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Homogeneous geodesics of four-dimensional generalized
symmetric pseudo-Riemannian spaces

By BARBARA DE LEO (Lecce) and ROSA ANNA MARINOSCI (Lecce)

Abstract. We investigate the set of homogeneous geodesics on generalized sym-

metric pseudo-Riemannian spaces of dimension n = 4. In particular, we prove that in

any pseudo-Riemannian generalized symmetric space of dimension n = 4 there are just

four linearly independent homogeneous geodesics through each point.

1. Introduction

A (connected) pseudo-Riemannian manifold (M, g) is homogeneous if there
exists a group G of isometries acting transitively on it [O’N]. Such (M, g) can be
then identified with (G/H, g), where H is the isotropy group at a fixed point o

of M . In general we can have more than one choice for G. For any fixed M =
G/H, G acts effectively on G/H. The pseudo-Riemannian metric g on M can
be considered as a G-invariant metric on G/H. The pair (G/H, g) is called a
pseudo-Riemannian homogeneous spaces.

If the metric g is positive definite then Riemannian homogeneous space
(G/H, g) is always a reductive homogeneous space; this means that denoted by g

and h the Lie algebras of G and H respectively, there exists a subspace m of g

such that g = h⊕m and Ad(H)(m) ⊂ m (where Ad : H×g → g is the adjoint rep-
resentation of H on g). If the metric g is indefinite, the reductive decomposition
of the Lie algebra g may not exist (see an example in 4.4 [FMeP]). If the metric
g is indefinite and the Lie algebra g has a reductive decomposition g = h ⊕ m,
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then the subspace m may be identified with the tangent space To(M) via the
projection π : G → G/H(= M); by this identification the scalar product go on
To(M) defines a scalar product 〈 , 〉 on m which is Ad(H)− invariant.

In the Riemannian case, a geodesic γ(t) through the origin o is called homo-
geneous if it is an orbit of a one-parameter subgroup of G, that is there exists a
vector X ∈ g such that γ(t) = exp(tX)(o) (see [KV]). In the pseudo-Riemannian
case this definition must be modified in the following way (see [DK], [FMeP]): a
geodesic γ(s) through the origin o is homogeneous if there exists a reparametriza-
tion γ∗(t) of γ(s) such that γ∗(t) = exp(tX)(o) for any X ∈ g. The vector X is
called a geodesic vector.

A very useful characterization of geodesic vectors is the following: a vector
X ∈ g is a geodesic vector if and only if

〈[X, Z]m, Xm〉 = k〈Xm, Z〉 for all Z ∈ m, (1.1)

where k ∈ R is some constant.
In the Riemannian case, the constant k of formula (1.1) must be equal to

zero; the proof of the above characterization is due to O. Kowalski and L. Van-

hecke [KV]. We refer to [AA], [CM1], [CKM], [KNVl], [KS], [KVl1], [M], [S]
for some examples and further references concerning homogeneous geodesics in
homogeneous Riemannian spaces.

In a physical context the above characterization appears (without proof) in
[P] and in [FMeP] in the framework of Lorentzian geometry; in these papers the
authors use the above characterization for studying the Penrose limits (or plane-
waves limits) of a reductive homogeneous spacetime along light-like homogeneous
geodesics.

The study of homogeneous geodesics of pseudo-Riemannian homogeneous
spaces, in a mathematical context, is very recent. A rigorous proof of formula
(1.1) appears for the first time in a recent paper of Z. Dusek and O. Kowalski

[DK]. We refer to [AS], [C], [CM2], [CM3], [Me] for more results on this topic.
As concerns the existence of homogeneous geodesics, O. Kowalski and

J. Szenthe proved in [KS] that every homogeneous Riemannian space admits
at least one homogeneous geodesic and this result cannot be improved in general
[KVl 1]. In the pseudo-Riemannian case there is a still open conjecture saying
that in any homogeneous pseudo-Riemannian space, at least one homogeneous
geodesic must exist [KVl 2]. More recently, homogeneous geodesics in affine ho-
mogeneous manifolds have been studied by O. Kowalski and Z. Vlášek [KVl 2],
[KVl 3] and the problem concerning the existence of homogeneous geodesics in
a locally homogeneous affine manifold has been definitively solved. In fact, they
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have found an infinite family of locally affinely homogeneous connections which
do not admit any homogeneous geodesic.

In the present paper the authors focus their attention to the study of homoge-
neous geodesics in generalized symmetric pseudo-Riemannian spaces of dimension
n = 4.
A generalized symmetric pseudo-Riemannian space is a connected pseudo-Rieman-
nian manifold (M, g) admitting a regular s-structure, that is a family {sx : x ∈ M}
of isometries of (M, g) (called symmetries), such that

sx ◦ sy = sz ◦ sx, z = sx(y), (1.2)

for all points x, y of M .
An s-structure {sx : x ∈ M} is said of order k (k ≥ 2) if (sx)k = idM and k is

the least integer with this property. We say that an s-structure is of infinity order
if such k does not exist. Order of a generalized symmetric pseudo-Riemannian
space is the infimum of all integers k ≥ 2 such that M admits a regular s-structure
of order k ( it may be that k = ∞).
In 1982 J. Černý and K. Kowalski classified all generalized symmetric pseudo-
Riemannian spaces of dimension n ≤ 4 [CK].

In dimension n = 2 all generalized symmetric pseudo-Riemannian spaces are
symmetric, consequently all geodesics are homogeneous.

In dimension n = 3 a generalized symmetric pseudo-Riemannian space may
be identified with R3 endowed with a special metric whose possible signatures
are (3, 0), (0, 3), (2, 1), (1, 2). The set of all homogeneous geodesics in a three-
dimensional Riemannian generalized symmetric space have been studied in the
framework of [M] and in three-dimensional Lorentzian generalized symmetric
spaces in the framework of [CM2] and [CM3].

In dimension n = 4 a generalized symmetric pseudo-Riemannian space may
be identified with R4 endowed with a special metric of four types: A, B, C, D.
The metric of Type A has possible signatures (4, 0), (0, 4), (2, 2); the metric of
Type B has always signature (2, 2); in the case C the possible signatures are (3, 1)
and (1, 3); the metric of Type D has always signature (2, 2).

The aim of this paper is to investigate the set of homogeneous geodesics of
generalized symmetric pseudo-Riemannian spaces of dimension n = 4. A basic
property of these spaces is that all of them are reductive homogeneous. This
property allows us to calculate the set of all homogeneous geodesics of these
spaces, by using formula (1.1), and then to describe their behaviour.

In the following we shall use the terminology “space-like”, “time-like” and
“light-like” for vectors also in the case of non-Lorentzian pseudo-Riemannian
manifolds, with the obvious meaning.
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As result of our study we obtain that in all generalized symmetric pseudo-
Riemannian spaces of dimension n = 4 the set of homogeneous geodesics is non
empty. In particular we prove the following result:

Theorem 1.1. In any four-dimensional generalized symmetric Riemannian

space of Type A, there exist for each point four linearly independent (never or-

thogonal) homogeneous geodesics [KNVl].

a) In any four-dimensional generalized symmetric pseudo-Riemannian space

of Type A, with metric g of signature (+, +,−,−), the set of all geodesic vectors

consists of one plane of time-like geodesic vectors and one-parameter family of

light-like geodesic vectors. In particular, there exists a four-parameter family

of quadruplets of linearly independent light-like homogeneous geodesics through

each point.

b) Each four-dimensional generalized symmetric pseudo-Riemannian space

of Type B, admits always homogeneous geodesics and all of them are light-like.

Besides there exist always four linearly independent light-like homogeneous geo-

desics through each point.

c) In any four-dimensional generalized symmetric Lorentzian space of

Type C, the set of all geodesic vectors consists of one plane of space-like geo-

desic vectors and another plane containing two straight lines of light-like geodesic

vectors.

Through each point, there are just four linearly independent homogeneous

geodesics.

d) In any four-dimensional generalized symmetric pseudo-Riemannian space

of Type D there is a two-parameter family of quadruplets of linearly independent

light-like homogeneous geodesics through each point.

2. Preliminaries on homogeneous geodesics and generalized
symmetric pseudo-Riemannian spaces

Let (M, g) be a (connected) homogeneous pseudo-Riemannian manifold.
Then, its full isometry group I(M) acts transitively on it and M can be identified
with (G/H, g), where G ⊂ I(M) is a subgroup of I(M) acting transitively on M

and H is the isotropy group at a fixed point o ∈ M . In general the group G is
not unique.

Differently from the Riemannian case, the Lie algebra g of G need not ad-
mit a reductive decomposition. Denote by g and h the Lie algebras of G and
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H respectively, and let m be a complement of h in g. If m is stable under the
action of h, then g = m⊕ h is called a reductive split, and (g, h) a reductive pair.
It is important to stress that reductivity is not an intrinsic property of (M, g),
but of the description of M as coset space G/H. In fact, the so-called Kaig-
orodov space is an example of a homogeneous Lorentzian manifold which has two
different coset descriptions, but only one of them is reductive [FMeP]. Never-
theless, a homogeneous pseudo-Riemannian manifold (M, g) is called reductive if
there exists a Lie group G acting transitively on M via isometries, with isotropy
group H, such that (g, h) is reductive. Consider now a reductive homogeneous
pseudo-Riemannian manifold (M = G/H, g), where g = m⊕h is a reductive split.
As already mentioned in the Introduction, a geodesic γ(s) through the origin
o ∈ G/H is homogeneous if there exists a reparametrization γ∗(t) of γ(s) such
that γ∗(t) = exp(tX)(o) for any X ∈ g. The vector X is called a geodesic vector
of (M = G/H, g).

In order to find all homogeneous geodesics of a reductive homogeneous pseudo-
Riemannian space (M = G/H, g), g = m ⊕ h, we need to determine all geodesic
vectors through a point. Since the canonical projection p : G → G/H(= M)
induces an isomorphism between the subspace m and the tangent space To(M),
the metric go on To(M) induces a metric 〈 , 〉 on m, which is Ad(H)-invariant.
The following characterization holds:

Proposition 2.1 ([P], [DK]). A non-zero vector X ∈ g is a geodesic vector

if and only if

〈[X,Y ]m, Xm〉 = k〈Xm, Y 〉, (2.1)

for all Y ∈ m and some k ∈ R (the subscript m denotes the projection into m).

When Xm is either space-like (〈Xm, Xm〉 > 0) or time-like (〈Xm, Xm〉 < 0),
applying (2.1) with Y = Xm we get k = 0, while for a light-like vector Xm, k may
be any real constant. Note also that if h = 0, then g = m and (2.1) simplifies as
follows:

〈[X, Y ], X〉 = k〈X,Y 〉, (2.2)

for all Y ∈ g.
A finite family {γ1, γ2, . . . , γk} of homogeneous geodesics through o ∈ M

is said to be linearly independent (respectively orthogonal) if the corresponding
initial tangent vectors at o are linearly independent (respectively orthogonal).

The following result is obvious.
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Proposition 2.2. A finite family {γ1, γ2, . . . , γk} of homogeneous geodes-

ics through po ∈ M is linearly independent (respectively orthogonal) if the m-

components of the corresponding geodesic vectors are linearly independent (re-

spectively orthogonal).

Now we recall some basic facts about generalized symmetric pseudo-Rieman-
nian spaces (we refer to [CK], [K1] and [K2] for more details).
In the following we are going to consider proper generalized symmetric pseudo-
Riemannian spaces, i.e. those generalized symmetric pseudo-Riemannian spaces
which are not locally symmetric and not direct product of generalized symmetric
pseudo-Riemannian spaces.

For our study a basic property of such spaces is in the next proposition.

Proposition 2.3. Any generalized symmetric pseudo-Riemannian space ad-

mits at least one structure of a reductive homogeneous space with an invariant

metric.

In low dimensions, the full classification of generalized symmetric pseudo-
Riemannian spaces is due to J. Černý and O. Kowalski; the authors proved
in their paper [CK] the following theorems.

Theorem 2.4. Any proper, simply connected generalized symmetric pseudo-

Riemannian space (M, g) of dimension n = 3 is of order 4. It is indecomposable,

and described (up to an isometry) as follows:

The underlying homogeneous space G/H is the matrix group



e−t 0 x

0 et y

0 0 1


 ,

(M, g) is the space R3(x, y, t) with the pseudo-Riemannian metric

g = ±(e2tdx2 + e−2tdy2) + λdt2, (2.3)

where λ 6= 0 is a real constant. The possible signatures of g are (3, 0), (0, 3),
(2, 1), (1, 2). The typical symmetry of order 4 at the initial point (0, 0, 0) is the

transformation

x′ = −y, y′ = x, t′ = −t (2.4)

Theorem 2.5. All proper, simply connected generalized symmetric pseudo-

Riemannian spaces (M, g) of dimension n = 4 are of order 3, or 4, or infinity. All

these spaces are indecomposable, and belong (up to an isometry) to the following

four types:
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Type A.

The underlying homogeneous space is G/H where

G =




a b u

c d v

0 0 1


 , H =




cos t − sin t 0
sin t cos t 0
0 0 1




with ad-bc=1.

(M, g) is the space R4(x, y, u, v) with the pseudo-Riemannian metric

g = ±[(−x +
√

1 + x2 + y2 )du2 + (x +
√

1 + x2 + y2 )dv2 − 2y2du dv]

+ λ[(1 + y2)dx2 + (1 + x2)dy2 − 2xy dx dy]/(1 + x2 + y2), (2.5)

where λ 6= 0 is a real constant. The order is k = 3 and possible signatures are

(4, 0), (0, 4), (2, 2). The typical symmetry of order 3 at the initial point (0, 0, 0, 0)
is the transformation

u′ = −(1/2)u− (
√

3/2)v, v′ = (
√

3/2)u− (1/2)v,

x′ = −(1/2)x + (
√

3/2)y, y′ = −(
√

3/2)x− (1/2)y. (2.6)

Type B.

The underlying homogeneous space is G/H where

G =




e−(x+y) 0 0 a

0 ex 0 b

0 0 ey c

0 0 0 1


 , H =




1 0 0 −w

0 1 0 −2w

0 0 1 2w

0 0 0 1


 .

(M, g) is the space R4(x, y, u, v) with the pseudo-Riemannian metric

g = λ(dx2 + dy2 + dx dy) + e−y(2dx + dy)dv + e−x(dx + 2dy)du, (2.7)

where λ is a real constant. The order is k = 3 and the signature is always

(2, 2). The typical symmetry of order 3 at the initial point (0, 0, 0, 0) is the

transformation

u′ = −ue(y−x) − v, v′ = ue−(y+2x)x′ = y, y′ = −(x + y). (2.8)
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Type C.

The underlying homogeneous space G/H is the matrix group




e−t 0 0 x

0 et 0 y

0 0 1 z

0 0 0 1


 .

(M, g) is the space R4(x, y, z, t) with the pseudo-Riemannian metric

g = ±(e2tdx2 + e−2tdy2) + dz dt. (2.9)

The order is k = 4 and possible signatures are (1, 3), (3, 1). The typical symmetry

of order 4 at the initial point (0, 0, 0, 0) is the transformation

x′ = −y, y′ = x, z′ = −z, t′ = −t. (2.10)

Type D.

The underlying homogeneous space is G/H where

G =




a b x

c d y

0 0 1


 H =




et 0 0
0 e−t 0
0 0 1




where ad-bc=1.

(M, g) is the space R4(x, y, u, v) with the pseudo-Riemannian metric

g = (sinh(2u)− cosh(2u) sin(2v))dx2 + (sinh(2u) + cosh(2u) sin(2v))dy2

− 2 cosh(2u) cos(2v)dx dy + λ(du2 − cosh2(2u)dv2), (2.11)

where λ 6= 0 is a real constant. The order is infinite and the signature is (2, 2). The

typical symmetry at the initial point (0, 0, 0, 0) is induced by the automorphism

of G of the form:

a′ = a, b′ = (1/α2)b, c′ = α2c, d′ = d, x′ = (1/α)x, y′ = αy, (2.12)

where α 6= 0,±1.

In the next section at first we shall calculate the set of all homogeneous
geodesics for all the spaces classified in Theorem 2.5 and after we shall describe
their behaviour.
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3. Homogeneous geodesics of four-dimensional generalized symmetric
pseudo-Riemannian spaces of Type A

According to Theorem 2.5, as homogeneous space, a four-dimensional gener-
alized symmetric pseudo-Riemannian space of Type A is M = G/H where

G =




a b u

c d v

0 0 1


 , H =




cos t − sin t 0
sin t cos t 0
0 0 1




with ad-bc=1. The metric g has essentially (up to a renumeration of a basis) two
possible signatures: (+,+, +, +), (+,+,−,−).

Case 1. The metric g has signature (+,+, +, +).
The Lie algebra g of the Lie group G has a reductive decomposition g =

m ⊕ h and {X1, Y1, X2, Y2, B} is a basis of g with {X1, Y1, X2, Y2} orthonormal
basis of m and {B} basis of h; the Lie bracket [ , ] on g is given by the following
table:

[ , ] X1 Y1 X2 Y2 B

X1 0 0 −X1 Y1 Y1

Y1 0 0 Y1 X1 −X1

X2 X1 −Y1 0 −2B −2Y2

Y2 −Y1 −X1 2B 0 2X2

B −Y1 X1 2Y2 −2X2 0

Table I

The set of all homogeneous geodesics of this space was studied in details in [KNVl].
In that paper the authors proved that there exists a continuum of quadruplets
of linearly independent homogeneous geodesics through the origin but never an
orthogonal quadruplet.

Case 2. The metric g has signature (+,+,−,−).
In this case the Lie algebra g of the Lie group G has a reductive decomposi-

tion g = m⊕ h and {X1, Y1, X2, Y2, B} is a basis of g with {X1, Y1, X2, Y2} basis
of m and {B} basis of h such that the Lie bracket [ , ] on g and the scalar product on
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m are given, respectively, by the following tables:

[ , ] X1 Y1 X2 Y2 B

X1 0 0 −δX1 δY1 Y1

Y1 0 0 δY1 δX1 −X1

X2 δX1 −δY1 0 −2δ2B −2Y2

Y2 −δY1 −δX1 2δ2B 0 2X2

B −Y1 X1 2Y2 −2X2 0

Table II

where δ > 0 is a real constant,

〈 , 〉 X1 Y1 X2 Y2

X1 1 0 0 0
Y1 0 1 0 0
X2 0 0 −2 0
Y2 0 0 0 −2

Table III

(see [CK], [K1] and [K2] for more details).
Using Table II and Table III to compute (1.1), we get that X ∈ g is a geodesic
vector if its components (a, b, c, d, α) with respect to the basis {X1, Y1, X2, Y2, B}
satisfy the system:




(ac− bd)δ − bα = ka (a2 − b2)δ + 4αd = 2kc

(bc + ad)δ − aα = −kb abδ + 2αc = −kd.
(3.1)

If k = 0 then we consider the two possibilities: α = 0 and α 6= 0.
For α = 0, we get the solution (0, 0, c, d, 0), (c, d) ∈ R2, but (c, d) 6= (0, 0).
Suppose α 6= 0, then from the third and fourth equation of (3.1) we get

{
d = [(b2 − a2)δ]/(4α)

c = (−abδ)/(2α);
(3.2)

and substituting c and d of (3.2) in the first and second equation of (3.1), we have
{

b[(a2 + b2)δ2 + 4α2] = 0

a[(a2 + b2)δ2 + 4α2] = 0
(3.3)

which implies a = b = 0 (because α 6= 0) and consequently from (3.2) c = d = 0;
so we get the solution (0, 0, 0, 0, α).
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Summarizing, the only solutions of (3.1) for k = 0 are: (0, 0, c, d, 0) and
(0, 0, 0, 0, α), where (c, d) ∈ R2, but (c, d) 6= (0, 0) and α ∈ R− {0}.
Suppose k 6= 0. Then only light-like solutions can occur, so we must add to (3.1)
the condition

a2 + b2 = 2(c2 + d2). (3.4)

From the third and fifth equation of the new system




(ac− bd)δ − bα = ka abδ + 2αc = −kd

(bc + ad)δ − aα = −kb a2 + b2 = 2(c2 + d2),

(a2 − b2)δ + 4αd = 2kc

(3.5)

we obtain {
δa2 = (kc− 2αd) + δ(c2 + d2)

δb2 = −(kc− 2αd) + δ(c2 + d2);
(3.6)

and from the fourth equation of (3.5)

δ2a2b2 = (kd + 2αc)2, (3.7)

consequently from (3.6) and (3.7) we get

(c2 + d2)[δ2(c2 + d2)− (k2 + 4α2)] = 0. (3.8)

If (c2 + d2) = 0 then we have the solution (0, 0, 0, 0, α).
If δ2(c2 + d2)− (k2 + 4α2) = 0 then

δ2(c2 + d2)− 4α2 = k2. (3.9)

From the first two equations of (3.5), rewritten in the form

b(dδ + α) = a(cδ − k) a(dδ − α) = −b(cδ + k) (3.10)

we obtain
ab(d2δ2 − α2) = −ab(c2δ2 − k2) (3.11)

or equivalently, taking into account (3.9),

3abα2 = 0. (3.12)

If in (3.12) α = 0, the system (3.5) becomes:




(ac− bd)δ = ka (a2 − b2)δ = 2kc

(bc + ad)δ = −kb a2 + b2 = 2(c2 + d2).

abδ = −kd

(3.13)
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From the third and fourth equation of (3.13), we get c = (a2 − b2)δ/(2k),
d = −δab/k and from (3.4) and (3.9) a2 + b2 = 2k2/δ2.

If in (3.12) ab = 0, then we get the solutions

(0, 0, 0, 0, α), (0,±
√

2(k/δ),−k/δ, 0, 0), (±
√

2(k/δ), 0, k/δ, 0, 0). (3.14)

We conclude that in case k 6= 0, the only solutions of the system (3.5) are

(0, 0, 0, 0, α), (a, b, (a2 − b2)δ/(2k), (−ab)δ/k, 0) (3.15)

where a2 + b2 = 2k2/δ2.
As consequence we get that X is a geodesic vector of a four-dimensional

generalized symmetric pseudo-Riemannian space of Type A, with metric g of
signature (+, +,−,−), if and only if its m-component (=Xm) admits one of the
following forms:

Xm = cX2 + dY2, (3.16)

(c, d) ∈ R2, (c, d) 6= (0, 0),

Xm = aX1 + bY1 + [(a2 − b2)δ/(2k)]X2 − (abδ/k)Y2, (3.17)

(a, b) ∈ R2 but a2 + b2 = (2k2/δ2) and k 6= 0.
Now substituting a = λ cos t, b = λ sin t, where λ =

√
2k/δ, we can rewrite

(3.17) in the new form

Xm = λ

[
cos tX1 + sin tY1 +

(
1√
2

cos 2t

)
X2 −

(
1√
2

sin 2t

)
Y2

]
, (3.18)

with λ 6= 0.
Then from (3.18) we obtain a one-parameter family of light-like geodesic

vectors depending on the free parameter ‘t’. In particular, there exists a four-
parameter family of quadruplets of linearly independent light-like homogeneous
geodesics through each point.1

We note also that all geodesic vectors of the form (3.16) form a plane of
time-like geodesic vectors .

From the above results we get property a) of Theorem 1.1.

1The authors are obliged to Zdenek Vlášek from the Charles University in Prague for his cal-

culations in MAPLE justifying the above result.
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4. Homogeneous geodesics of four-dimensional generalized symmetric
pseudo-Riemannian spaces of Type B

According to Theorem 2.5, as homogeneous space, a four-dimensional gener-
alized symmetric pseudo-Riemannian space of Type B is M = G/H, where G is
the matrix group 



e−(x+y) 0 0 a

0 ex 0 b

0 0 ey c

0 0 0 1




and H is the matrix group



1 0 0 −w

0 1 0 −2w

0 0 1 2w

0 0 0 1


 .

The Lie algebra g of the Lie group G has a reductive decomposition g = m ⊕ h

and {X1, Y1, X2, Y2, A} is a basis of g with {X1, Y1, X2, Y2} basis of m and {A}
basis of h such that the Lie bracket [ , ] on g and the scalar product 〈 , 〉 on m

are given by the following tables:

[ , ] X1 Y1 X2 Y2 A

X1 0 0 −X1 ±A + Y1 0
Y1 0 0 ∓A + Y1 X1 0
X2 X1 ±A− Y1 0 0 2Y1

Y2 ∓A− Y1 −X1 0 0 −2X1

A 0 0 −2Y1 2X1 0

Table IV

and

〈 , 〉 X1 Y1 X2 Y2

X1 0 0 −1 0
Y1 0 0 0 −1
X2 −1 0 2λ 0
Y2 0 −1 0 2λ .

Table V
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The signature of the metric g is (+, +,−,−) (see [CK] for more details).
Using Table IV and Table V to compute (1.1), we obtain that X is geodesic if and
only if its components (x1, y1, x2, y2, α) with respect to the basis {X1, Y1, X2,Y2,A}
satisfy the system:





x2
2 − y2

2 = kx2 x1x2 − y1y2 + 2αy2 = k(−x1 + 2λx2)

2x2y2 = −ky2 x1y2 + x2y1 + 2αx2 = k(y1 − 2λy2).
(4.1)

It is easy to prove that when k = 0, the solutions of (4.1) are (x1, y1, 0, 0, α).
If k 6= 0, only light-like solutions can occur, so we must add to (4.1) the condition

x1x2 + y1y2 − λ(x2
2 + y2

2) = 0. (4.2)

In order to solve the new system




x2
2 − y2

2 = kx2 x1x2 − y1y2 + 2αy2 = k(−x1 + 2λx2)

(2x2 + k)y2 = 0 x1y2 + x2y1 + 2αx2 = k(y1 − 2λy2)

x1x2 + y1y2 − λ(x2
2 + y2

2) = 0

(4.3)

we can see easily that y2 = 0 and 2x2 + k = 0 cannot occur together; so we shall
consider the two cases separately.

If y2 = 0, we obtain two solutions (0, 0, 0, 0, α), (λk, y1, k, 0, 0).
If 2x2 + k = 0, we get the solutions (−2λk ∓ √3y1, y1,−k/2, (∓√3/2)k, 0).

Therefore, X is a geodesic vector of a generalized symmetric pseudo-Riemannian
space of Type B if and only if its m-component (=Xm) is one of the following
forms:

Xm = x1X1 + y1Y1 (4.4)

Xm = λkX1 + y1Y1 + kX2 (4.5)

Xm = (−2λk ∓
√

3y1)X1 + y1Y1 − (k/2)X2 ∓ (
√

3/2)kY2 (4.6)

but k 6= 0.
We note that each geodesic vector of (4.4), (4.5), (4.6) is a light-like vector;

in particular the four geodesic vectors
{X1, Y1, k(λX1+X2),−k(2λX1 +(1/2)X2±(

√
3/2)Y2)} are linearly independent.

The above results prove completely property b) of Theorem 1.1.
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5. Homogeneous geodesics of four-dimensional generalized symmetric
pseudo-Riemannian spaces of Type C

As stated in Theorem 2.5, as homogeneous space, a four-dimensional gener-
alized symmetric pseudo-Riemannian space of Type C is the matrix group G




e−t 0 0 x

0 et 0 y

0 0 1 z

0 0 0 1




According to [CK], the Lie bracket on the Lie algebra g of G is given by:

[X,V2] = −X, [Y, V2] = Y, [X, Y ] = [X,V1] = [Y, V1] = [V1, V2] = 0 (5.1)

where {X, Y, V1, V2} is a basis of g, and any scalar product 〈 , 〉 on g is of the
form

〈X, X〉 = 〈Y, Y 〉 = ±1, 〈V1, V2〉 = ±1, 〈X, Y 〉 = 〈X, V1〉
= 〈X, V2〉 = 〈Y, V1〉 = 〈Y, V2〉 = 〈V1, V1〉 = 〈V2, V2〉 = 0. (5.2)

Case I: 〈X, X〉 = 〈Y, Y 〉 = 1, 〈V1, V2〉 = ±1, 〈X, Y 〉 = 〈X, V1〉 = 〈X, V2〉 =
〈Y, V1〉 = 〈Y, V2〉 = 〈V1, V1〉 = 〈V2, V2〉 = 0.

In this case the metric has signature (+,+, +,−). Using (5.1) and (5.2)
to compute (1.1), we obtain that W ∈ g is a geodesic vector if and only if its
components (a, b, c, d) with respect to the basis {X, Y, V1, V2} satisfy





a(d− k) = 0 dk = 0

b(d + k) = 0 b2 − a2 = ±kc.
(5.3)

We note that if k 6= 0, then the above system admits only the null solution. If
k = 0, then the solutions of the system are either of the form (a,±a, c, 0) or of
the form (0, 0, c, d). Consequently, W must be one of the following forms:

W = a(X ± Y ) + cV1, ∀(a, c) ∈ R2, a 6= 0, (5.4)

W = cV1 + dV2, ∀(c, d) ∈ R2 − {(0, 0)} . (5.5)

We note that each geodesic vector of the form (5.4) is a space-like vector. Each
geodesic vector of the form (5.5) is a light-like vector if either W = cV1 or W =
dV2. Otherwise it is space-like or time-like.
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Note that the four geodesic vectors {X + Y, X − Y, V1, V2} are linearly inde-
pendent.

As consequence we get property c) of Theorem 1.1.

Case II: 〈X,X〉 = 〈Y, Y 〉 = −1, 〈V1, V2〉 = ±1, 〈X, Y 〉 = 〈X, V1〉 = 〈X, V2〉 =
〈Y, V1〉 = 〈Y, V2〉 = 〈V1, V1〉 = 〈V2, V2〉 = 0.

In this case the metric has signature (−,−,−,+) thus the study of this case
may be reduced to Case I, by reversing the metric.

6. Homogeneous geodesics of four-dimensional generalized symmetric
pseudo-Riemannian spaces of Type D

According to Theorem 2.5, as homogeneous space, a four-dimensional gener-
alized symmetric pseudo-Riemannian space of Type D is M = G/H, where

G =




a b x

c d y

0 0 1


 , H =




et 0 0
0 e−t 0
0 0 1




with ad − bc = 1. The Lie algebra g of the Lie group G has a reductive decom-
position g = m⊕ h; {U1, U2, U3, U4, A} is a basis of g with {U1, U2, U3, U4} basis
of m and {A} basis of h such that the Lie bracket [ , ] on g and the scalar product
〈 , 〉 on m are given by the following tables:

[ , ] U1 U2 U3 U4 A

U1 0 0 0 −U2 U1

U2 0 0 −U1 0 −U2

U3 0 U1 0 −A 2U3

U4 U2 0 A 0 −2U4

A −U1 U2 −2U3 2U4 0

Table VI
and

〈 , 〉 U1 U2 U3 U4

U1 0 1 0 0
U2 1 0 0 0
U3 0 0 0 λ

U4 0 0 λ 0

Table VII
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with λ real constant, λ 6= 0 (see [CK] for more details). The metric corresponding
to the above scalar product 〈 , 〉 has signature (+, +,−,−).
Using Table VI and Table VII to compute (1.1), we obtain that X ∈ g, is a
geodesic vector if and only if its components (a, b, c, d, α) with respect to the
basis {U1, U2, U3, U4, A} satisfy the system

{
ad− bα = kb −b2 − 2λαd = kλd

bc + aα = ka −a2 + 2λαc = kλc.
(6.1)

If k = 0, the system (6.1) becomes:
{

ad− bα = 0 −b2 − 2λαd = 0

bc + aα = 0 −a2 + 2λαc = 0.
(6.2)

We study the two cases: α = 0 and α 6= 0.
If α = 0, the only solutions of (6.1) are (0, 0, c, d, 0).
If α 6= 0, from the third and fourth equation of (6.2) we get:

d = −b2/(2λα) c = a2/(2λα) (6.3)

now, substituting (6.3) in the first two equations of (6.2), we obtain:

b(ab + 2λα2) = 0 a(ab + 2λα2) = 0. (6.4)

If ab + 2λα2 = 0, the solutions of (6.2) are (a, b, a2/2λα,−b2/2λα, α).
If ab + 2λα2 6= 0, the only solution is (0, 0, 0, 0, α).

Suppose k 6= 0; only light-like solutions can occur, so we must add to (6.2) the
condition

ab + λcd = 0. (6.5)
Consider the new system





ad− bα = kb −a2 + 2λαc = kλc

bc + aα = ka ab + λcd = 0;

−b2 − 2λαd = kλd

(6.6)

from the first two equations of (6.6), rewritten respectively in the form ad =
b(k + α) and bc = a(k − α) we obtain:

abcd = ab(k2 − α2) (6.7)

and from the third and fourth equation of (6.6), rewritten in the form −b2 =
λd(k + 2α) and −a2 = λc(k − 2α) respectively, we get:

a2b2 = λ2cd(k2 − 4α2). (6.8)



358 Barbara De Leo and Rosa Anna Marinosci

We rewrite (6.7) and (6.8) taking account of (6.5) and we obtain:

ab[ab + λ(k2 − α2)] = 0 ab[ab + λ(k2 − 4α2)] = 0. (6.9)

Suppose in (6.9) ab = 0, then it is either a = 0 or b = 0.
If a = 0, the solutions are: (0, 0, 0, 0, α), (0, 0, 0, d, α = −k/2),

(0, b, 0, b2/λk, α = −k), (0, 0, c, 0, α = k/2).
If b = 0, we get the solutions: (0, 0, 0, 0, α), (0, 0, 0, d, α = −k/2),

(0, 0, c, 0, α = k/2), (a, 0, a2/λk, 0, α = k).
Suppose in (6.9) ab 6= 0 then we must have ab + λ(k2 − α2) = 0, and
ab + λ(k2 − 4α2) = 0, from which we get:

3α2λ = 0 (6.10)

or equivalently α = 0 (because λ 6= 0). So the system (6.6) becomes





ad = bk −a2 = λkc

bc = ak ab + λcd = 0.

−b2 = λkd

(6.11)

Calculating c and d from the third and fourth equation of (6.11), and replacing
them in the first two, we have





b(λk2 + ab) = 0 c = −a2/λk

a(λk2 + ab) = 0 ab + λcd = 0

d = −b2/λk

(6.12)

from which we get the solutions (a, b,−a2/λk,−b2/λk, 0), but λk2 + ab = 0.
Hence, X is a geodesic vector of a four-dimensional generalized symmetric pseudo-
Riemannian space of Type D if and only if its m-component (=Xm) has one of
the following forms:

Xm = cU3 + dU4, (c, d) 6= 0, (6.13)

Xm = aU1 + bU2 +
(

a2

2λα

)
U3 −

(
b2

2λα

)
U4, 2λα2 + ab = 0, (6.14)

Xm = bU2 +
(

b2

kλ

)
U4, (6.15)
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Xm = aU1 +
(

a2

kλ

)
U3, (6.16)

Xm = aU1 + bU2 − (a2/kλ)U3 − (b2/kλ)U4, ab + k2λ = 0. (6.17)

but k 6= 0.
We note that each geodesic vector of the form (6.15), (6.16), (6.17) is a light-

like geodesic vector.
Each geodesic vector of the form (6.13) is:

– a light-like vector if and only if either c = 0 or d = 0,

– a space-like (time-like) vector if and only if λcd > 0 (λcd < 0).

Each geodesic vector of the form (6.14) is either space-like or time-like vector;
more precisely it is space-time (time-like) vector if and only if λ < 0 (λ > 0).

We note also that the four light-like geodesic vectors

{
cU3, dU4, aU1 +

(
a2

kλ

)
U3, bU2 +

(
b2

kλ

)
U4

}

where a 6= 0, b 6= 0, c 6= 0, d 6= 0, are always linearly independent. The corre-
sponding family of four straight lines depends obviously on two arbitrary para-
meters a, b. So property d) of Theorem 1.1 is completely proved.
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UNIVERSITÁ DEL SALENTO

DIPARTIMENTO DI MATEMATICA “E. DE GIORGI”

VIA PROVINCIALE LECCE-ARNESANO

73100 LECCE

ITALY

E-mail: barbara.deleo@unile.it

ROSA ANNA MARINOSCI
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