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Geometric properties of generalized Bessel functions

By ÁRPÁD BARICZ (Cluj-Napoca)

Abstract. In this paper our aim is to establish some geometric properties (like

univalence, starlikeness, convexity and close-to-convexity) for the generalized Bessel

functions of the first kind. In order to prove our main results, we use the technique

of differential subordinations developed by Miller and Mocanu, and some classical

results of Ozaki and Fejér.

1. Introduction and preliminary results

In 1960 Kreyszig and Todd [14] has determined the radius of univalence
of the function z 7→ z1−pJp(z), where Jp is the Bessel function of the first kind,
defined by (2.2). At the same time Brown [9] has discussed the radius of uni-
valence of the functions z 7→ Jp(z) and z 7→ [Jp(z)]1/p for certain complex values
of p using the methods of Nehari and Robertson. Selinger [22] in 1995
used differential subordinations to investigate certain geometric properties of the
function z 7→ z−p/2Jp(z1/2). Motivated by the results of Selinger, recently the
author [2] extended the results from [22] to generalized Bessel functions. How-
ever, there is a little mistake which appears in the papers [2] and [22], namely
in the proofs of the main results of the above mentioned papers the investigated
functions in the question should be multiplied with a factor. In this paper our
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aim is to clarify this miss-understanding (see Section 2) and motivated by the
above results to generalize further the results of Selinger using the technique of
differential subordinations (see Section 3). Moreover, we determine conditions of
close-to-convexity and univalence of these functions using sufficient conditions of
univalence due to Fejér [11] and Ozaki [18] (see Section 4). To achieve our goal
in this section we recall some basic facts and preliminary results.

Let D = {z ∈ C : |z| < 1} be the open unit disk. An analytic function
f : D→ C is said to be convex if it is univalent and if it maps D conformally onto
a convex domain, i.e. f(D) is a convex domain. It is known (see [10]), that f is
convex if and only if f ′(0) 6= 0 and

Re [1 + zf ′′(z)/f ′(z)] > 0 for all z ∈ D.

If, in addition,
Re [1 + zf ′′(z)/f ′(z)] > α for all z ∈ D,

where 0 ≤ α < 1, then f is called convex of order α.
An analytic function g : D → C with g(0) = 0, is said to be starlike if it

is univalent and g(D) is starlike with respect to the origin. The function g with
g(0) = 0 and g′(0) 6= 0 is starlike (see [10]) if and only if

Re [zg′(z)/g(z)] > 0 for all z ∈ D.

If, in addition,
Re [zg′(z)/g(z)] > α for all z ∈ D,

where 0 ≤ α < 1, then g is called starlike of order α (see [12]). We remark that,
according to the Alexander duality theorem [1], the function f : D→ C is convex
of order α, where 0 ≤ α < 1 if and only if z 7→ zf ′(z) is starlike of order α.

The analytic function f : D→ C is said to be close-to-convex (or is said to be
close-to-convex with respect to the function ϕ), if there exists a convex function
ϕ : D→ C such that

Re[f ′(z)/ϕ′(z)] > 0 for all z ∈ D.

We note that, analogously an analytic function f : D→ C is called close-to-convex
of order α, where 0 ≤ α < 1, if there exists a convex function ϕ : D → C such
that

Re[f ′(z)/ϕ′(z)] > α for all z ∈ D.

We note that every starlike (and hence convex) function of the form z + a2z
2 +

. . . + anzn + . . . is in fact close-to-convex, and every close-to-convex function is
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univalent. However, if a function is starlike then it is not necessary that it will
be close-to-convex with respect to a particular convex function. For more details
we refer the interested reader to the papers [10], [13], [18] and to the references
therein.

The next lemmas will be used to prove several theorems.

Lemma 1.1 ([15]). Let E be a set in the complex plane C and ψ : C3×D 7→ C
a function, that satisfies the admissibility condition ψ(ρi, σ, µ + νi; z) /∈ E, where

z ∈ D, ρ, σ, µ, ν ∈ R with µ+σ ≤ 0 and σ ≤ −(1+ρ2)/2. If h : D→ C, which satis-

fies h(0) = 1, is analytic and for all z ∈ D we have ψ
(
h(z), zh′(z), z2h′′(z); z

) ∈ E,

then Re h(z) > 0 for all z ∈ D. In particular, if we only have ψ : C2×D 7→ C, the

admissibility condition reduces to ψ(ρi, σ; z) /∈ E for all z ∈ D and ρ, σ ∈ R with

σ ≤ −(1 + ρ2)/2.

Lemma 1.2 ([18]). If the function f(z) = z + a2z
2 + . . . + anzn + . . . is

analytic in D and in addition 1 ≥ 2a2 ≥ . . . ≥ nan ≥ . . . ≥ 0 or 1 ≤ 2a2 ≤ . . . ≤
nan ≤ . . . ≤ 2, then f is close-to-convex with respect to the convex function z 7→
− log(1−z). Moreover, if the odd function g(z) = z+b3z

3 + . . .+b2n−1z
2n−1 + . . .

is analytic in D and if 1 ≥ 3b3 ≥ . . . ≥ (2n+1)b2n+1 ≥ . . . ≥ 0 or 1 ≤ 3b3 ≤ . . . ≤
(2n + 1)b2n+1 ≤ . . . ≤ 2, then g is univalent in D.

We note that, as Ponnusamy and Vuorinen [20] pointed out, proceeding
exactly as in the proof of Lemma 1.2 one can verify directly that if the odd
function g satisfies the hypothesis of Lemma 1.2, then g is close-to-convex with
respect to the convex function

z 7→ 1
2

log
1 + z

1− z
.

We end this section with the next classical and interesting results of Fejér.

Lemma 1.3 ([11]). If the function f(z) = a1z+a2z
2+. . .+anzn+. . ., where

a1 = 1 and an ≥ 0 for all n ≥ 2, is analytic in D and if the sequences {nan}n≥1,

{nan − (n + 1)an+1}n≥1 both are decreasing, then f is starlike in D. Moreover,

if for the analytic function g(z) = b1 + b2z + . . . + bn+1z
n + . . ., where b1 = 1 and

bn ≥ 0 for all n ≥ 2, we have that {bn}n≥1 is a convex decreasing sequence, i.e.,

bn − 2bn+1 + bn+2 ≥ 0 and bn − bn+1 ≥ 0 for all n ≥ 1, then Re[g(z)] > 1/2 for

all z ∈ D.

It is important to note here that Nezhmetdinov and Ponnusamy [16]
using the duality technique have obtained other sufficient conditions over the
Maclaurin coefficients of an analytic and normalized function f that imply its
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starlikeness. More precisely, Nezhmetdinov and Ponnusamy [16] in particular
proved that if the function f(z) = z + a2z

2 + . . . + anzn + . . . is analytic in D
and in addition 2 ≤ 3a2 ≤ . . . ≤ (n + 1)an ≤ . . . and nan ≤ 2 for all n ≥ 2, or
2/3 ≥ a2 ≥ 2a3 ≥ . . . ≥ (n− 1)an ≥ . . . ≥ 0 and nan ≥ a2 for all n ≥ 3, then f is
starlike in D.

2. Univalence, convexity and starlikeness
of generalized Bessel functions

Let us consider the second-order differential equation [24, p. 38]

z2w′′(z) + zw′(z) + (z2 − p2)w(z) = 0, (2.1)

which is called Bessel’s equation, where p is an unrestricted real (or complex)
number. The function Jp, which is called the Bessel function of the first kind of
order p, is defined as a particular solution of (2.1). This function has the form
[24, p. 40]

Jp(z) =
∑

n≥0

(−1)n

n!Γ(p + n + 1)

(z

2

)2n+p

for all z ∈ C. (2.2)

The differential equation [24, p. 77]

z2w′′(z) + zw′(z)− (z2 + p2)w(z) = 0, (2.3)

which differs from Bessel’s equation only in the coefficient of w, is of frequent
occurrence in problems of mathematical physics. The particular solution of (2.3)
is called the modified Bessel function of the first kind of order p, and is defined
by the formula [24, p. 77]

Ip(z) =
∑

n≥0

1
n!Γ(p + n + 1)

(z

2

)2n+p

for all z ∈ C. (2.4)

The differential equation

z2w′′(z) + 2zw′(z) + [z2 − p(p + 1)]w(z) = 0, (2.5)

which differs from equations (2.1) and (2.3) in the coefficient of zw′(z) and w(z), is
called the spherical Bessel equation. Its particular solution is called the spherical
Bessel function of the first kind of order p, and is defined by the formula

Sp(z) =
∑

n≥0

(−1)n

n! Γ
(
p + n + 3

2

)
(z

2

)2n+p

for all z ∈ C. (2.6)
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Now, let us consider the linear differential equation

z2w′′(z) + bzw′(z) +
(
cz2 + d

)
w(z) = 0, (2.7)

where b, c, d, p ∈ C. If, in particular, we choose d = d1p
2 + d2p + d3, where

d1, d2, d3 ∈ C, then this generalizes the equations (2.1), (2.3) and (2.5). Moreover,
this permits to study the Bessel, modified Bessel and spherical Bessel functions
together. Due to our notations using the Frobenius method we can seek the
solution of equation (2.7) in the following form:

w(z) = zp
∑

n≥0

anzn.

It is easy to show that we have the following recursion between the coefficients
an and an−2 of the above infinite power series for all n ≥ 2:

an · n (n + 2p + b− 1) + an

[
(d1 + 1)p2 + (b + d2 − 1)p + d3

]
= −c · an−2.

Letting d1 = −1, d2 = 1− b and d3 = 0, the recursion becomes

an · n[n + 2p + b− 1] = −c · an−2 (2.8)

and the differential equation (2.7) will be the following

z2w′′(z) + bzw′(z) +
[
cz2 − p2 + (1− b)p

]
w(z) = 0. (2.9)

Using the recursive relation (2.8) we get that

w(z) = a0(p)
∑

n≥0

(−1)n
cn

n!4n
∏n

m=1

(
m + p + b−1

2

)z2n+p

= a0(p)
∑

n≥0

(−1)n
cnΓ

(
p + b+1

2

)

n!4nΓ
(
n + p + b+1

2

)z2n+p

is a particular solution of equation (2.9), where a0 = a0(p) 6= 0. For convenience
we denote the above particular solution with wp(z) = w(z) and then we choose

a0(p) =
[
2pΓ

(
p +

b + 1
2

)]−1

to obtain

wp(z) =
∑

n≥0

(−1)n
cn

n!Γ
(
p + n + b+1

2

) ·
(z

2

)2n+p

for all z ∈ C. (2.10)
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In what follows, by definition, any solution of the linear differential equation
(2.9) will be called the generalized Bessel function of order p, while the particular
solution wp defined by (2.10) will be called the generalized Bessel function of the
first kind of order p. In the study of geometric properties of these generalized
Bessel functions an interesting method is the technique of differential subordina-
tions, i.e. the application of Lemma 1.1. Thus, we would like to apply Lemma 1.1
for the analytic function h : D→ C, defined by h(z) = wp(z) and for the function
ψ : C3 × D→ C, defined by

ψ
(
h(z), zh′(z), z2h′′(z); z

)
= z2h′′(z) + bzh′(z) +

[
cz2 − p2 + (1− b)p

]
h(z),

with E = {0}. But we have that wp(0) = 0, and therefore we consider the
transformation

up(z) = [a0(p)]−1z−p/2wp(z1/2)

to obtain up(z) = b0 + b1z + b2z
2 + . . . + bnzn + . . ., where for all n ≥ 0

bn =
(−1)n

cnΓ
(
p + b+1

2

)

n!4nΓ
(
n + p + b+1

2

) . (2.11)

Using the Pochhammer (or Appell) symbol, defined in terms of Euler’s gamma
functions, by (λ)n = Γ(λ + n)/Γ(λ) = λ(λ + 1) . . . (λ + n− 1), we obtain for the
function up the following form

up(z) =
∑

n≥0

(−1)n
cn

4n(κ)n

zn

n!
=

∑

n≥0

1
(κ)n · n!

(
−cz

4

)n

, (2.12)

where κ = p + (b + 1)/2 6= 0,−1,−2, . . .. This function is analytic in C, satisfies
the condition up(0) = 1 and satisfies also the differential equation

4z2u′′(z) + 2(2p + b + 1)zu′(z) + czu(z) = 0. (2.13)

For further result on this transformation of the generalized Bessel function, which
is called sometimes as the generalized and normalized Bessel function of the first
kind, we refer to the recent papers [5], [6], [7, 8], where among other things
some interesting functional inequalities, integral representations and extensions
of some known trigonometric inequalities were established. Now, in view of the
above preliminaries the function up and its transformations z 7→ zup(z) and
z 7→ zup(z2) can be studied with the the aid of lemmas 1.1, 1.2 and 1.3. The
mistake in the papers [2] and [22] is that the Lemma 1.1 is applied to the functions

z 7→ z−1/2wp(z1/2), z 7→ z−1/2Jp(z1/2),
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respectively, and not to the functions

z 7→ [a0(p)]−1z−1/2wp(z1/2), z 7→ 2pΓ(p + 1)z−1/2Jp(z1/2),

respectively. With other words in the proofs of the main results of [2] and [22]
the factors [a0(p)]−1, and 2pΓ(p + 1) respectively, are missing. In this section we
would like to present the correct version of the main results of the papers [2] and
[22]. The reason in introducing the above generalized Bessel functions is that the
Bessel and modified Bessel functions has similar properties, and because of this
we would like to have an unified exposition of the results on different types of
Bessel functions. More precisely, the modified Bessel function is in fact just the
Bessel function with imaginary argument, and consequently it maps the unit disk
into the same domain as the Bessel function. In what follows for convenience we
deduce some basic results on generalized Bessel functions, which will be used in
the sequel. As we will see, most of the properties of generalized Bessel functions
can be deduced analogously as for the Bessel and modified Bessel functions.

The next proposition will be applied for the study of the univalence of the
function up.

Proposition 2.14. If b, p, c ∈ C such that 2p + b + 1 6= 0,−2,−4, . . . , and

z ∈ C, then for the generalized Bessel function of the first kind of order p the

following recursive relations hold:

(i) zwp−1(z) + czwp+1(z) = (2p + b− 1)wp(z);

(ii) zw′p(z) + (p + b− 1)wp(z) = zwp−1(z);

(iii) zw′p(z) + czwp+1(z) = pwp(z);

(iv) [z−pwp(z)]′ = −cz−pwp+1(z);

(v) 2(2p + b + 1)u′p(z) = −cup+1(z).

Proof. (i) If we compute the expression wp−1(z) + wp+1(z), then we have
that

wp−1(z) + wp+1(z) =
∑

n≥0

(−1)n
cn

n!Γ
(
p + n + b−1

2

)
(z

2

)2n+p−1

+
∑

n≥0

(−1)n
cn

n!Γ
(
p + n + b+3

2

)
(z

2

)2n+p+1

=
1

Γ
(
p + b−1

2

)
(z

2

)p−1

+
∑

n≥1

[
(−1)n

cn

n!Γ
(
p + n + b−1

2

) +
(−1)n−1

cn−1

(n− 1)!Γ
(
p + n + b+1

2

)
](z

2

)2n+p−1

=
2p + b− 1

z

[
1

Γ
(
p + b+1

2

)
(z

2

)p

+
∑

n≥1

(−1)n
cn

n!Γ
(
p + n + b+1

2

)
(z

2

)2n+p
]
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+
2p + b− 1

z

[
2

2p + b− 1

∑

n≥1

(−1)n
cn−1(c− 1)

n!Γ
(
p + n + b+1

2

)
(z

2

)2n+p
]
.

Consequently, we obtain that

wp−1(z) + wp+1(z)

=
2p + b− 1

z

[
wp(z) +

2
2p + b− 1

∑

m≥0

(−1)m+1
cm(c− 1)

m!Γ
(
p + m + 1 + b+1

2

)
(z

2

)2m+p+2
]

=
2p + b− 1

z

[
wp(z) +

z

2p + b− 1
(1− c)wp+1(z)

]
,

which implies that zwp−1(z)+czwp+1(z) = (2p+b−1)wp(z) holds, as we required.

(ii) Analogously, if we compute the expression wp−1(z) − wp+1(z), then we
have

wp−1(z)− wp+1(z) =
2p + b− 1

2Γ
(
p + b+1

2

)
(z

2

)p−1

+
∑

n≥1

(−1)n
cn

(
p + n + b−1

2 + n
c

)

n!Γ
(
p + n + b+1

2

)
(z

2

)2n+p−1

=
p

2Γ
(
p + b+1

2

)
(z

2

)p−1

+
p + b− 1

2Γ
(
p + b+1

2

)
(z

2

)p−1

+
∑

n≥1

(−1)n
cn

(
n + p

2

)

n!Γ
(
p + n + b+1

2

)
(z

2

)2n+p−1

+
∑

n≥1

(−1)n
cn(p + b− 1)

2 · n!Γ
(
p+n+ b+1

2

)
(z

2

)2n+p−1

+
∑

n≥1

(−1)n
cn−1

(n−1)!Γ
(
p + n + b+1

2

)
(z

2

)2n+p−1

= w′p(z) +
p + b− 1

z
wp(z)− wp+1(z),

and thus we obtain the second recursive relation.

(iii) Combining the recursive relations (i) and (ii), we get that

zw′p(z) + (p + b− 1)wp(z) + zwp−1(z) + czwp+1(z) = (2p + b− 1)wp(z),

which implies that zw′p(z) + czwp+1(z) = pwp(z).

(iv) Using the third recursive relation we obtain

[z−pwp(z)]′ = z−2p[w′p(z)zp − pzp−1wp(z)]

= z−p−1[zw′p(z)− wp(z)] = −cz−pwp+1(z).
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(v) For convenience, we use part (iv). Since from definition and from part
(iv) we have wp(z) = [a0(p)]zpup(z2) and [z−pwp(z)]′ = −cz−pwp+1(z), we get

2zu′p(z
2) = [up(z2)]′ = [a0(p)]−1[z−pwp(z)]′ = −[a0(p)]−1cz−pwp+1(z).

But wp+1(z) = [a0(p + 1)]zp+1up+1(z2), therefore

2zu′p(z
2) = −cz[a0(p)]−1[a0(p + 1)]up+1(z2). (2.15)

Now, if we compute the expression [a0(p+1)]/[a0(p)], using the relation Γ(λ+1) =
λΓ(λ), then we obtain (2p+ b+1)[a0(p+1)] = [a0(p)], thus by relation (2.15) the
proof is complete. ¤

We note that part (v) of Proposition 2.14 in fact can de deduced directly
from the definition of the function up. We have included in this paper the other
parts of Proposition 2.14 just because the results stated above were used among
other things in the forthcoming papers [4], [7] of the author.

The next result contains conditions for the function up to be univalent, con-
vex, starlike in the unit disk, and provides the correction of the main results from
[22] and [2].

Theorem 2.16. If b, c, p ∈ R and κ = p + (b + 1)/2, then the functions wp

and up satisfy the following properties:

(i) If κ ≥ |c|/4 + 1, then Re up(z) > 0 for all z ∈ D;

(ii) If κ ≥ |c|/4 and c 6= 0, then up is univalent in D;

(iii) If κ ≥ |c|/4 + 1/2 and c 6= 0, then up is convex in D;

(iv) If κ ≥ |c|/4 + 3/2 and c 6= 0, then z 7→ zup(z) is starlike in D;

(v) If κ ≥ |c|/2 + 1 and c 6= 0, then z 7→ zup(z) is starlike of order 1/2 in D;

(vi) If κ ≥ |c|/2 + 1 and c 6= 0, then z 7→ z1−pwp(z) is starlike in D.

Proof. (i) Clearly when c = 0 we have up(z) ≡ 1, thus Re up(z) > 0 for all
z ∈ D. Now suppose that κ ≥ |c|/4 + 1 and c 6= 0. Put h = up. Since h satisfies
(2.13), we have

4z2h′′(z) + 4κzh′(z) + czh(z) = 0. (2.17)

If we consider ψ(r, s, t; z) = 4t+4κs+ czr and E = {0}, then from the differential
equation (2.17) we have ψ

(
h(z), zh′(z), z2h′′(z); z

) ∈ E for all z ∈ D. Next we
will use Lemma 1.1 to prove that Re h(z) > 0 for all z ∈ D. If we put z = x + iy,
where x, y ∈ R, then

Re ψ(ρi, σ, µ + νi; x + iy) = 4(µ + σ) + 4(κ− 1)σ − cρy for all ρ, σ, µ, ν ∈ R.
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Let ρ, σ, µ, ν ∈ R satisfy µ + σ ≤ 0 and σ ≤ −(1 + ρ2)/2. Since κ > 1, we have

Re ψ (ρi, σ, µ + νi; x + iy) ≤ −2(κ− 1)ρ2 − cyρ− 2(κ− 1).

Set Q1(ρ) = −2(κ− 1)ρ2− cyρ− 2(κ− 1). This value will be strictly negative for
all real ρ, because the discriminant ∆ of Q1(ρ) satisfies

∆ := c2y2 − 16(κ− 1)2 < c2 − 16(κ− 1)2 ≤ 0

whenever y ∈ (−1, 1). Consequently ψ satisfies the admissibility condition of
Lemma 1.1. Hence by Lemma 1.1 we conclude Re h(z) = Re up(z) > 0 for all
z ∈ D.

(ii) When κ ≥ |c|/4 and c 6= 0, then the above result implies Re up+1(z) > 0
for all z ∈ D. Using part (v) of Proposition 2.14 we conclude that

Re
[
−4κ

c
u′p(z)

]
= Re up+1(z) > 0 for all z ∈ D.

This in turn implies that up is close-to-convex with respect to the function
ϕ(z) = −(cz)/(4κ). Now, since every close to convex function is univalent, it
follows that up is univalent in D. We note that the univalence of the function up

follows also from the classical Noshiro–Warschawski theorem [17], [23] (see
also [10]), which states that if f : E ⊆ C → C is analytic, E is a convex domain
and Re[f ′(z)] > 0 there, then f is univalent in E. Namely, from the Noshiro–
Warschawski theorem the function z 7→ −4κup(z)/c is univalent in D, and conse-
quently the function z 7→ up(z) is univalent too in D, since the multiplication of
a non-zero constant do not disturb the univalence.

(iii) Since κ > |c|/4 and c 6= 0, part (i) implies that Re up+1(z) > 0 for all
z ∈ D. According to part (v) of Proposition 2.14 it follows that u′p(z) 6= 0 for all
z ∈ D. Define q : D→ C by

q(z) = 1 +
zu′′p(z)
u′p(z)

.

The function q is analytic in D and q(0) = 1. Since up satisfies the differential
equation (2.13), we have 4zu′′p(z) + 4κu′p(z) + cup(z) = 0. If we differentiate both
sides of this equation, we obtain

4zu′′′p (z) + 4(κ + 1)u′′p(z) + cu′p(z) = 0.
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Suppose that z 6= 0. We know that u′p(z) 6= 0, therefore if we divide both sides of
this equation with u′p(z), and multiply with z, we obtain

4
[
zu′′′p (z)
u′′p(z)

] [
zu′′p(z)
u′p(z)

]
+ 4(κ + 1)

[
zu′′p(z)
u′p(z)

]
+ cz = 0. (2.18)

Now we differentiate logarithmically and multiply with z on both sides of the
equation q(z)− 1 = [zu′′p(z)]/u′p(z). Thus we obtain

zq′(z)
q(z)− 1

= 1 +
zu′′′p (z)
u′′p(z)

− [q(z)− 1],

and therefore
zu′′′p (z)
u′′p(z)

=
zq′(z) + q2(z)− 3q(z) + 2

q(z)− 1
.

In view of (2.18) this result reveals that q satisfies the following differential equa-
tion:

4zq′(z) + 4q2(z) + 4(κ− 2)q(z) + cz − 4(κ− 1) = 0. (2.19)

Obviously, this equation is also valid when z = 0.
If we use ψ(r, s; z) = 4s + 4r2 + 4(κ− 2)r + cz − 4(κ− 1) and E = {0}, then

(2.19) implies ψ (q(z), zq′(z); z) ∈ E for all z ∈ D. Now we use Lemma 1.1 to
prove that Re q(z) > 0 for all z ∈ D. For z = x + iy ∈ D (with x, y ∈ R) and
ρ, σ ∈ R satisfying σ ≤ −(1 + ρ2)/2, we obtain

Re ψ(ρi, σ; x + iy) = 4σ − 4ρ2 + cx− 4(κ− 1)

≤ −6ρ2 + cx− 2(2κ− 1) < |c| − 2(2κ− 1) ≤ 0.

By Lemma 1.1 we conclude that Re q(z) > 0 for all z ∈ D, which shows that up

is convex in D.

(iv) According to part (iii) of this theorem the function up−1 is convex. By
Alexander’s duality theorem [1] it follows that z 7→ zu′p−1(z) is starlike in D.
But, on the other hand, part (v) of Proposition 2.14 yields

czup(z) = −4(κ− 1)zu′p−1(z).

Consequently, it results that z 7→ zup(z) is starlike too in D.

(v) According to part (i) of this theorem we have Re up(z) > 0 for all z ∈ D,
hence up 6= 0 for all z ∈ D. Define q : D→ C by

q(z) = 1 + 2
zu′p(z)
up(z)

.
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The function q is analytic in D and q(0) = 1. Assume that z 6= 0. Because up

satisfies the equation (2.13), it satisfies the following equation too:

4
[
zu′′p(z)
u′p(z)

] [
zu′p(z)
up(z)

]
+ 4κ

[
zu′p(z)
up(z)

]
+ cz = 0. (2.20)

In what follows we proceed as in part (iii), we differentiate logarithmically and
multiply with z the expression [q(z)− 1]/2 = [zu′p(z)]/up(z), and thus we obtain

zu′′p(z)
u′p(z)

=
2zq′(z) + q2(z)− 4q(z) + 3

2(q(z)− 1)
.

In view of (2.20) this result reveals that q satisfies the following differential equa-
tion:

2zq′(z) + q2(z) + 2(κ− 2)q(z) + cz − 2(κ− 3/2) = 0, (2.21)

which is also valid when z = 0.
If ψ(r, s; z) = 2s + r2 + 2(κ− 2)r + cz − 2(κ− 3/2) and E = {0}, then (2.21)

implies ψ (q(z), zq′(z); z) ∈ E for all z ∈ D. We use Lemma 1.1 to prove that
Re q(z) > 0 for all z ∈ D. For z = x + iy ∈ D with x, y ∈ R, and ρ, σ ∈ R
satisfying σ ≤ −(1 + ρ2)/2, we obtain

Re ψ(ρi, σ; x + iy) = 2σ − ρ2 + cx− 2(κ− 3/2)

≤ −2ρ2 + cx− 2(κ− 1) < |c| − 2(κ− 1) ≤ 0.

By Lemma 1.1 we conclude that Re q(z) > 0 for all z ∈ D. Now consider the
function gp : D→ C, defined by gp(z) = zup(z). Since

zg′p(z)
gp(z)

=
1
2

+
1
2
q(z),

it follows that

Re
[
zg′p(z)
gp(z)

]
>

1
2

for all z ∈ D,

which shows that gp is starlike of order 1/2.

(vi) Define the function hp : D → C by hp(z) = z1−pwp(z). Since hp(z) =
a0(p)zup(z2), where a0(p) = [2pΓ(κ)]−1, it follows that

zh′p(z)
hp(z)

= 2

[
z2g′p(z2)
gp(z2)

− 1
2

]
.
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But from part (v) of this theorem we know that gp is starlike of order 1/2. Thus
we conclude that

Re
[
zh′p(z)
hp(z)

]
> 0 for all z ∈ D,

and hence hp is starlike in D. ¤

We note that clearly the results of Theorem 2.16 are still valid if we re-
place the function z 7→ up(z) = [a0(p)]−1z−1/2wp(z1/2) with the function z 7→
z−1/2wp(z1/2). For the function z 7→ z−1/2wp(z1/2) the above geometric prop-
erties were established in [2], but in the proofs there was overlooked the con-
dition h(0) = 1 of Lemma 1.1. In a forthcoming paper [3], using the Cauchy–
Buniakowski–Schwarz inequality, the author has extended the results of Theo-
rem 2.16 to the case when the parameters b, p, c are complex. We would like take
the opportunity to note that in [3, Theorem 2.1] the expression 2 Im κ− 1 should
be replaced with 2 Im κ. Namely, the corrected version of the main results from
[3] is that for b, p, c ∈ C the followings are true:

(i) If Re κ ≥ |c|/4 + 1, then Re up(z) > 0 for all z ∈ D;

(ii) If Re κ ≥ |c|/4 and c 6= 0, then up is univalent in D;

(iii) If Re κ ≥ |c|/4 + (Im κ)2/6 + 1/2 and c 6= 0, then up is convex in D;

(iv) If Re κ ≥ |c|/4+ (Im κ)2/6+3/2 and c 6= 0, then z 7→ zup(z) is starlike in D;

(v) If Re κ ≥ |c|/2+(Im κ)2/4+1 and c 6= 0, then z 7→ zup(z) is starlike of order
1/2 in D;

(vi) If Re κ ≥ |c|/2 + (Im κ)2/4 + 1 and c 6= 0, then z 7→ z1−pwp(z) is starlike
in D.

Taking into account the above results we have the following particular cases:

2.1. Bessel functions. Choosing b = c = 1, d1 = −1 and d2 = d3 = 0 in (2.7),
we obtain the Bessel differential equation (2.1) and the Bessel function of the first
kind of order p, defined by (2.2) satisfies this equation. In particular, the results
of [3, Theorem 2.1] becomes:

Corollary 2.22. Let Jp : D→ C be defined by Jp(z) = 2pΓ(p+1)z−pJp(z).
Then the following assertions are true:

(i) If Re p ≥ 1/4, then ReJp(z1/2) > 0 for all z ∈ D;

(ii) If Re p ≥ −3/4, then z 7→ Jp(z1/2) is univalent in D;

(iii) If Re p ≥ −1/4 + (Im p)2/6, then z 7→ Jp(z1/2) is convex in D;

(iv) If Re p ≥ 3/4 + (Im p)2/6, then z 7→ zJp(z1/2) is starlike in D;

(v) If Re p ≥ 1/2 + (Im p)2/4, then z 7→ zJp(z1/2) is starlike of order 1/2 in D;
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(vi) If Re p ≥ 1/2 + (Im p)2/4, then z 7→ z1−pJp(z) is starlike in D.

Clearly, as in the general case, the results of Corollary 2.22 are still valid if we
use the function z 7→ z−p/2Jp(z1/2) instead of z 7→ Jp(z1/2). For p real, Selinger

in [22] found the above geometric properties of the function z 7→ z−p/2Jp(z1/2),
and analogously in the proofs of the main results of [22] there is overlooked the
fact that the function z 7→ z−p/2Jp(z1/2) does not maps 0 into 1. We note that
Brown [9, Theorem 3] has proved that if the complex number p = Re p + i Im p

satisfy one of the following conditions

Im p ≤ Re p ∈ [0, 1) or Re p ≥ 1, 2Re p− 1 > (Im p)2,

then the normalized Bessel function z 7→ z1−pJp(z) is univalent in every circle
|z| < r = ρ∗µ, where µ2 = Re[p2], µ > 0, and ρ∗µ is the smallest positive zero of
the function rJ ′µ(r)+ [Re(1−p)] ·Jµ(r). In particular, when p is real the function
z 7→ z1−pJp(z) is starlike in |z| < ρ∗µ, but is not univalent in any larger circle.
The method used by Brown is completely different than the method of differential
subordinations, and it is worth mentioning that in the case of the unit disk our
result from part (vi) of Corollary 2.22 slightly improves the above result of Brown
because we have that

Re p ≥ 1/2 + (Im p)2/2 ≥ 1/2 + (Im p)2/4,

i.e. if Re p ≥ 1/2 + (Im p)2/4, then the normalized Bessel function z 7→ z1−pJp(z)
is still starlike and hence univalent in D.

2.2. Modified Bessel functions. Taking b = 1, c = d1 = −1 and d2 = d3 = 0
in (2.7), we obtain the differential equation (2.3), which has solution the modified
Bessel function of the first kind of order p, defined by (2.4). For the function
Ip : D→ C, defined by

Ip(z) = 2pΓ(p + 1)z−pIp(z),

the properties are the same like for the function Jp, because in this case we have
|c| = 1. More precisely, we have the following results.

Corollary 2.23. The following assertions are true:

(i) If Re p ≥ 1/4, then Re Ip(z1/2) > 0 for all z ∈ D;

(ii) If Re p ≥ −3/4, then z 7→ Ip(z1/2) is univalent in D;

(iii) If Re p ≥ −1/4 + (Im p)2/6, then z 7→ Ip(z1/2) is convex in D;

(iv) If Re p ≥ 3/4 + (Im p)2/6, then z 7→ zIp(z1/2) is starlike in D;

(v) If Re p ≥ 1/2 + (Im p)2/4, then z 7→ zIp(z1/2) is starlike of order 1/2 in D;

(vi) If Re p ≥ 1/2 + (Im p)2/4, then z 7→ z1−pIp(z) is starlike in D.
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2.3. Spherical Bessel functions. If we take b = 2, c = 1, d1 = d2 = −1 and
d3 = 0 in (2.7), we obtain the spherical Bessel differential equation (2.5). The
spherical Bessel function of the first kind of order p, defined by (2.6) satisfies the
previous differential equation and the next result holds.

Corollary 2.24. Let Sp :D→C be defined by Sp(z) =2pΓ(p +3/2)z−pSp(z).
Then the following assertions are true:

(i) If Re p ≥ −1/4, then ReSp(z1/2) > 0 for all z ∈ D;

(ii) If Re p ≥ −5/4, then z 7→ Sp(z1/2) is univalent in D;

(iii) If Re p ≥ −3/4 + (Im p)2/6, then z 7→ Sp(z1/2) is convex in D;

(iv) If Re p ≥ 1/4 + (Im p)2/6, then z 7→ zSp(z1/2) is starlike in D;

(v) If Re p ≥ (Im p)2/4, then z 7→ zSp(z1/2) is starlike of order 1/2 in D;

(vi) If Re p ≥ (Im p)2/4, then z 7→ z1−pSp(z) is starlike in D.

3. Convexity and starlikeness
of order α of generalized Bessel functions

The following results contains conditions for the function up to be close-
to-convex, convex and starlike of order α in the unit disk. These are another
generalizations of Theorem 2.16.

Theorem 3.1. If 0 ≤ α < 1/2 and b, p, c ∈ R, then the following assertions

are true:

(i) If 4κ ≥ (1− α)(1− 2α)−1/2|c|+ 1, then Reup(z) > α for all z ∈ D;

(ii) If 4κ ≥ (1− α)(1− 2α)−1/2|c| and c 6= 0, then up is close-to-convex of order

α in D.

Proof. (i) First assume that c = 0. Then up(z) ≡ 1, and consequently
Re up(z) > α for all z ∈ D. Now suppose that κ ≥ (1 − α)(1 − 2α)−1/2|c|/4 + 1
and c 6= 0. Define the function h : D→ C by

h(z) =
up(z)− α

1− α
.

Since up satisfies (2.13), h will satisfy the following differential equation:

4z2h′′(z) + 4κzh′(z) + cz

[
h(z) +

α

1− α

]
= 0. (3.2)
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Using ψ(r, s, t; z) = 4t+4κs+cz[r+α/(1−α)] and E = {0}, we see that equation
(3.2) implies ψ

(
h(z), zh′(z), z2h′′(z); z

) ∈ E for all z ∈ D. Next we use Lemma 1.1
to prove that Re h(z) > 0 for all z ∈ D. For z = x + iy, where x, y ∈ R, we have

Re ψ (ρi, σ, µ + νi; x + iy) = 4(µ + σ) + 4(κ− 1)σ − cρy + αcx/(1− α)

for all ρ, σ, µ, ν ∈ R. Let ρ, σ, µ, ν ∈ R satisfy µ + σ ≤ 0 and σ ≤ −(1 + ρ2)/2.
Since κ− 1 > 0, we obtain

Re ψ (ρi, σ, µ + νi;x + iy) ≤ −2(κ− 1)ρ2 − cyρ− 2(κ− 1) + αcx/(1− α).

Set Q1(ρ) = −2(κ − 1)ρ2 − cyρ − 2(κ − 1) + αcx/(1 − α). This value is strictly
negative for all real ρ, because the discriminant ∆1 of Q1(ρ) satisfies

∆1 = c2y2 − 16(κ− 1)2 + 8αcx(κ− 1)/(1− α)

< c2(1− x2)− 16(κ− 1)2 + 8αcx(κ− 1)/(1− α) =: Q2(x) ≤ 0,

whenever x2 + y2 < 1 and the discriminant ∆2 of Q2(x) is negative. ∆2 has the
form

∆2 = 4c2

[
−16

1− 2α

(1− α)2
(κ− 1)2 + c2

]

and this is negative if and only if we have κ ≥ (1−α)(1−2α)−1/2|c|/4+1. Hence
by Lemma 1.1 we conclude that

Re h(z) = Re
[

1
1− α

(up(z)− α)
]

> 0 for all z ∈ D,

and this implies that Re up(z) > α for all z ∈ D, as we required.

(ii) Now, suppose that κ ≥ (1 − α)(1 − 2α)−1/2|c|/4 and c 6= 0. Then the
above result implies Re up+1(z) > α for all z ∈ D. Using again part (v) of
Proposition 2.14 we conclude that

Re
[(
−4κ

c

)
u′p(z)

]
= Re up+1(z) > α for all z ∈ D,

i.e. up is close-to-convex of order α in D with respect to the function ϕ(z) =
−(cz)/(4κ). ¤

Theorem 3.3. If 0 ≤ α < 1 and b, p, c ∈ R such that c 6= 0 and 4α2+
(|c| − 6)α + 2 ≥ 0, then the functions wp and up have the following properties:

(i) If 4(1− α)κ ≥ |c|+ 2(1− α)(1− 2α), then up is convex of order α in D;
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(ii) If 4(1− α)κ ≥ |c|+ 2(1− α)(3− 2α), then z 7→ zup(z) is starlike of order α

in D;

(iii) If 4(1− α)κ ≥ |c|+ 2(1− α)(3− 2α) and α 6= 0, then

z 7→ z[2(1−α)−p]/[2α]wp

(
z1/[2α]

)
is starlike in D.

Proof. (i) The equality

|c|+ 2(2α2 − 3α + 1)
4(1− α)

=
|c|
4

+
4α2 + (|c| − 6)α + 2

4(1− α)

implies κ ≥ |c|/4. By applying part (i) of Theorem 2.16 we conclude that
Re up+1(z) > 0 for all z ∈ D. According to part (v) of Proposition 2.14 it follows
that u′p(z) 6= 0. Define q : D→ C by

q(z) = 1 +
zu′′p(z)

(1− α)u′p(z)
.

The function q is analytic in D and q(0) = 1. Since up satisfies the differential
equation (2.13) it can be shown, as in the proof of Theorem 2.16, that q satisfies
the following differential equation:

4(1− α)zq′(z) + 4(1− α)2q2(z) + 2(1− α)e1q(z) + cz − 2(1− α)e2 = 0, (3.4)

where e1 = 2κ + 4(α− 1) and e2 = 2κ + 2(α− 1).
If

ψ(r, s; z) = 4(1− α)s + 4(1− α)2r2 + 2(1− α)e1r + cz − 2(1− α)e2

and E = {0}, then (3.4) implies ψ (q(z), zq′(z); z) ∈ E for all z ∈ D. We use
Lemma 1.1 to prove that Re q(z) > 0 for all z ∈ D. For z = x + iy ∈ D (with
x, y ∈ R) and ρ, σ ∈ R satisfying σ ≤ −(1 + ρ2)/2, we obtain

Re ψ(ρi, σ; x + iy) = 4(1− α)σ − 4(1− α)2ρ2 + cx− 2(1− α)e2

≤ −2(1− α)(3− 2α)ρ2 + cx− 2(1− α)(1 + e2)

< |c|+ 2(1− α)(1− 2α)− 4(1− α)κ ≤ 0.

By Lemma 1.1 we conclude that Re q(z) > 0 for all z ∈ D. This result implies

Re
[
1 +

zu′′p(z)
u′p(z)

]
= (1− α)Re q(z) + α > α for all z ∈ D,

which shows that up is convex of order α in D.
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(ii) Since

κ− 1 ≥ |c|+ 2(1− α)(3− 2α)
4(1− α)

− 1 =
|c|+ 2(1− α)(1− 2α)

4(1− α)
,

it follows from part (i) of this theorem that up−1 is convex of order α. By applying
the general version of Alexander’s duality theorem [1] we conclude that z 7→
zu′p−1(z) is starlike of order α in D. According to part (v) of Proposition 2.14 this
implies the function z 7→ zup(z) is also starlike of order α in D, as we required.

(iii) Define the functions gp, hp : D→ C by

gp(z) = zup(z) and hp(z) = z[2(1−α)−p]/[2α]wp

(
z1/[2α]

)
,

respectively. Since hp(z) = a0(p)z(1−α)/αup

(
z1/α

)
, where a0(p) = [2pΓ(κ)]−1, it

follows that
zh′p(z)
hp(z)

=
1
α

[
z1/αg′p(z

1/α)
gp(z1/α)

− α

]
.

Finally, because gp is starlike of order α, we deduce that hp is starlike in D. ¤

We note that if we choose α = 0 in Theorem 3.1, then we reobtain parts (i)
and (ii) of Theorem 2.16. Analogously, if we take α = 0 in part (i) of Theorem 3.3,
then we get part (iii) of Theorem 2.16. Parts (iv) and (v) of Theorem 2.16 are
particular cases of part (ii) of Theorem 3.3, and choosing α = 1/2 from part (iii)
of Theorem 3.3 we reobtain part (vi) of Theorem 2.16. It is also worth mentioning
that results similar to those given in Theorem 3.1 were obtained by Ponnusamy

and Vuorinen [20], [21] for Gaussian and confluent hypergeometric functions.

4. Close-to-convexity of the generalized Bessel functions

Motivated by the papers of Ponnusamy and Vuorinen [20], [21], we discuss
in this section a few conditions concerning the parameters of up, which guarantee
the close-to-convexity with respect to the convex functions f1, f2 : D→ C, defined
by

f1(z) := − log(1− z) and f2(z) :=
1
2

log
1 + z

1− z
.

Moreover, our aim is to improve some of the main results of Section 2.

Theorem 4.1. If c < 0 and b, p ∈ R, then up has the following properties:
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(i) If κ ≥ −c/2, then z 7→ zup(z) is close-to-convex with respect to the func-

tion f1.

(ii) If κ ≥ −3c/4, then z 7→ zup(z2) is close-to-convex with respect to the

function f2.

Proof. (i) Set f(z) = zup(z) = z+b1z
2+b2z

3+. . .+bn−1z
n+. . ., where bn is

defined by (2.11). Clearly we have bn−1 > 0 for all n ≥ 2 and 2b1 = −c/(2κ) ≤ 1.
From the definition of the ascending factorial notation we observe that (we use
the formula (κ)n = (κ + n− 1)(κ)n−1)

bn = − c

4n(κ + n− 1)
bn−1.

We use Lemma 1.2 to prove that f is close-to-convex with respect to the function
f1(z) = − log(1− z). Therefore we need to show that {nbn−1}n≥1 is a decreasing
sequence. By a short computation we obtain

nbn−1 − (n + 1)bn = bn−1

[
n +

c(n + 1)
4n(κ + n− 1)

]
=

bn−1 · U1(n)
4n(κ + n− 1)

,

where U1(n) = 4n3 +4(κ−1)n2 +cn+c. Using the inequalities n3 ≥ 3n2−3n+1
and n2 ≥ 2n− 1, we obtain

U1(n) ≥ 4(κ + 2)n2 + (c− 12)n + c + 4 ≥ [8(κ + 2) + c− 12]n

− 4(κ + 2) + c + 4 ≥ U1(1) = 2(2κ + c) ≥ 0.

because κ + 2 > 0 and 4(2κ + 1) + c > 0 by the assumptions. This implies that
nbn−1−(n+1)bn ≥ 0 for all n ≥ 1, thus, {nbn−1}n≥1 is a decreasing sequence. By
Lemma 1.2 it follows that f is close-to-convex with respect to the convex function
− log(1− z).

(ii) Set g(z) = zup(z2) = z+b3z
3 + . . .+b2n−1z

2n−1 + . . ., where bn is defined
by (2.11). Therefore we have 3b1 = −(3c)/(4κ) ≤ 1 and b2n−1 > 0 for all n ≥ 2.
We want to show that {(2n − 1)b2n−1}n≥2 is a decreasing sequence. Fix n ≥ 2.
Then we have

(2n− 1)b2n−1 − (2n + 1)b2n+1 =
b2n−1 · U2(n)
4n(κ + n− 1)

,

where U2(n) = 8n3 + 8(κ− 3/2)n2 − 4(κ− c/2− 1)n + c. Using the inequalities
n3 ≥ 3n2 − 3n + 1 and n2 ≥ 2n− 1, we obtain

U2(n) ≥ 8(κ + 3/2)n2 − 4(κ− c/2 + 5)n + c + 8
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≥ 12(κ + c/6 + 1/3)n− 8(κ + 3/2) + c + 8

≥ 4(κ + 3c/4) ≥ 0.

Hence {(2n−1)b2n−1}n≥2 is a decreasing sequence. But the function f2 is convex,
so by applying Lemma 1.2 the desired conclusion follows. ¤

Observe that choosing c = −1 and b = 1 in Theorem 4.1 we get the following
sufficient condition of close-to-convexity: if p ≥ −1/2, then z 7→ zIp(z1/2) is
close-to-convex with respect to the function f1, while if p ≥ −1/4, then 7→ zIp(z)
is close-to-convex with respect to the function f2. In particular, the function
z 7→ zJ0(iz) is close-to-convex with respect to the function f2, because zI0(z) =
zI0(z) = zJ0(iz) satisfies the condition of part (ii) of Theorem 4.1. We note that
this property of the Bessel function of the first kind of zero order was pointed out
also by Ponnusamy and Vuorinen [20, p. 83].

It is also worth mentioning that, since every close-to-convex function is uni-
valent, the above results of Theorem 4.1 imply that under the corresponding hy-
pothesis the functions z 7→ zup(z) and z 7→ zup(z2) are univalent in D. In what
follows we would like to improve the range of univalence (when the parameter c

is negative) from Theorem 2.16, by using an interesting idea of Ponnusamy [19].
Let f : D → C be of the form f(z) = z + a2z

2 + . . . + anzn + . . .. The
Alexander transform Λf : D→ C of f is defined by

Λf (z) =
∫ z

0

f(t)
t

dt = z +
∑

n≥2

an

n
zn.

The following result completes part (i) of Theorem 3.1 and contains some proper-
ties of the Alexander transform of the function z 7→ zup(z), which will be helpful
to improve the range of univalence from Theorem 2.16.

Theorem 4.2. Let b, p be arbitrary real numbers and let c < 0. If 4κ ≥
−(c + 2) +

√
c2/2− 4c + 4, then the Alexander transform of the function z 7→

zup(z) is close-to-convex with respect to the function − log(1−z) and it is starlike

in D. Moreover, we have that Re up(z) > 1/2 holds for all z ∈ D.

Proof. From (2.11) we have

f(z) = zup(z) = z +
∑

n≥2

bn−1z
n =

∑

n≥1

(−c/4)n−1zn

(κ)n−1(n− 1)!
.

So in this case the corresponding Alexander transform takes the form

Λf (z) =
∑

n≥1

Anzn, where An =
bn−1

n
=

(−c/4)n−1

(κ)n−1n!
for all n ≥ 1.
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Obviously we have A1 = 1. Because c < 0 and 4κ ≥ 2λ(c) > −c > 0, we also
have An > 0 for all n ≥ 2, where

λ(c) :=
−(c + 2) +

√
c2/2− 4c + 4

2
.

Next we prove that the sequence {nAn}n≥1 is decreasing. Fix any n ≥ 1. From
the definition of the Pochhammer symbol it follows

(n + 1)An+1 = − c

4(κ + n− 1)
·An. (4.3)

Using (4.3) we have

nAn − (n + 1)An+1 =
U1(n) ·An

4(κ + n− 1)
, (4.4)

where U1(n) = 4n2 + 4(κ− 1)n + c. Since n2 ≥ 2n− 1 and 4κ > −c, we have

U1(n) ≥ 4(κ + 1)n + c− 4 ≥ U1(1) = 4κ + c > 0.

Consequently, (4.4) yields nAn > (n + 1)An+1. This shows that the sequence
{nAn}n≥1 is strictly decreasing.

Next, we show that the sequence {nAn−(n+1)An+1}n≥1, is also decreasing.
For convenience we denote Bn = nAn − (n + 1)An+1 for each n ≥ 1. Fix any
n ≥ 1. Using (4.4), we find that

Bn −Bn+1 =
U2(n) ·An

2(n + 1)(κ + n)(κ + n− 1)
,

where
U2(n) = 2n4 + 4κn3 + D1n

2 + D2n + D3,

D1 = 2κ2 + 2κ + c− 2, D2 = 2κ2 + (c− 2)κ + c, D3 = (c + 8κ)c/8.

Our aim is to show that U2(n) > 0. First we observe that the inequality n4 ≥
4n3−6n2 +4n−1 holds. By using this inequality we obtain U2(n) ≥ V (n), where

V (n) = 4(κ + 2)n3 + (D1 − 12)n2 + (D2 + 8)n + D3 − 2.

Clearly, the coefficient of n3 in the above expression is nonnegative, since κ > 0.
Therefore using that n3 ≥ 3n2 − 3n + 1, we obtain V (n) ≥ W (n), where

W (n) = D4n
2 + D5n + D6,

D4 = 2κ2 + 14κ + c + 10, D5 = 2κ2 + (c− 14)κ + c− 16,

D6 = c2/8 + (c + 4)κ + 6.
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Now, we observe that D4 is also nonnegative, because

κ ≥ [λ(c)]/2 > −c/4 > [−7 +
√

29− 2c]/2,

where the value [−7 +
√

29− 2c]/2 is the greatest root of the equation D4 = 0.
Similarly n2 ≥ 2n − 1, therefore W (n) ≥ X(n), where X(n) = D7n + D8, D7 =
2D4 + D5 and D8 = D6 − D4. Analogously, by the hypothesis, we can deduce
easily that D7 = 6κ2 + (c + 14)κ + 3c + 4 > 0. Indeed, the relation

κ ≥ [λ(c)]/2 > −c/4 > [−(c + 14) +
√

c2 − 44c + 100]/12 =: κc

(here κc is the greatest root of the equation D7 = 0) implies that D7 is nonnega-
tive, and leads to X(n) ≥ X(1). In this case

X(1) = D4 + D5 + D6 = 4κ2 + 2(c + 2)κ + c2/8 + 2c

is also positive, because κ ≥ λ(c)/2 > −c/4 > 0. Thus, we have proved a chain
of inequalities

U2(n) ≥ V (n) ≥ W (n) ≥ X(n) ≥ X(1) > 0,

which implies Bn − Bn+1 > 0. Thus the sequence {nAn − (n + 1)An+1}n≥1 is
strictly decreasing. By Lemma 1.3 we deduce that Λf is starlike in D.

The sequence {nAn}n≥1 is strictly decreasing and 2A2 = b1 = − c/(4κ) < 1.
Thus it follows by Lemma 1.2 that Λf is close-to-convex with respect to
− log(1 − z). Now, we apply Lemma 1.3 to prove that Reup(z) > 1/2 for all
z ∈ D. For this consider g = up. Therefore we have Cn = bn−1 = nAn for all
n ≥ 1 and thus the sequence {Cn}n≥1 is strictly decreasing. In addition we have
Cn − 2Cn+1 + Cn+2 = Bn −Bn+1 > 0 for all n ≥ 1. Thus, Lemma 1.3 yields the
asserted property, which completes the proof. ¤

An important consequence of Theorem 4.2 is the following result:

Corollary 4.5. If b, p are arbitrary real numbers and c < 0 such that

κ ≥ −c/4− 1 and κ 6= 0, then the function up is univalent in D.

Proof. By the proof of Theorem 4.2 the Alexander transform
∫ z

0

up+1(t) dt

is close-to-convex with respect to the convex function − log(1 − z) if κ + 1 ≥
−c/4, and therefore, in particular, it is univalent. Using the relation 4κu′p(z) =
−cup+1(z), we have

∫ z

0

up+1(t) dt = −4κ

c

∫ z

0

u′p(t) dt = −4κ

c
[up(z)− 1].
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Consequently the function z 7→ −4κ[up(z) − 1]/c is univalent in D. Since the
addition of a constant and the multiplication by a nonzero quantity do not disturb
the univalence, we immediately deduce that up is univalent in D. This completes
the proof. ¤

From part (ii) of Theorem 2.16 up is univalent in D when κ ≥ |c|/4 and
c 6= 0. If we consider c < 0, then the above conditions become κ ≥ −c/4. Since
−c/4 > −c/4 − 1, it follows that the result of Corollary 4.5 is better than the
above result. Moreover, recently it was proved in the forthcoming paper [4] that
the result of Corollary 4.5 can be improved too. Namely, using directly the second
part of Lemma 1.3, it can be shown that [4, Theorem 3.11] if κ ≥ −c/8 − 1 for
b, p ∈ R, c ∈ [−37, 0), then up is univalent in D.
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[5] Á. Baricz, Functional inequalities involving special functions, J. Math. Anal. Appl. 319
(2006), 450–459.
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