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An existence result for a parametric variational inequality

By DANIELA INOAN (Cluj-Napoca) and JÓZSEF KOLUMBÁN (Cluj-Napoca)

Abstract. In this paper we study a variational inequality formulated using the

supremum over a set of parameters.

1. Introduction

Existence of solutions for variational inequalities generated by nonlinear map-
pings was studied a lot in the last 40 years, especially after the appearance of the
paper [6] (see also [5]). Among them, an important place is occupied by those
that occur, for instance, in the study of (necessary) optimality conditions for
variational problems with obstacles.

If we consider a variational problem of the form

max
λ∈Λ

∫

Ω

L(λ, t, u(t),∇(t))dt → min!, u ∈ K

then the necessary condition for the optimality usually appears (by some natural
conditions) as a nonlinear variational inequality governed by a set -valued map
(see for instance [7]). Our aim in this paper is to study variational inequalities of
this kind. A related problem was studied, in a different framework, in [4].

The paper is organized as follows. In Section 2 we give the exact formulation
of the problem and some auxiliary results. The main result of the paper (proved in
Section 3, Theorem 8) is an existence theorem for nonlinear variational inequalities
governed by a parameter depending set-valued mapping. In the particular case
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when the set of parameters is a singleton, our result reduces to a classical one
(see [6] or [8], p. 42).

2. Setting of the problem

Let Ω ⊂ Rn be open, bounded, nonempty; let K be a nonempty, convex and
closed subset of the Sobolev space H1

0 (Ω).
Consider the problem:

u ∈ K such that sup
p∈P (u)

{ ∫

Ω

A(p, x, u(x),∇u(x))∇(w − u)(x)dx

+
∫

Ω

a(p, x, u(x),∇u(x))(w − u)(x)dx

}
≥ 0, ∀ w ∈ K (1)

where P : H1
0 (Ω) → 2Λ is a set-valued mapping, with Λ a metric space and

P (u) 6= ∅; A = (a1, . . . , an) : Λ×Ω×R×Rn → Rn, a0 : Λ×Ω×R×Rn → R are
functions in the following hypotheses:

(H1) aj(p, x, η, ξ) is measurable in the second variable x and continuous in (p, η, ξ),
for j = 0, . . . , n;

(H2) |aj(p, x, η, ξ)| ≤ c(k(x) + |η| + ‖ξ‖), for a.e. x ∈ Ω, for each η ∈ R, ξ ∈ Rn,
p ∈ Λ, with c a positive constant and k ∈ L2(Ω), with positive values, for
j = 0, . . . , n;

(H3)
∑n

j=1(aj(p, x, η, ξ)−aj(p, x, η, ξ̃))(ξj− ξ̃j) > 0, for a.e. x ∈ Ω, for each η ∈ R,
ξ 6= ξ̃ ∈ Rn, p ∈ Λ;

(H4)
∑n

j=1 aj(p, x, η, ξ)ξj ≥ c1‖ξ‖2 − c2, for a.e. x ∈ Ω, for each η ∈ R, ξ ∈ Rn,
p ∈ Λ, with c1, c2 positive constants.

We define, similar to [8], the operator A : Λ×H1
0 (Ω) → (H1

0 (Ω))∗, by

〈w,A(p, u)〉 =
∫

Ω

A(p, x, u(x),∇u(x))∇w(x)dx

+
∫

Ω

a0(p, x, u(x),∇u(x))w(x)dx, (2)

for each w ∈ H1
0 (Ω). Then the variational inequality (1) can be written:

u ∈ K such that sup
p∈P (u)

〈w − u,A(p, u)〉, ∀ w ∈ K.

We make also the hypotheses:
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(H5) For any u ∈ K, fixed, the set

C(u) not= {A(p, u) | p ∈ P (u)} ⊂ (H1
0 (Ω))∗

is convex. (this is true, for instance, if the functions aj are linear with respect
to p and P (u) is convex).

(H6) P (u) ⊂ Λ is compact, for each u ∈ K.

(H7) The set-valued function P : H1
0 (Ω) → 2Λ is upper semi-continuous (with the

weak topology in H1
0 (Ω)),

(H8) There exists B ⊂ H1
0 (Ω), weakly compact and v0 ∈ K such that

sup
p∈P (u)

〈v0 − u,A(p, u)〉 < 0,

for every u ∈ K \B.

(H9) For pn → p, un ⇀ u, pn ∈ P (un), w ∈ H1
0 (Ω) fixed, if

sup
p∈P (un)

〈tw + (1− t)u− un,A(p, un)〉 ≥ 0, ∀ t ∈ [0, 1]

then

lim sup
n

{〈tw + (1− t)u− un,A(pn, un)−A(p, un)〉} ≤ 0, ∀ t ∈ [0, 1].

(H10) The functions aj , j = 0, . . . , n are Lipschitz with respect to p, that is,

|aj(p1, x, η, ξ)− aj(p2, x, η, ξ)| ≤ θj(x)d(p1, p2),

with θj ∈ L2(Ω) some functions with positive values.

Theorem 1 (Leray–Lions, [8], p. 76). In the hypotheses (H1)–(H4), for any

fixed parameter p ∈ Λ, the operator A(p, ·) : H1
0 (Ω) → (H1

0 (Ω))∗ is pseudo-

monotone (in the sense of Brézis, [1]), that is, for each sequence {un} ⊂ H1
0 (Ω),

un ⇀ u and

lim sup
n

〈un − u,A(p, un)〉 ≤ 0

imply

lim inf
n

〈un − w,A(p, un)〉 ≥ 〈u− w,A(p, u)〉,

for each w ∈ H1
0 (Ω).

Lemma 2. In the hypotheses (H1) and (H2) the set C(u) is bounded.
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Proof. Let A(p, u) ∈ C(u). Using hypothesis (H2), Hölder’s and Poincare’s
inequalities, we have

‖A(p, u)‖(H1
0 (Ω))∗ = sup

‖w‖
H1

0(Ω)≤1

|〈w,A(p, u)〉|

= sup
‖w‖

H1
0(Ω)≤1

{∣∣∣
∫

Ω

A(p, x, u(x),∇u(x))∇w(x)dx

+
∫

Ω

a0(p, x, u(x),∇u(x))w(x)dx
∣∣∣
}

≤ sup
‖w‖

H1
0(Ω)≤1

2c
( ∫

Ω

|k(x)|2dx
)1/2

‖w‖H1
0 (Ω)

+ 4c‖w‖H1
0 (Ω)‖u‖H1

0 (Ω) ≤ 2c‖k‖L2(Ω) + 4c‖u‖H1
0 (Ω),

so the set C(u) is bounded. ¤

Lemma 3. If (H1), (H2), (H6) and (H10) are satisfied, then the set C(u) is

weakly* closed.

Proof. It follows directly from (H6) and the continuity of the mapping p 7→
〈w,A(p, u)〉 (H10). In fact, consider a weak* convergent sequence {v∗n} ⊂ C(u)
such that v∗n

∗
⇀ v∗. From v∗n ∈ C(u) it follows that there exists pn ∈ P (u) such

that
〈w, v∗n〉 = 〈w,A(p, u)〉, ∀ w ∈ H1

0 (Ω). (3)

Hypothesis (H6) implies the existence of a subsequence pnk
∈ P (u) with the

property pnk
→ p ∈ P (u). Considering equation (3) for this subsequence and

passing to the limit we get 〈w, v∗〉 = 〈w,A(p, u)〉, for each w ∈ H1
0 (Ω), that is

v∗ ∈ C(u). ¤

We use the following Lemma:

Lemma 4 ([4]). Let E be a real Hilbert space, x, y ∈ E, C ⊂ E∗, convex,

bounded, closed. If

sup
z∗∈C

〈(1− t)x + ty, z∗〉 ≥ 0, ∀ t ∈ [0, 1],

then there exists z∗ ∈ C such that 〈(1− t)x + ty, z∗〉 ≥ 0, for every t ∈ [0, 1].

Applying this in our situation we get:
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Lemma 5. In the hypotheses (H1)–(H6) and (H10), if v, w ∈ H1
0 (Ω) and

sup
p∈P (u)

〈(1− t)v + tw,A(p, u)〉 ≥ 0, ∀ t ∈ [0, 1],

then there exists p̄ ∈ P (u) such that

〈(1− t)v + tw,A(p̄, u)〉 ≥ 0, ∀ t ∈ [0, 1].

Proof. We apply Lemma 4 for E = H1
0 (Ω), v, w ∈ H1

0 (Ω) and C = C(u) ∈
(H1

0 (Ω))∗.
Using hypothesis (H5), Lemma 2 and Lemma 3, we get that C(u) is convex,

bounded and weakly* closed. We have

sup
z∗∈C(u)

〈(1− t)v + tw, z∗〉 = sup
p∈P (u)

〈(1− t)v + tw,A(p, u)〉,

for every t ∈ [0, 1]. From Lemma 4, there exists an element z̄ ∈ C(u) such that
〈(1− t)v + tw, z̄〉 ≥ 0, for every t ∈ [0, 1], that is there exists p̄ ∈ P (u) such that
〈(1− t)v + tw,A(p̄, u)〉 ≥ 0, for every t ∈ [0, 1]. ¤

Lemma 6 ([3]). Let U and V be topological spaces, G : U → 2V a set-valued

mapping and g : U × V → R. Denote by h : U → R, h(u) = supv∈G(u) g(u, v) the

marginal function. If the conditions:

(i) g is upper semi-continuous on U × V ,

(ii) G(u0) is compact for some u0 ∈ U ,

(iii) G is upper semi-continuous at u0,

are satisfied, then h is upper semi-continuous at u0.

3. The main result

To prove the existence of a solution to the problem (1) we will use a gener-
alization of the Ky Fan Intersection Lemma:

Lemma 7 ([2]). Let V be a topological vector space, H ⊂ V and F : H → 2V

such that:

(i) clF (x0) is compact for some x0 ∈ H,

(ii) for every x1, . . . , xn ∈ H, co{x1, . . . , xn} ⊂
⋃n

i=1 F (xi) ,

(iii) for each x ∈ H, the intersection of F (x) with any finite dimensional subspace

of V is closed,
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(iv) for every line segment D of V ,

cl
( ⋂

x∈H∩D

F (x)
)
∩D =

( ⋂

x∈H∩D

F (x)
)
∩D,

Then
⋂

x∈E F (x) 6= ∅.
If H is convex, closed and F (x) ⊂ H for every x ∈ H, then the hypothesis

(iv) can be replaced with: (iv’) for every line segment D of H,

cl
( ⋂

x∈D

F (x)
)
∩D =

( ⋂

x∈D

F (x)
)
∩D.

We can prove now:

Theorem 8. In the hypotheses (H1)–(H10), the variational inequality (1)
has at least a solution.

Proof. For each v ∈K, denote F (v)={u∈K | supp∈P (u)〈v−u,A(p, u)〉≥ 0}.
It is obvious that, if u ∈ ⋂

v∈K F (v), then u is a solution of (1).
With V = H1

0 (Ω) and H = K, we check the four conditions of Lemma 7.

(i) Let v0 ∈ K be the element mentioned in hypothesis (H8). We have
that F (v0) ⊂ B (if not, assuming that there exists u ∈ F (v0) and u /∈ B, then
supp∈P (u)〈v0−u,A(p, u)〉 < 0 is a contradiction.) Then w-clF (v0) ⊂ B, and since
B is weakly compact, w-clF (v0) is also weakly compact.

(ii) Let u1, . . . , un ∈ K. Suppose that there exist α1, . . . , αn ∈ [0, 1] with∑n
j=1 αj = 1 such that

∑n
j=1 αjuj /∈ ⋃n

j=1 F (uj), which means that, for each
j = 1, . . . , n, ū =

∑n
j=1 αjuj /∈ F (uj) and so

sup
p∈P (ū)

〈uj − ū,A(p, ū)〉 < 0, ∀ j = 1, . . . , n.

We fix p ∈ P (ū) and get

0 = 〈ū− ū,A(p, ū)〉 =

〈
n∑

j=1

αjuj −
( n∑

j=1

αj

)
ū,A(p, ū)

〉

=

〈
n∑

j=1

αj(uj − ū),A(p, ū)

〉
=

n∑

j=1

αj〈uj − ū,A(p, ū)〉 < 0,

which is a contradiction.



An existence result for a parametric variational inequality 305

(iii) Let Z ⊂ H1
0 (Ω) be a finite dimensional subspace and let v ∈ K, fixed.

We want to prove that F (v) ∩ Z is a closed set.
Consider a sequence {un} ⊂ F (v) ∩ Z, with un → u. Then un ∈ K ∩ Z and

so u ∈ K ∩ Z.
Denote g : H1

0 (Ω) × Λ → R, g(u, p) = 〈v − u,A(p, u)〉. From (H7) we have
that P is upper semi-continuous also with the strong topology on H1

0 (Ω). Using
this, (H6) and the continuity of the operator A (see [8], p. 74), the hypotheses of
Lemma 6 are satisfied and we get that the mapping u 7→ supp∈P (u)〈v−u,A(p, u)〉
is upper semi continuous, which means that,

0 ≤ lim sup
n

sup
p∈P (un)

〈v − un,A(p, un)〉 ≤ sup
p∈P (u)

〈v − u,A(p, u)〉,

and so u ∈ F (v).

(iv’) We prove first that, for each w ∈ K,

from u ∈ w-cl
( ⋂

v∈[u,w]

F (v)
)

it follows that u ∈
( ⋂

v∈[u,w]

F (v)
)

. (4)

Let {un} ⊂
⋂

v∈[u,w] F (v) be a sequence such that un ⇀ u. We have un ∈ F (v),
for each v ∈ [u,w], that is, un ∈ K and

sup
p∈P (un)

〈tw + (1− t)u− un,A(p, un)〉 ≥ 0, ∀ t ∈ [0, 1].

The set K is convex and closed, so it is also weakly closed and u ∈ K.
From Lemma 5 we have that for each n there exists pn ∈ P (un) such that

〈tw + (1− t)u− un,A(pn, un)〉 ≥ 0, ∀ t ∈ [0, 1]. (5)

For t = 0, we get 〈u− un,A(pn, un)〉 ≥ 0, that is 〈un − u,A(pn, un)〉 ≤ 0 and

lim sup
n

〈un − u,A(pn, un)〉 ≤ 0. (6)

Since P has compact values and is upper semi-continuous, it follows (according
to [3], vol. I, p. 41) that there exists a subsequence, still denoted by pn such that
pn ∈ P (un) and pn → p, p ∈ P (u). For this subsequence, (6) holds. We have:

lim sup
n

〈un − u,A(p, un)〉 ≤ lim sup
n

{〈un − u,A(p, un)〉 − 〈un − u,A(pn, un)〉}
+ lim sup

n
〈un − u,A(pn, un)〉 ≤ 0,
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from (6) and (H9) with t := 0. According to Lemma 1, for p fixed, the operator
A is B-pseudomonotone, so

lim inf
n

〈un − w,A(p, un)〉 ≥ 〈u− w,A(p, u)〉 (7)

Next, using (7) and (H9) (with t := 1),

lim inf
n

〈un − w,A(pn, un)〉 ≥ lim inf
n

{〈un − w,A(pn, un)〉 − 〈un − w,A(p, un)〉}
+ lim inf

n
〈un − w,A(p, un)〉

= − lim sup
n

{〈un − w,A(p, un)〉 − 〈un − w,A(pn, un)〉}
+ lim inf

n
〈un − w,A(p, un)〉 ≥ 〈u− w,A(p, u)〉.

It follows, using (5) with t = 1, that

〈w − u,A(p, u)〉 ≥ − lim inf
n

〈un − w,A(pn, un)〉 = lim sup
n

〈w − un,A(pn, un)〉 ≥ 0

so supp∈P (u)〈w − u,A(p, u)〉 ≥ 0. For t ∈ [0, 1], we have

sup
p∈P (u)

〈tw + (1− t)u− u,A(p, u)〉 = t sup
p∈P (u)

〈w − u,A(p, u)〉 ≥ 0,

which means that, for each t ∈ [0, 1], u ∈ F (tw + (1− t)u), so

u ∈
⋂

v∈[u,w]

F (v),

which proves (4). Consider now z ∈ w-cl
( ⋂

v∈[u,w] F (v)
) ∩ [u,w]. From here

z ∈ w-cl
( ⋂

v∈[u,z]

F (v)
)
∩ [u, z] and z ∈ w-cl

( ⋂

v∈[z,w]

F (v)
)
∩ [z, w].

According to (4), it follows that

z ∈
( ⋂

v∈[u,z]

F (v)
)
∩ [u, z] and z ∈

( ⋂

v∈[z,w]

F (v)
)
∩ [z, w].

and next z ∈ ( ⋂
v∈[u,w] F (v)

) ∩ [u,w], which concludes the proof. ¤



An existence result for a parametric variational inequality 307

References
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