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On the monotonicity of an additive representation function

By SÁNDOR Z. KISS (Budapest)

Abstract. Let A = {a1, a2, . . . } (a1 < a2 < . . . ) be an infinite sequence of positive

integers, and let k ≥ 2 be a fixed integer. Let r1(A, n, k) denote the number of solutions

of ai1 + ai2 + · · · + aik = n, ai1 ∈ A, . . . , aik ∈ A. For k = 2, P. Erdős, A. Sárközy

and V. T. Sós studied the monotonicity of r1(A, n, k). In this paper I extend one of

their results to any k > 2.

1. Introduction

Let N denote the set of positive integers, and let k ≥ 2 be a fixed integer.
Let A = {a1, a2, . . . } (a1 < a2 < . . . ) be an infinite sequence of positive integers,
and put

A(n) =
∑

a∈A
a≤n

1.

For k ≥ 2 integer and A ⊂ N, let r1(A, n, k), r2(A, n, k), r3(A, n, k) denote the
number of solutions of the equation

ai1 + ai2 + · · ·+ aik
= n, ai1 ∈ A, . . . , aik

∈ A,

ai1 + ai2 + · · ·+ aik
= n, ai1 ∈ A, . . . aik

∈ A, ai1 < ai2 < · · · < aik
,

and

ai1 + ai2 + · · ·+ aik
= n, ai1 ∈ A, . . . aik

∈ A, ai1 ≤ ai2 ≤ · · · ≤ aik
,
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respectively. For i = 1, 2, 3 we say ri(A, n, k) is monotonous increasing in n from
a certain point on, if there exists an integer n0 with

ri(A, n + 1, k) ≥ ri(A, n, k) for n ≥ n0.

In the special case k = 2 we write ri(n) = ri(A, n, 2) for i = 1, 2, 3. In a series
of papers P. Erdős, A. Sárközy and V. T. Sós studied the monotonicity
properties of the three representation functions r1(n), r2(n), r3(n). In [1] they
proved the following theorems:

Theorem 1. The function r1(n) is monotonous increasing from a certain

point on, if and only if the sequence A contains all the integers from a certain

point on, i.e., there exists an integer n1 with

A ∩ {n1, n1 + 1, n1 + 2, . . . } = {n1, n1 + 1, n1 + 2, . . . }.

Theorem 2. If

A(n) = o
( n

log n

)

then the functions r2(n) and r3(n) cannot be monotonous increasing from a cer-

tain point on, i.e., for j = 2 or 3, there does not exist an integer n0 such that

rj(n + 1) ≥ rj(n) for n ≥ n0.

A. Sárközy proposed the study of the monotonicity of the functions ri(A, n, k)
for k > 2 [2, Problem 5]. He conjectured [3, p. 337] that for any k ≥ 2 integer, if
ri(A, n, k) (i = 1, 2, 3) is monotonous increasing in n from a certain point on, then
A(n) = O(n2/k−ε) cannot hold. In this paper I will prove the following slightly
stronger result on r1(A, n, k) by using similar methods as in [1]:

Theorem 3. If k ∈ N, k ≥ 2, A ⊂ N and r1(A, n, k) is monotonous increas-

ing in n from a certain point on, then

A(n) = o

(
n2/k

(log n)2/k

)

cannot hold.

Unfortunately I have not been able to prove the conjecture for r2(A, n, k)
and r3(A, n, k), thus the conjecture remains open in these cases.
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2. Proof of Theorem 3

We write r1(A, n, k) = Rk(n). We prove the result by contradiction. As-
sume that Rk(n) is monotonous increasing from a certain point on and A(n) =
o
(

n2/k

(log n)2/k

)
. First we show that there exist infinitely many integers N satisfying

A(N + j) < A(N)
(

N + j

N

)2

for j = 1, 2, . . . . (1)

If (1) holds only for finitely many N , then there exists an integer N0 such that

A(N0) > 1

and for N ≥ N0, there exists an integer N ′ = N ′(N) satisfying N ′ > N and

A(N ′) ≥ A(N)
(

N ′

N

)2

.

Then we get by induction that there exist integers N1 < N2 < · · · < Nj < . . .

such that

A(Nj+1) ≥ A(Nj)
(

Nj+1

Nj

)2

for j = 0, 1, 2, . . . ,

hence

A(Nl+1) = A(N0)
l∏

j=0

A(Nj+1)
A(Nj)

≥ A(N0)
l∏

j=0

(
Nj+1

Nj

)2

= A(N0)
(

Nl+1

N0

)2

>

(
Nl+1

N0

)2

> N
3/2
l+1 (2)

for large enough l. On the other hand, clearly we have

A(Nl+1) =
∑

a∈A
a≤Nl+1

1 ≤
∑

a≤Nl+1

1 = Nl+1 (3)

(2) and (3) cannot hold simultaneously and this contradiction proves the existence
of infinitely many integers N satisfying (1).

Throughout the remaining part of the proof of Theorem 3 we use the following
notations: N denotes a large integer satisfying (1). We write e2iπα = e(α) and
we put r = e−1/N , z = re(α) where α is a real variable (so that a function of form
p(z) is a function of the real variable α : p(z) = p(re(α)) = P (α)). We write

f(z) =
+∞∑

j=1

zaj .
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(Since r < 1, this infinite series and all the other infinite series in the remaining
part of the proof are absolutely convergent.) Then we have

fk(z) =
+∞∑
n=1

Rk(n)zn.

Let I denote

I =
∫ 1

0

|f(z)|kdα.

We will give lower and upper bound for I. The lower bound will be greater then
the upper bound, and this contradiction will prove that our indirect assumption
cannot hold which will complete the proof of Theorem 3.

First we will give lower bound for I. Using Hölder’s inequality and Parseval’s
formula we have

I2/k =
( ∫ 1

0

|f(z)|kdα

)2/k( ∫ 1

0

1dα

)1−2/k

≥
∫ 1

0

|f(z)|2dα

=
∑

a∈A
r2a ≥

∑

a∈A
a≤N

r2N = e−2
∑

a∈A
a≤N

1 = e−2A(N)

hence
I ≥ e−k(A(N))k/2. (4)

Now we will give upper bound for I. First we will estimate Rk(n) in terms of
A(2n). Since Rk(n) is monotonous increasing from a certain point on, i.e., there
exists an integer n0 such that Rk(n + 1) ≥ Rk(n) for n ≥ n0, we have

(A(2n))k =
( ∑

a∈A
a≤2n

1
)k

=
∑

a1∈A,a2∈A,...,ak∈A
a1≤2n,a2≤2n,...,ak≤2n

1 ≥
∑

a1+a2+···+ak≤2n
a1∈A,...,ak∈A

1

≥
2n∑

i=1

Rk(i) ≥
2n∑

i=n+1

Rk(i) ≥
2n∑

i=n+1

Rk(n) = nRk(n)

hence
(A(2n))k

n
≥ Rk(n) (5)

for n ≥ n0. In view of the monotonicity of Rk(n), and since A is infinite, we have
Rk(n) ≥ 1 for n large enough. Thus we obtain from (5) that

(A(2n))k ≥ n (6)
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for n large enough. We have

I =
∫ 1

0

|f(z)|kdα =
∫ 1

0

|fk(z)|dα =
∫ 1

0

∣∣∣∣
+∞∑
n=1

Rk(n)zn

∣∣∣∣dα

=
∫ 1

0

|(1− z)
+∞∑
n=1

Rk(n)zn||1− z|−1dα. (7)

By the monotonicity, and if N and n0 large enough we have

∣∣∣∣(1− z)
+∞∑
n=1

Rk(n)zn

∣∣∣∣ =
∣∣∣∣

+∞∑
n=1

(Rk(n)−Rk(n− 1))zn

∣∣∣∣

≤
n0∑

n=1

|Rk(n)−Rk(n− 1)|rn +
+∞∑

n=n0+1

|Rk(n)−Rk(n− 1)|rn

<

n0∑
n=1

|Rk(n)−Rk(n− 1)|+
+∞∑

n=n0+1

|Rk(n)−Rk(n− 1)|rn

=
n0∑

n=1

|Rk(n)−Rk(n− 1)|+
+∞∑

n=n0+1

(Rk(n)−Rk(n− 1))rn

< 2
n0∑

n=1

|Rk(n)−Rk(n− 1)|+
+∞∑
n=1

(Rk(n)−Rk(n− 1))rn

= c1 +
+∞∑
n=1

Rk(n)(rn − rn+1)

= c1 + (1− r)
+∞∑
n=1

Rk(n)rn < c1 +
n0−1∑
n=1

Rk(n) + (1− r)
+∞∑

n=n0

Rk(n)rn

< c2 + (1− e−1/N )
( N∑

n=n0

Rk(N) +
+∞∑

n=N+1

Rk(n)rn

)
.

Thus by (1), (5) and (6) we have

∣∣∣∣(1− z)
+∞∑
n=1

Rk(n)zn

∣∣∣∣ < c2 + N−1

(
N

(A(2N))k

N
+

+∞∑

n=N+1

(A(2n))k

n
rn

)

< c2 + N−1

(
(A(N))k

(
2N

N

)2k

+
+∞∑

n=N+1

(
A(N)

(
2n

N

)2 )k 1
n

rn

)



494 Sándor Z. Kiss

< c2 + (A(N))k

(
22kN−1 +

22k

N2k+1

+∞∑
n=1

n2k−1rn

)

< c2 + (A(N))k

(
22kN−1 +

22k

N2k+1

+∞∑
n=1

(n + 1)(n + 2) . . . (n + 2k − 1)rn

)

= c2 + (A(N))k

(
22kN−1 +

22k

N2k+1

+∞∑

m=2k

m(m− 1) . . . (m− 2k + 2)rm−2k+1

)

< c2 + (A(N))k

(
22kN−1 +

22k

N2k+1
(

+∞∑
m=0

rm)(2k−1)

)

= c2 + (A(N))k

(
22kN−1 +

22k

N2k+1

(
1

1− r

)(2k−1) )

= c2 + (A(N))k

(
22kN−1 +

22k

N2k+1
(2k − 1)!(1− r)−2k

)

= c2 + (A(N))k

(
22kN−1 +

22k(2k − 1)!
N2k+1

(1− e−1/N )−2k

)
.

Since

1− e−x = x− x2

2!
+

x3

3!
− · · · > x− x2

2!
= x

(
1− x

2

)
>

x

2

for 0 < x < 1, it follows by (5) that

∣∣∣∣(1− z)
+∞∑
n=1

Rk(n)zn

∣∣∣∣ < c2 + (A(N))k

(
22kN−1 +

22k(2k − 1)!
N2k+1

(2N)2k

)

= c2 + (A(N))kN−1(22k + 24k(2k − 1)!) < c3(A(N))kN−1. (8)

Furthermore we have

|1− z| = ((1− z)(1− z̄))1/2 = (1 + |z|2 − 2Rez)1/2

= (1 + r2 − 2r cos 2πα)1/2 = ((1− r)2 + 2r(1− cos 2πα))1/2

> (2r(1− cos 2πα))1/2 = (2e−1/N2 sin2 πα)1/2 ≥ (2(2α)2)1/2 ≥ 2α (9)

for 0 ≤ α ≤ 1
2 and for large N , and

|1− z| = ((1− r)2 + 2r(1− cos 2πα))1/2 ≥ ((1− r)2)1/2

= 1− r = 1− e−1/N > 1/2N (10)
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for all α. It follows from (7), (8), (9) and (10) that

I ≤
∫ 1

0

c3(A(N))kN−1|1− z|−1dα = 2c3(A(N))kN−1

∫ 1/2

0

|1− z|−1dα

= c4(A(N))kN−1

( ∫ 1/N

0

|1− z|−1dα +
∫ 1/2

1/N

|1− z|−1dα

)

< c4(A(N))kN−1

( ∫ 1/N

0

2Ndα +
∫ 1/2

1/N

(2α)−1dα

)

< c4(A(N))kN−1(2 +
1
2

log N) < c5(A(N))kN−1 log N. (11)

In view of (4), (11) and our indirect assumption we have

e−k(A(N))k/2 ≤ I < c5(A(N))kN−1 log N,

N < c6(A(N))k/2 log N = o

((
N2/k

(log N)2/k

)k/2

log N

)
= o(N).

This contradiction completes the proof of Theorem 3.
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Sárközy for valuable discussions.

References
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