CD-independent subsets in distributive lattices

By GÁBOR CZÉDLI (Szeged), MIKLÓS HARTMANN (Szeged) and E. TAMÁS SCHMIDT (Budapest)

Abstract

A subset X of a lattice L with 0 is called $C D$-independent if for any $x, y \in X$, either $x \leq y$ or $y \leq x$ or $x \wedge y=0$. In other words, if any two elements of X are either comparable or "disjoint". Maximal CD-independent subsets are called CD-bases.

The main result says that any two CD-bases of a finite distributive lattice L have the same number of elements. It is also shown that distributivity cannot be replaced by a weaker lattice identity. However, weaker assumptions on L are still relevant: semimodularity implies that no CD-basis can have fewer elements than a maximal chain, while lower semimodularity yields that each maximal chain together with all atoms forms a CD-basis.

Let L be a lattice with 0 . A subset X of L will be called $C D$-independent if for any $x, y \in X$, either $x \leq y$ or $y \leq x$ or $x \wedge y=0$. In other words, if any two elements of X either form a chain (i.e., they are comparable) or they are "disjoint"; the initials explain our terminology. As one might expect, maximal CD-independent subsets are called CD-bases of L.

The classical notion of independent subsets of (semimodular or modular) lattices has many applications ranging from von Neumann's coordinatization theory to combinatorial applications via matroid theory. Some other notions of independence were introduced in [1] and [2], and there was a decade witnessing an

[^0]intensive study of weak independence, cf. LENGVÁRSZKY's [10] and his other papers. Recently, the result of [1] has been successfully applied to combinatorial problems, cf. [3], Pluhár [13] and Horváth, Németh and Pluhár [8].

The present research started with the (easy) observation that many subsets occurring in [3], [8] and [13] are, in fact, CD-independent. At the time of the final revision of this paper, we add that so are the subsets in LengVÁrszky [11] and [12], and E. K. Horváth, G. Horváth, Németh and Szabó [9].

As a general reference to (the rudiments of) lattice theory the reader is referred to Grätzer [6]. For $b \in L, \downarrow b$ will stand for the principal ideal $\{u \in$ $L: u \leq b\}$. The length, that is the supremum of $\{|C|-1: C$ is a chain in $L\}$, of L is denoted by $\ell(L)$. For $u \in L$, let $h(u)=\ell(\downarrow u)$ denote the height of u. If for all $a, b, c \in L, a \preceq b$ implies $a \vee c \preceq b \vee c$ then L is called semimodular. Lattices satisfying the dual property are called lower semimodular. It is well-known that any two maximal chains of a semimodular lattice L of finite length have the same number of elements, and for any $u \leq v \in L$ the length $\ell([u, v])$ of the interval $[u, v]=\{x \in L: u \leq x \leq v\}$ equals $h(v)-h(u)$.

Facts and notation. For a lattice L of finite length and a CD-basis X of L,

- $0,1 \in X$;
- $\max (X)$ denotes the set of maximal elements of $X \backslash\{1\}$,
- the set of all CD-bases of L will be denoted by $\mathfrak{B}(L)$;
- for $b \in X$, we define $X(b)=(X \cap \downarrow b) \backslash\{0\}$, and we have

$$
\begin{equation*}
X(b) \cup\{0\} \in \mathfrak{B}(\downarrow b) ; \tag{1}
\end{equation*}
$$

- if $\max (X)$ consists of k elements, say $\max (X)=\left\{a_{1}, \ldots, a_{k}\right\}$, then

$$
\begin{equation*}
X=\{0,1\} \dot{\cup} X\left(a_{1}\right) \dot{\cup} \cdots \dot{\cup} X\left(a_{k}\right) \text { and } a_{i} \wedge a_{j}=0 \quad \text { for all } i \neq j \tag{2}
\end{equation*}
$$

where \dot{U} stands for (pairwise) disjoint union, and

$$
\begin{equation*}
\text { either } k=1 \text { and } a_{1} \text { is a coatom or } a_{1} \vee \cdots \vee a_{k}=1 . \tag{3}
\end{equation*}
$$

Facts (1) and (2) are trivial, while (3) is straightforward from the assumption that X is a maximal CD-independent subset.

Proposition 1. Let X be a CD-basis of a finite semimodular lattice L. Then X has at least $\ell(L)+1$ elements.

Proof. We prove the statement by induction on the length of L. The case $\ell(L) \leq 1$ is evident, so we assume that $\ell(L)>1$. If $|\max (X)|=1$, then (1), (2), (3) and the induction hypothesis give

$$
|X|=\left|\left(\{0\} \dot{\cup} X\left(a_{1}\right)\right) \dot{\cup}\{1\}\right| \geq \ell\left(\downarrow a_{1}\right)+1+1=\ell(L)+1 .
$$

Hence we may assume that $\max (X)=\left\{a_{1}, \ldots, a_{k}\right\}$ consists of at least two elements. For $i \in\{1, \ldots, k\}$, denote $X\left(a_{1}\right) \cup \cdots \cup X\left(a_{i}\right)$ by X_{i} and $a_{1} \vee \cdots \vee a_{i}$ by b_{i}. Then $X_{k}=X \backslash\{0,1\}$ by (2) and $h\left(b_{k}\right)=h(1)=\ell(L)$, whence it suffices to show that

$$
\begin{equation*}
\left|X_{i}\right| \geq h\left(b_{i}\right) \tag{4}
\end{equation*}
$$

for $i=1, \ldots, k$. For $i=1$ this is clear from the induction hypothesis on the length of the lattice. Now, let us assume the validity of (4) for $i<k$. Since finite semimodular lattices satisfy the well-known "dimension inequality"

$$
\begin{equation*}
h(x)+h(y) \geq h(x \wedge y)+h(x \vee y) \tag{5}
\end{equation*}
$$

for any $x, y \in L$ (cf. Grätzer [6], Theorem IV.2.2), we have

$$
\begin{equation*}
\ell\left(\downarrow a_{i+1}\right) \geq h\left(a_{i+1}\right)-h\left(b_{i} \wedge a_{i+1}\right) \geq h\left(b_{i} \vee a_{i+1}\right)-h\left(b_{i}\right)=\ell\left(\left[b_{i}, b_{i+1}\right]\right) \tag{6}
\end{equation*}
$$

Since $\ell\left(\downarrow a_{i+1}\right)=h\left(a_{i+1}\right)<h(1)=\ell(L)$, the induction hypothesis (on the length) gives $\left|X\left(a_{i+1}\right)\right| \geq \ell\left(\downarrow a_{i+1}\right)$. Hence it follows from (6) and the induction hypothesis (on i) that $\left|X_{i+1}\right|=\left|X_{i}\right|+\left|X\left(a_{i+1}\right)\right| \geq h\left(b_{i}\right)+\ell\left(\left[b_{i}, b_{i+1}\right]\right)=h\left(b_{i+1}\right)$, showing (4).

The black-filled elements of the lattice A, cf. Figure 1, form a CD-basis with less than $\ell(A)+1$ elements. This indicates that semimodularity cannot be dropped from Proposition 1.

Proposition 2. Let C be a maximal chain in a finite lower semimodular lattice L, and let $A(L)$ denote the set of atoms in L. Then $A(L) \cup C$ is a CD-basis of L.

Proof. Let $C=\left\{0=c_{0} \prec c_{1} \prec c_{2} \prec \cdots \prec c_{n}=1\right\}$. It is clear, even without assuming lower semimodularity, that $C \cup A(L)$ is a CD-independent set. Let $y \in L \backslash C$ such that $C \cup\{y\}$ is CD-independent; we need to show that $y \in A(L)$. Let c_{i} be the smallest member of C such that $y \leq c_{i}$. Then $i>0$, $c_{i}=c_{i-1} \vee y$ and c_{i-1} is incomparable with y. The CD-independence of $C \cup\{y\}$ gives $y \wedge c_{i-1}=0$. Hence lower semimodularity yields $0 \prec y$, i.e., $y \in A(L)$.

Figure 1. Lattices A and B

Note that B, cf. Figure 1, is a CD-basis of itself. Hence no maximal chain plus the atoms of B form a CD-basis. This indicates that lower semimodularity cannot be dropped from Proposition 2.

Main Theorem. Any two CD-bases of a finite distributive lattice have the same number of elements.

Proof. The notations from the previous two proofs will be in effect. Let L be a finite distributive lattice. Clearly, we can assume that $|L| \geq 3$. In virtue of Proposition 2, it suffices to show that, for every CD-basis X of L, we have

$$
\begin{equation*}
|X|=\ell(L)+|A(L)| . \tag{7}
\end{equation*}
$$

Since $X \cup A(L)$ is CD-independent, the maximality of X implies that

$$
\begin{equation*}
A(L) \subseteq X \tag{8}
\end{equation*}
$$

We prove (7) by induction on $|L|$. Notice that, in formulas (2) and (3), $k=|\max (X)|$ must be 1 or 2 . Indeed, if $k \geq 3$ then, for $i \geq 3, a_{i} \wedge\left(a_{1} \vee a_{2}\right)=$ $\left(a_{i} \wedge a_{1}\right) \vee\left(a_{i} \wedge a_{2}\right)=0$. Since $a_{i} \neq 0$, we conclude $a_{1} \vee a_{2} \neq 1$, which means that $X \dot{\cup}\left\{a_{1} \vee a_{2}\right\}$ is CD-independent, a contradiction.

First we consider the case $k=1$. Then a_{1}, the unique element of $\max (X)$, is a coatom by (3). Hence we conclude by (8) that $A\left(\downarrow a_{1}\right)=A(L)$. Now $X=\{1\} \dot{\cup}$ $\left(\{0\} \dot{\cup} X\left(a_{1}\right)\right)$ and, by (1), we know that $\{0\} \dot{\cup} X\left(a_{1}\right) \in \mathfrak{B}\left(\downarrow a_{1}\right)$. Hence we can apply the induction hypothesis to the distributive lattice $\downarrow a_{1}$:

$$
|X|=1+\left|\{0\} \dot{\cup} X\left(a_{1}\right)\right|=1+\ell\left(\downarrow a_{1}\right)+\left|A\left(\downarrow a_{1}\right)\right|=\ell(L)+|A(L)|,
$$

as desired.

Secondly, let $k=2$. Then, by (2) and (3), a_{2} is a complement of a_{1}. Hence $\ell(L)=h(1)=h\left(a_{1}\right)+h\left(a_{2}\right)$ by distributivity. Now it is well-known that L is (isomorphic to) the direct product of $L_{1}=\downarrow a_{1}$ and $L_{2}=\downarrow a_{2}$. Let $X_{i}=$ $X \cap L_{i}=X\left(a_{i}\right) \cup\{0\} \in \mathfrak{B}\left(\downarrow a_{i}\right)$, and let $A_{i}=A(L) \cap L_{i}$. Clearly, $X=X_{1} \dot{\cup}$ $\left(\left(X_{2} \cup\{1\}\right) \backslash\{0\}\right), A\left(L_{i}\right)=A_{i}$, and $\ell(L)=h\left(a_{1}\right)+h\left(a_{2}\right)=\ell\left(L_{1}\right)+\ell\left(L_{2}\right)$. Hence the induction gives $|X|=|A(L)|+\ell(L)$ easily.

Now, by giving an unusual characterization of the variety of all distributive lattices, we point out that "distributivity" in the Main Theorem cannot be replaced by a weaker lattice identity. A lattice variety is called nontrivial if it is distinct from the class of all one-element lattices.

Corollary 3. For every nontrivial variety \mathcal{V} of lattices, the following two conditions are equivalent.
(1) any two CD-bases of each finite member of \mathcal{V} have the same number of elements;
(2) \mathcal{V} is the variety of all distributive lattices.

Proof. Let $C_{n}=\left\{0=d_{0} \prec d_{1} \prec \cdots \prec d_{n}=1\right\}$ denote the chain of length n. (Although it would suffice to consider $n=2$ in the present proof, the needs of a forthcoming proof makes it reasonable that we allow $n \geq 2$ here.) Given a lattice K, let $K\left[C_{n}\right]=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in K^{n}: x_{1} \leq x_{2} \leq \cdots \leq x_{n}\right\}$. Then $K\left[C_{n}\right]$ is a sublattice of the n-th direct power of K. (In fact, the constant n-tuples show that $K\left[C_{n}\right]$ is a subdirect power of K.) For $k \geq 3$, let $M_{k}=\left\{0, a_{1}, \ldots, a_{k}, 1\right\}$ denote the modular lattice of length 2 with exactly k atoms, and let N_{5} be the five element nonmodular lattice with elements $0,1, a, b, c$ such that $a<c$.

It suffices to show that Condition (1) implies that neither M_{3} nor N_{5} belongs to \mathcal{V}, for the reverse implication is just the Main Theorem. Suppose that \mathcal{V} satisfies Condition (1).

By way of contradiction, suppose first that $M_{3} \in \mathcal{V}$. Then $M_{3}\left[C_{n}\right] \in \mathcal{V}$ as well. (For $n=3$, it is depicted in Figure 2.) Consider the following principal ideals of $M_{3}\left[C_{n}\right]$:

$$
\downarrow\left(a_{i}, \ldots, a_{i}\right)=\left\{(0, \ldots, 0,0),\left(0, \ldots, 0, a_{i}\right),\left(0, \ldots, a_{i}, a_{i}\right), \ldots,\left(a_{i}, \ldots, a_{i}, a_{i}\right)\right\}
$$

for $i=1,2,3$. They are chains of length n. Using modularity and the fact that the constant n-tuples in $M_{3}\left[C_{n}\right]$ form a sublattice isomorphic to M_{3}, we obtain that $\ell\left(M_{3}\left[C_{n}\right]\right)=2 n$. Notice that $M_{3}\left[C_{n}\right]$ has exactly three atoms: the $\left(0, \ldots, 0, a_{i}\right)$ for $i=1,2,3$. Therefore, in virtue of Proposition $2, M_{3}\left[C_{n}\right]$ has a CD-basis G of size $2 n+3$, cf. the cross-filled elements in the figure. By similar argument,

$$
\begin{equation*}
M_{k}\left[C_{n}\right] \text { has a CD-basis of size } 2 n+k \tag{9}
\end{equation*}
$$

Figure 2. $M_{3}\left[C_{3}\right]$ and $N_{5}\left[C_{2}\right]$
we have noticed this for later reference. On the other hand, let

$$
H=\{(1, \ldots, 1)\} \cup \downarrow\left(a_{1}, \ldots, a_{1}\right) \cup \downarrow\left(a_{2}, \ldots, a_{2}\right) \cup \downarrow\left(a_{3}, \ldots, a_{3}\right) .
$$

Then H is a CD-independent subset and $|H|=3 n+2$, cf. the grey-filled elements in the figure. (It is not hard to see that H is a CD-basis, but we do not need this fact.) Similarly,

$$
\begin{equation*}
M_{k}\left[C_{n}\right] \text { has a CD-independent subset of size at least } k n+2 \text {. } \tag{10}
\end{equation*}
$$

Now $3 n+2>2 n+3$ for $n \geq 2$, contradicting Condition (1).
Secondly, suppose that $N_{5} \in \mathcal{V}$. Then $N_{5}\left[C_{2}\right] \in \mathcal{V}$ as well; cf. Figure 2, which is quoted from [16]. The cross-filled elements form a CD-basis G while the gray-filled elements form a CD-basis H. So $|G|=7 \neq 8=|H|$ contradicts Condition (1).

Remark 4. Let \mathcal{V} be a lattice variety containing a non-distributive member. Then, for each $t \in \mathbf{N}$, there are a finite lattice $L \in \mathcal{V}$ and CD-bases X and Y of L such that $|X|-|Y|>t$.

Proof. If Z is a CD-basis of L then it is straightforward to see that $Z^{\prime}=$ $(Z \times\{0\}) \cup(\{0\} \times Z) \cup\{(1,1)\}$ is a CD-basis of L^{2} with $\left|Z^{\prime}\right|=2 \cdot|Z|$. This together with Corollary 3 implies the above remark.

Remark 5. For each $t \in \mathbf{N}$, there are a finite modular lattice L and CD-bases X and Y of L such that $|X|>t \cdot|Y|$.

Proof. Evident by (9) and (10).
Historical remarks. The lattice $M_{3}\left[C_{n}\right]$ is just a particular case of the $M_{3}[D]$ construction for bounded distributive lattices D. While $M_{3}[D]$ was introduced in [15] in a very different way, by means of balanced triples, here we used the more general definition of $K[D]$ from [16]. For some other applications and generalizations of the $M_{3}[D]$ construction cf., e.g., [17], Farley [4] and [5], Grätzer and Wehrung [7], and Quackenbush [14].

Corollary 6. Let L be a finite distributive lattice. Then L is Boolean if and only if $|X|=2 \cdot \ell(L)$ holds for every (equivalently, some) CD-basis X of L.

Proof. Let $J(L)$ denote the set of nonzero join-irreducible elements of L. Then $|J(L)|=\ell(L)$, and L is Boolean iff $J(L)=A(L)$, cf., e.g., Theorem II.1.9 and Corollary II.1.14 in GräTzer [6]. Hence the Main Theorem and Proposition 2 complete the proof.

References

[1] G. Czédli, A. P. Huhn and E. T. Schmidt, Weakly independent subsets in lattices, Algebra Universalis 20 (1985), 194-196.
[2] G. Czédli and Zs. Lengvárszky, Two notes on independent subsets in lattices, Acta Math. Hungarica 53 (1-2) (1989), 169-171.
[3] G. CzÉdli, The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.
[4] J. D. Farley, Priestley powers of lattices and their congruences: a problem of E. T. Schmidt, Acta Sci. Math. 62 (1996), 3-45.
[5] J. D. Farley, Tensor products of semilattices, semimodularity and supersolvability, a problem of E. T. Schmidt from 1974 and some conjectures of Quackenbush from 1985, Algebra Universalis, submitted.
[6] G. Grätzer, General Lattice Theory, Birkhäuser Verlag, Basel - Stuttgart, 1978, Second edition: Birkhäuser Verlag, 1998.
[7] G. Grätzer and F. Wehrung, Proper congruence-preserving extension of lattices, Acta Math. Hungar. 85 (1999), 175-185.
[8] E. K. Horváth, Z. Németh and G. Pluhár, The number of triangular islands on a triangular grid, Periodica Math. Hungar. (to appear).
[9] E. K. Horváth, G. Horváth, Z. Németh and Cs. Szabó, The number of square islands on a rectangular sea, submitted.
[10] Zs. LengVÁrszky, Lower bound on the size of weak bases in lattices, Algebra Universalis 33 (1995), 207-208.
[11] Zs. LENGVÁRSZKY, The minimum cardinality of maximal systems of rectangular islands, European Journal of Combinatorics 30 (2009), 216-219.
[12] Zs. LengVÁrszky, The size of maximal systems of square islands, European Journal of Combinatorics, in press (doi:10.1016/j.ejc.2008.07.023).

134 G. Czédli, M. Hartmann and E. T. Schmidt : CD-independent subsets...
[13] G. Pluhár, The number of brick islands by means of distributive lattices, Acta Sci. Math. (Szeged) (to appear).
[14] R. W. Quackenbush, Non-modular varieties of semimodular lattices with a spanning M_{3}, Discrete Math. 53 (1985), 186-196.
[15] E. T. Schmidt, Zur Characterisierung der Kongruenzverbände, Math. Časopis Sloven. Acad. Vied. 18 (1968), 3-20.
[16] E. T. Schmidt, Lattices generated by partial lattices, Lattice theory (Proc. Colloq., Szeged, 1974), 343-353. Colloq. Math. Soc. Janos Bolyai, Vol. 14, North-Holland, Amsterdam, 1976.
[17] E. T. Schmidt, The ideal lattice of a distributive lattice with 0 is the congruence lattice of a lattice, Acta Sci. Math. (Szeged) 43 (1981), 153-168.

GÁBOR CZÉDLI
UNIVERSITY OF SZEGED
BOLYAI INSTITUTE
ARADI VÉRTANÚK TERE 1
H-6720 SZEGED
HUNGARY
E-mail: czedli@math.u-szeged.hu
URL: http://www.math.u-szeged.hu/~czedli/
MIKLÓS HARTMANN
UNIVERSITY OF SZEGED
BOLYAI INSTITUTE
ARADI VÉRTANÚK TERE 1
H-6720 SZEGED
HUNGARY
E-mail: hartm@math.u-szeged.hu
URL: http://www.math.u-szeged.hu/~hartm/
E. TAMÁS SCHMIDT

MATHEMATICAL INSTITUTE OF
THE BUDAPEST UNIVERSITY OF
TECHNOLOGY AND ECONOMICS
MÜEGYETEM RKP. 3
H-1521 BUDAPEST
HUNGARY
E-mail: schmidt@math.bme.hu
URL: http://www.math.bme.hu/~schmidt/
(Received May 30, 2008; November 25, 2008)

[^0]: Mathematics Subject Classification: Primary: 06D99; Secondary: 06C99.
 Key words and phrases: lattice, distributivity, semimodularity, independent subset, CDindependent subset, CD-basis.
 The authors' research was supported by the NFSR of Hungary (OTKA), grant no. T 049433, T48809 and K 60148.

