma 2 we have that
(0, t̄ ) \W is a non-empty open set. Thus, from (9) and Lemma 3, Hg̃ is
a proper closed subgroup of R, i.e. Hg̃ = τZ for some τ ∈ (0, t̄ ). Since by
(9) (0, t̄ ) ∩W = (0, t̄ ) ∩Hg̃, we get τ = min W .

We can now state the main result (for the proof see Section 4).

Theorem 2. Assume (f, g) to be a non-trivial solution of (2) with g
satisfying condition (4). Then the set W has a minimum τ (> 0) and

(10) f(x) = f0(x)a(x), g(x) = g0(x)c(x)

where :

A) a and c are homomorphisms from R into S which commute with f0

and g0 respectively ;

B) the pair (f0, g0) has one of the following forms :

(11)

{
f0(x) = αi+1

g0(x) = γi
if x ∈ [

iτ, (i + 1)τ
) ∩ I, α, γ 6= e, i ∈ N0,
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(12)

{
f0(x) = αi

g0(x) = γi+1
if x ∈ (

iτ, (i + 1)τ
] ∩ I, α, γ 6= e, i ∈ N0,

(13)





f0(x) = e if x ∈ I\E, f0(x) 6= e if x ∈ E

where ∅ 6= E ⊂ τN0 ∩ I

and g0 satisfies the conditions

g0(x + τ) = g0(x)g0(τ) = g0(τ)g0(x), x ∈ (0, 1− τ)

g0(τ) = g0(x)g0(τ − x), x ∈ (0, τ) ,

(14)





f0(x) = e if x ∈ I\{ξ}, f0(ξ) 6= e

with ξ ∈ W \τN0, max{τ, 1− τ} < ξ < 1

and g0 satisfies the conditions

g0(x + τ) = g0(x)g0(τ) = g0(τ)g0(x), x ∈ (0, 1− τ)

g0(x + ξ) = g0(x)g0(ξ) = g0(ξ)g0(x), x ∈ (0, 1− ξ)

g0(ξ) = g0(x)g0(ξ − x), x ∈ (0, ξ) .

Moreover all pairs (f, g) of the above mentioned forms are nontrivial solu-
tions of (2).

Corollary 1. Each solution (f, g) of (2) satisfying (4) is the restriction

on I of a solution (f̂ , ĝ) of the alternative equation (2 ′).

Proof. In a previous paper ([8], Theorem 5) we have described the
solutions of (2′) satisfying (4), where the set E in the definition of Ωϕ is
the whole R. We prove that each solution of (2) is extendible to a solution
of (2′) of one of the forms described in Theorem 5 of [8]. The solutions of
the form (11) and (12) are extendible in an obvious way to the solutions of
the form iii) of Theorem 5 in [8]. The extension in the remaining cases (13)
and (14) is given by (7) of Lemma 3 where the role of t is now assumed
by τ or ξ respectively. In such a way we get solutions of (2′) which are of
the form i) of Theorem 5 in [8].

Remark 2. The extension of the solutions of the form (14) is based on
the properties of ξ, and the equation

g0(x + τ) = g0(x)g0(τ) = g0(τ)g0(x)

doesn’t play any role. So, starting from the solutions of the form (13) or
(14) we get solutions on R of the same form. Nevertheless in the triangle
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T the properties of Ωg yield in a natural way the value τ (and not ξ). So
these two kinds of solutions are essentially different. Therefore it is natural
to ask whether solutions of the form (14) exist. Clearly this depends on
the parameters τ and ξ and on the group S. In [9] this problem has been
completely solved.

Since property (4) is satisfied if the function g0 and the homomorphism
c are continuous, starting from the results of [9] in the case S = R, we may
list under which conditions on τ and ξ there exist continuous functions
g0 : I → R satisfying the equations in (14) with τ = min W .

(i) 1− τ

1− hτ
<

ξ − hτ

2(1− hτ)

1− τ

1− hτ
=

ξ − hτ

2(1− hτ)
,(ii)

ξ − hτ

ξ − (h+1)τ
− 2

[
ξ − hτ

2
(
ξ − (h+1)τ

)
]

/∈ {0, 1}

(iii)
ξ − hτ

2(1− hτ)
< 1− τ

1− hτ
<

ξ − hτ

2(1− hτ)
+

ξ − (h+1)τ
2(1− hτ)

,
τ

ξ
/∈ Q

ξ − hτ

2(1− hτ)
< 1− τ

1− hτ
<

ξ − hτ

2(1− hτ)
+

ξ − (h+1)τ
2(1− hτ)

(
1− 1

q

)
,(iv)

τ

ξ
∈ Q and

ξ − hτ

ξ − (h+1)τ
− 2

[
ξ − hτ

2
(
ξ − (h+1)τ

)
]

=
p

q
, (p, q) = 1

where [t] denotes the integral part of t and h =
[

ξ
τ

]
− 1.

4. Proof of the main result

By Theorem 1 we have ∅ 6= W 6= I and, by Lemma 4, W has a
minimum τ > 0.
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We need some other notations and lemmas.

Jk := {x ∈ I : kτ < x < (k + 1)τ}, k ∈ N0

T 1
i,j := {(x, y) ∈ T : x ∈ Ji, y ∈ Jj , x + y ∈ Ji+j}

T 2
i,j := {(x, y) ∈ T : x ∈ Ji, y ∈ Jj , x + y ∈ Ji+j+1}

Qi,j := T 1
i,j ∪ T 2

i,j , i, j ∈ N0,

ν := max{k ∈ N0 : (k + 1)τ ≤ 1},
Du := {(x, u− x) : x ∈ (0, u)}, u ∈ (0, 1) .

Remark 3. Note that, since Ωg ⊂ Af , by (4) and by Lemmas 1 and 2
we have:

i) if ν ≥ 1 then f is locally affine in the intervals Ji, i ∈ {0, · · · , ν − 1},
and (ντ, 1− τ);

ii) if ν = 0 then f is locally affine in the interval J0.

Condition (4) implies that Ωg ∩ (0, τ)2 ∩ T 6= ∅ if and only if
Ωg ∩ Q0,0 6=∅. In the following Lemmas 5,6 and 8 we consider separately
the three possible cases:

I) Ωg ∩Q0,0 ⊂ T 2
0,0

II) Ωg ∩Q0,0 ⊂ T 1
0,0

III) Ωg ∩ T i
0,0 6= ∅, i = 1, 2.

Lemma 5. If Ωg ∩Q0,0 ⊂ T 2
0,0 then each non-trivial solution (f, g) of

(2) is given by (10) with (f0, g0) of the form (11).

Proof. By the hypothesis, T 1
0,0 ⊂ Ag and so g(x) = c(x), x ∈ (0, τ),

where c ∈ Hom(R, S). By Remark 3 and Lemma 1, f(x) = αa(x),
x ∈ (0, τ), where a ∈ Hom(R, S) and α ∈ S. If x ∈ (τ, 2τ)∩I, since τ ∈ W
we have

(15) g(x) = g(τ)g(x− τ) = g(τ)c(x− τ) = g(τ)c(τ)−1c(x) = γc(x).

It follows, for x ∈ (0, τ),

(16) γc(τ)c(x) = γc(τ + x) = g(τ + x) = g(τ)g(x) = g(τ)c(x)

and so g(τ) = γc(τ). From (15) and (16) we have g(x) = γc(x),
x ∈ [τ, 2τ) ∩ I. By Lemma 2, T 1

0,1 ⊂ Ag and so, c(x)γc(y) = g(x)g(y) =
g(x+ y) = γc(x)c(y), for all (x, y) ∈ T 1

0,1. Hence c(x)γ = γc(x), x ∈ (0, τ),
that is the homomorphism c commutes with γ. Moreover Ωg∩T 2

0,0 6= ∅ im-
plies γ 6= e and so T 2

0,0 ⊂ Ωg. It follows T 2
0,0 ⊂ Af , i.e. for all (x, y) ∈ T 2

0,0

(17) αa(x)αa(y) = f(x)f(y) = f(x + y) = f(y)f(x) = αa(y)αa(x).
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From (17) we get a(x)αa(y) = a(y)αa(x), i.e. a(x − y)α = αa(x − y);
so a commutes with α. Furthermore (17) gives f(x + y) = α2a(x + y),
i.e. f(x) = α2a(x), x ∈ (τ, 2τ) ∩ I. Since γ 6= e, the points (x, τ − x),
x ∈ (0, τ), are not in Ag and so f(τ) = α2a(τ); it follows f(x) = α2a(x),
x ∈ [τ, 2τ) ∩ I. We can now repeat this procedure to get f and g on the
whole interval I. Note that α 6= e since (f, g) is not trivial.

Lemma 6. If Ωg ∩Q0,0 ⊂ T 1
0,0 then each non-trivial solution (f, g) of

(2) is given by (10) with (f0, g0) of the form (12).

Proof. By the hypothesis, T 2
0,0 ⊂ Ag and so by Remark 3 and

Lemma 1 we have

(18) f(x) = βa(x), g(x) = γc(x), x ∈ (0, τ); a, c ∈ Hom(R, S) .

Note that γ 6= e, otherwise Ωg ∩ T 1
0,0 = ∅ and so Ωg = ∅. It follows

T 1
0,0 ⊂ Ωg, i.e. T 1

0,0 ⊂ Af and this forces β = e. If (x, y) ∈ T 2
0,0(⊂ Ag), from

(18) we have γc(x)γc(y) = g(x)g(y) = g(x + y) = g(y)g(x) = γc(y)γc(x)
and, as in Lemma 5, we conclude that c commutes with γ and g(x) =
γ2c(x), x ∈ (τ, 2τ) ∩ I. By Lemma 2 T 1

0,1 ⊂ Ωg, i.e. T 1
0,1 ⊂ Af and, by

Lemma 1, f(x) = αa(x), x ∈ (τ, 2τ) ∩ I. As in Lemma 5 we prove that a
commutes with α. Since τ ∈ W , if x ∈ (0, τ) we have

γc(τ)γc(x) = γ2c(τ + x) = g(τ + x) = g(τ)g(x) = g(τ)γc(x),

and so g(x) = γc(x), x ∈ (0, τ ]. Since γ 6= e, the points (x, τ−x), x ∈ (0, τ)
are not in Ag and so we must have f(x) = a(x), x ∈ (0, τ ]. By the same
procedure we obtain f and g on the whole interval I.

Remark 4. As a consequence of Lemmas 5 and 6, we obtain that f is
locally affine on each interval Ji ∩ I, i ≥ 0.

Lemma 7. Assume µ ∈ R with |µ| < τ and

(19) σ := (ν + 1)τ + µ ∈ W .

If Dσ ⊂ Ag then σ > 1 − τ and there does not exist any µ ∈ (σ, 1) such
that Dµ ⊂ Ag.

Proof. Assume there is ū := (ν+1)τ +µ̄ ∈ (σ, 1) such that Dū ⊂ Ag.
Since Dσ ⊂ Ag and Dū ⊂ Ag, for all x ∈ (0, σ) we have simultaneously

(20) g(x) =

{
g(σ)[g(σ − x)]−1 = [g(σ − x)]−1g(σ)
g(ū)[g(ū− x)]−1 = [g(ū− x)]−1g(ū) .
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Since τ ∈ W , we get

(21)

{
g(σ) = g((ν + 1)τ + µ) = [g(τ)]νg(τ + µ)
g(ū) = g((ν + 1)τ + µ̄) = [g(τ)]νg(τ + µ̄)

and so, by (20), for all x ∈ (0, σ) we obtain

(22)

{
g(τ + µ)[g(σ − x)]−1 = g(τ + µ̄)[g(ū− x)]−1

[g(σ − x)]−1g(τ + µ) = [g(ū− x)]−1g(τ + µ̄) .

By (19) the points (σ, µ̄− µ) and (µ̄− µ, σ) belong to Ag and so, by using
(21), we obtain

(23) g(τ + µ̄) = g(τ + µ)g(µ̄− µ) = g(µ̄− µ)g(τ + µ) .

Substituting (23) in (22) we have, for all x ∈ (0, σ),

(24) g(ū− x) = g(σ − x)g(µ̄− µ) = g(µ̄− µ)g(σ − x) .

We prove that σ > 1 − τ . If not, then by the definition of ν, it is µ < 0;
since σ ∈ W and |µ| < τ , by Lemma 2 we have σ − ντ = τ + µ ∈ W
and 0 < τ + µ < τ : a contradiction. Then σ, ū ∈ (1 − τ, 1) and so
ū − σ = µ̄ − µ < τ . Since σ ∈ W we have σ ≥ τ . Lemma 2 now implies
that (24) holds for all x ∈ (0, 1− (µ̄−µ)), i.e. µ̄−µ ∈ W : a contradiction.

Lemma 8. Assume Ωg ∩ T 1
0,0 6= ∅ and τ ≤ s0 < s1 < · · · < sN ≤ 1. If

f(x) =





a(x), x ∈ (0, s0) \W

αa(x), x ∈
N−1⋃
i=0

(si, si+1)

with α 6= e and a ∈ Hom(R, S), then:

i) {(x, y) : 0 < x < s0, 0 < y < s0, s0 < x+y < sN}\
N⋃

i=0

Dsi ⊂ Ag;

ii) {(x, y) : 0 < x < s0, 0 < y < s0, 0 < x + y < s0} ⊂ Ωg;

iii) s0 = τ .

Proof. Property i) is obvious. By i) and Lemma 1 we have g(x) =
γc(x), x ∈ (0, s0), where c ∈ Hom(R, S). Since s0 ≥ τ and T 1

0,0 ∩ Ωg 6= ∅,
we have γ 6= e. It follows

{(x, y) : 0 < x < s0, 0 < y < s0, 0 < x + y < s0} ⊂ Ωg

and moreover, by the definitions of W and τ, s0 = τ .
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Lemma 9. If Ωg ∩ T i
0,0 6= ∅, i = 1, 2, then each non-trivial solution

(f, g) of (2) is given by (10) with (f0, g0) either of the form (13) or of the
form (14).

Proof. By Lemma 2 with t̄ = τ, Ω◦g 6= ∅ implies Ω◦g ∩Q0,0 6= ∅ and
so

(25) Ω◦g ∩ T 1
0,0 6= ∅ or Ω◦g ∩ T 2

0,0 6= ∅ .

Consider fist the case τ ≤ 1/2 (i.e. ν ≥ 1).
By Remark 3 and ii) of Lemma 1 we may write

f(x) = αiai(x), x ∈ Ji where ai ∈ Hom(R, S), i = 0, . . . , ν − 1 .

By (25) and iii) of Lemma 1 all homomorphisms ai equal a same homomor-
phism a. Moreover from Ωg ∩ T 1

i,0 6= ∅ we get αi = e for
i = 0, · · · , ν − 1. So

f(x) = a(x) , x ∈
ν−1⋃

i=0

Ji where a ∈ Hom(R, S).

It remains to consider the interval (ντ, 1).
If (ν +1)τ < 1 then (ντ, 1−τ) 6= ∅ and by Remark 3 f is locally affine

on (ντ, 1 − τ). If L := {(1 − τ, y) : 0 < y < τ} ⊂ Ag, then, by Lemma 2,
we get 1 − (ν + 1)τ ∈ W : a contradiction, since 1− (ν + 1)τ < τ . Thus
L∩Ωg 6= ∅ and, by (4), L∩Ω◦g 6= ∅. This implies f locally affine in (ντ, s)
with s > 1− τ . Define

ρ := sup{s > 1− τ : f is locally affine in (ντ, s)}.
Then ρ ∈ W and, by ii) of Lemma 1, f(x) = α a(x), x ∈ (ντ, ρ); moreover,
since L∩Ω◦g 6= ∅, by Lemma 1 we deduce ā(x) = a(x). If α 6= e, by Lemma 8
with N = 1, s0 = ντ and s1 = ρ we have that the triangle

{(x, y) : 0 < x < ντ, 0 < y < ντ, 0 < x + y < ντ}
is a subset of Ωg; but this is impossible since this triangle contains the
segment {(ρ− ντ, y) : 0 < y < 1− ρ} which, by Lemma 2, is in Ag. Thus
we have

f(x) = a(x), x ∈
(

ν−1⋃

i=0

Ji

) ⋃
(ντ, ρ).

If (ν + 1)τ = 1 we define ρ := ντ .
In the case τ > 1/2 we have immediately f(x) = a(x), x ∈ (0, τ) and

we define ρ := τ .
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Summarizing, in all cases we can guarantee that

(26) f(x) = a(x), x ∈ (0, ρ)\E0

where E0 ⊂ {nτ : n = 1, . . . , ν} ⊂ W is a finite set and ρ ≥ 1/2.
Let now

Tρ : = {(x, y) : 0<x<1−ρ, 0<y<1−ρ, 0<x+y<1−ρ}, T ′ρ := Tρ + (ρ, 0)

Iρ : = {x : 0 < x < 1−ρ}, I ′ρ := Iρ + ρ .

By (4) pi(T ′ρ ∩ Ωg) = pi(T ′ρ ∩ Ω◦g) and since ρ ∈ W , by Lemma 2,

(27) (Tρ ∩ Ωg) + (ρ, 0) = T ′ρ ∩ Ωg.

Thus pi(Tρ ∩Ωg) = pi(Tρ ∩Ω◦g) and all the results obtained up to now for
T hold for Tρ as well.

Define Wρ := Iρ\
(
p1(Tρ ∩ Ωg) ∪ p2(Tρ ∩ Ωg)

)
, i.e. Wρ is the analog

for Tρ of the set W . For Wρ we have different possibilities.

i) Wρ = ∅.
In this case, by (27), p1(T ′ρ ∩ Ωg) ∪ p2(T ′ρ ∩ Ωg) = I ′ρ and so f is

locally affine on I ′ρ, i.e. f(x) = αa(x), x ∈ I ′ρ. Since Ω◦g ∩ T ′ρ 6= ∅, by
Lemma 1 a = a. Moreover α = e; if not, by ii) and iii) of Lemma 8 with
N = 1, s0 = ρ, s1 = 1 we have ρ = τ and

R := {(x, y) : 0 < x < ρ, 0 < y < ρ, ρ < x + y < 1} ⊂ Ag .

So R = T 2
0,0 and this is a contradiction since, by hypothesis,

T 2
0,0 ∩ Ωg 6= ∅.

ii) Wρ = Iρ.
This implies Tρ ⊂ Ag and T ′ρ ⊂ Ag; thus I ′ρ ∪ {ρ} ⊂ W . Assume

f(ξ) 6= a(ξ) for some ξ ∈ I ′ρ ∪ {ρ}. In this case we immediately conclude
that the whole diagonal {(x, y) ∈ T : x + y = ξ} is in Ag. By Lemma 7
this cannot happen for any other ξ1 ∈ I ′ρ ∪ {ρ}, ξ1 6= ξ. Thus either

f(x) = a(x), x ∈ I ′ρ ∪ {ρ}
or there exists ξ ∈ I ′ρ ∪ {ρ} such that

f(x) = a(x), x ∈ I ′ρ\{ξ} and f(ξ) 6= a(ξ) .

iii) ∅ 6= Wρ 6= Iρ.
By Lemma 4 Wρ has a minimum τρ(> 0). Since all results obtained

for T are also true for Tρ, the proof is divided in the above mentioned
cases I)–III) (with the obvious changes of meaning of simbols).
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In cases I) and II), by Remark 4, f is locally affine in each interval

Kj := (ρ + jτρ, ρ + (j + 1)τρ) ∩ I ′ρ, j ∈ N0 ,

and, as usual, we have f(x) = αja(x), x ∈ Kj . By (27) and Lemmas 5 and
6 we explicitely know the set Ωg ∩ T ′ρ. If follows immediately that all αj

are equal, i.e. f(x) = αa(x), x ∈ ⋃
j∈N0

Kj . We prove that α = e. On the

contrary, by Lemma 8 with (si, si+1) = Ki, we have

Tρ ⊂ {(x, y) : 0 < x < ρ, 0 < y < ρ, 0 < x + y < ρ} ⊂ Ωg ,

contrary to the description, coming from Lemmas 5 and 6, of the set
Ωg ∩ Tρ.

In case III) by using (27) we may argue as in first part of the present
proof up to relation (26).

Summarizing, in all cases I)–III) we obtain

f(x) = a(x), x ∈ (0, ρ + ρ1)\(E0 ∪ E1)

where ρ1 ≥ (1− ρ)/2 and E1 ⊂ W is a finite set.
By iteration of this procedure we get the final result

f(x) = a(x), x ∈ (0, 1)\E

where E :=
⋃

n≥0

En ⊂ W and each En is finite.

Assume E 6= ∅. If there exists k ∈ {1, · · · , (ν + 1)} such that kτ ∈ E,
i.e. f(kτ) 6= a(kτ), then {(x, y) ∈ T : x + y = kτ} ⊂ Ag; so, by Lemma 2,
all diagonals {(x, y) ∈ T : x+y = iτ}, i = 1, · · · , ν + 1, are in Ag and by
Lemma 7, E cannot contain any other point x 6∈ τN0. Thus E ⊂ τN0.

If E ∩ τN0 = ∅ then, again by Lemma 7, E = {ξ}, with ρ ≤ ξ < 1
and obviously ξ ∈ W . Note that, by the definition of ρ, we always have
max{τ, 1− τ} < ξ < 1.

Theorem 2 follows immediately from Lemmas 5, 6 and 9.
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