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Matrix splittings and generalized inverses

By NEBOJŠA Č. DINČIĆ (Nǐs)

Abstract. In this paper we introduce a splitting of the class of square singular

complex matrices induced by its inner inverses in two ways: using the Jordan normal

form, and using the concept of the condiagonalizability. Then we use the introduced

splitting to prove a special case of Harte’s theorem [5] for complex matrices.

1. The idea

Let A ∈ Cn×n
r be a square complex matrix whose rank is equal to r < n. A

matrix B ∈ Cn×n
k is called an inner, or {1}k-generalized inverse of A, if ABA = A

holds. It is well known that there exists some k, r ≤ k < n, such that a matrix A

has a {1}k-inverse. Moreover, there exists a whole set of inner inverses, and that
set consists of matrices whose rank is in range from r to n, inclusively

A{1} =
n⋃

k=r

A{1}k.

Let us now concentrate on matrices belonging to the class A{1}n. They are
invertible, and we denote with A{1}−1

n the set of their “ordinary” inverses. This
paper deals with the question: How can a matrix A be “close” to the set A{1}−1

n ,
in terms of the spectral norm?

If B satisfies ABA = A, (AB)∗= AB and (BA)∗=BA, then B is an {1, 3, 4}
-inverse of A. Moreover, if B is an {1, 3, 4}-inverse of A satisfying BAB = B,
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then B is the Moore–Penrose inverse of A, denoted by A†. It is well-known that
for any complex rectangular matrix A, the Moore–Penrose inverse A† is unique
and it always exists.

The paper is organized as follows: in Section 2 one can find some important
definitions and lemmas related to the Jordan normal form, Harte’s theorem and
condiagonalizability of matrices, respectively. Section 3 consists of two main re-
sults that introduce (in two different ways) matrix splitting induced by its inner
inverses, followed by some theorems which answer the question about distance
between the matrix A and a family A{1}−1

n . Theorem 3 is actually a proof of a
special case of Harte’s theorem. Finally, Section 4 presents some facts about the
introduced matrix splitting.

2. Auxiliary results

We start with the Jordan form.

Lemma 1. Let there be given a Jordan matrix of order k (whose dimensions

are k × k), k ∈ N
Jk(0) =

(
0 Ik−1

0 0

)
. (1)

Then we have

Jk(0){1, 3, 4} =

(
0 C

Ik−1 0

)
=

{(
0 α

Ik−1 0

)
: α ∈ C

}
. (2)

Proof. We can reduce the matrix Jk(0) to its Hermitian normal form (using
a method described, for example, in [1], pp. 24), and obtain

T = EJk(0)P =

(
Ik−1 0

0 0

)
, where E = Ik, P =

(
0 1

Ik−1 0

)
.

Since P is a permutation matrix, we have det P = (−1)k+1 6= 0. We look for a
{1, 3, 4}-inverse of matrix T using the definition, in the form

T (1,3,4) =

(
A B

C D

)
,

where A, B, C and D are submatrices whose dimensions are (k − 1) × (k − 1),
(k − 1)× 1, 1× (k − 1) and 1× 1, respectively. It is easy to find that A = Ik−1,
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B = 0, C = 0, but the matrix D remains arbitrary, let it be denoted by a complex
number α. Hence

T (1,3,4) =

(
Ik−1 0

0 α

)

Since E and P are nonsingular unitary matrices, and since we know that

T (1,3,4) = P−1J
(1,3,4)
k (0)E−1,

and we have

J
(1,3,4)
k (0) = PT (1,3,4) =

(
0 1

Ik−1 0

)(
Ik−1 0

0 α

)
=

(
0 α

Ik−1 0

)
.

¤
Lemma 2. There exists an invertible element in the set Jk(0){1, 3, 4}.
Proof. If α 6= 0, then det J

(1,3,4)
k (0) = (−1)k+1α 6= 0. This means that in

the set Jk(0){1, 3, 4} there exists an invertible element, whose inverse we denote
with J̃k(0). Now it is obvious that

J̃k(0) =

(
0 Ik−1
1
α 0

)
. (3)

¤

We use ‖ · ‖ to denote the spectral norm of elements in Cn×n. The spectral
norm of a matrix A is the square root of the spectral radius of A∗A. The following
result is well-known.

Lemma 3. Let A and B be two square complex matrices. Then we have

a) If W = ( 0 0
0 A ), then ‖W‖ = ‖A‖;

b) If W = ( A 0
0 B ), then ‖W‖ = max {‖A‖, ‖B‖}.

Lemma 4. A spectral norm of the matrix Jk(0)− J̃k(0) is given by

‖Jk(0)− J̃k(0)‖ =
1
|α| . (4)

Proof. Let W be the difference Jk(0)− J̃k(0). We know that

W =

(
0 0(k−1)×(k−1)

− 1
α 0

)
,

which means that

W ∗W =

(
1

αᾱ 0
0 0(k−1)×(k−1)

)
,

so σ(W ∗W ) = {0, 1
|α|2 }, which implies ‖W‖ = 1

α . ¤
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For any complex matrix A, let A† denote its unique Moore–Penrose in-
verse (which always exists). The Moore–Penrose inverse of matrix Jk(0) will be
J†k(0) =

(
0 0

Ik−1 0

)
.

Lemma 5. The spectral norm of a matrix Jk
(1,3,4)(0)− Jk

†(0) is given by

‖Jk
(1,3,4)(0)− Jk

†(0)‖ = |α|. (5)

Proof. Let W denote difference Jk
(1,3,4)(0)− Jk

†(0). We know that

W =

(
0 α

0(k−1)×(k−1) 0

)
,

which means

W ∗W =

(
0(k−1)×(k−1) 0

0 αᾱ

)
,

so σ(W ∗W ) = {0, |α|2}, which implies ‖W‖ = |α|. ¤

From Lemma 4 and Lemma 5 we can infer interesting conclusion

‖Jk(0)− J̃k(0)‖ · ‖Jk
(1,3,4)(0)− Jk

†(0)‖ = 1,

which means that requests for simultaneous approximating both Jk(0) with J̃k(0)
and J†k(0) with J

(1,3,4)
k (0) are mutually opposed.

Lemma 6. The following holds




A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...

0 0 · · · Am




†

=




A†1 0 · · · 0
0 A†2 · · · 0
...

...
. . .

...

0 0 · · · A†m




, (6)

where Ai, i = 1,m, are square complex matrices.

Now we present some facts related to Harte’s Theorem.
Let A be Banach algebra with the unit 1. An element a ∈ A is regular

(regular in a von Neumann sense) in A if there exists some x ∈ A such that
axa = a. We denote by Au the set consisting of all regular elements from A. The
next notation is also correct: Au = {a ∈ A : a ∈ aAa}. We use A• to denote set
which consists of all idempotents from A. Then we have {a ∈ A : a ∈ aA−1a} =
A•A−1 = A−1A• [4].
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Proposition 1 (Harte [5]). Let A be a Banach algebra with the unit 1.

Then we have

Au ∩ cl(A−1) = A−1A•.
The proof of this proposition can be found in [5], alternatively in [8], p. 181.

More general results, concerning Fredholm operators can be found in [7], and for
Fredholm theory related to Banach algebra homomorphisms in [3]. In this paper
Theorem 3 presents a constructive proof for Harte’s theorem for a class of singular
square complex matrices, based on a matrix splitting induced by inner inverses.

We will list three definitions, one comment, and the main theorem from [6],
which deals with condiagonalizability concept.

For a matrix A = [aij ]n×n, its component-wise conjugate is the matrix
A = [aij ]n×n. The component-wise conjugate is related to the adjoint and the
transpose: A = (A∗)T = (AT )∗, so that also A∗ = (A)T .

Definition 1. A matrix A ∈ Cn×n is condiagonalizable if AR = AA (or, which
is the same, AL = AA) is diagonalizable by a similarity transformation.

Definition 2. Matrices A,B ∈ Cn×n are said to be consimilar if A = SBS
−1

for a nonsingular matrix S ∈ Cn×n.

Definition 3. Let σ(AL)= {λ1, . . . , λm} be the spectrum of AL. The coneigen-
values of A are the m scalars µ1, . . . , µm, defined as follows:
If λi /∈ (−∞, 0), then the corresponding coneigenvalue µi is defined as: µi =

√
λi,

Re(µi) ≥ 0; the multiplicity of µi is set to that of λi.
If λi ∈ (−∞, 0), then we associate two conjugate purely imaginary coneigenvalues
µi = ±√λi. The multiplicity of each is set to a half of that of λi.

If A ∈ Rn×n, then each eigenvalue of A with a nonnegative real part is at
the same time a coneigenvalue of this matrix. If an eigenvalue λ has a negative
real part, then µ = −λ is a coneigenvalue of A.

We use kerA to denote the null-space of A.

Proposition 2 (Ikramov [6]). Let A ∈ Cn×n be a condiagonalizable ma-

trix. Then A can be brought by a consimilarity transformation to its canonical

form which is a direct sum of 1×1 and 2×2 blocks. The 1×1 blocks are the real

nonnegative coneigenvalues of A, while each 2× 2 block corresponds to a pair of

complex conjugate coneigenvalues µ, µ, and has the form

(
0 µ

µ 0

)
.
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If A is singular and k = dim kerAL − dimkerA > 0, then the canonical form of

A also contains k blocks of the form
(

0 0
1 0

)
.

3. Main results

We start with the following result

Theorem 1. Any complex matrix A ∈ Cn×n
r , which Jordan normal form

does not include a J1(0) block, can be split as a sum

A = Ã + N, (7)

where Ã is invertible, Ã−1 ∈ A{1}, and N is a nilpotent matrix of the nilpotency

order equal to 2 (which means that N2 = 0).

Proof. Any square complex matrix can be reduced to the Jordan normal
form

A = X

(
J1 0
0 J0

)
X−1,

where X is nonsingular, J1 ∈ Cr×r
r is invertible, and J0 is nilpotent and consists

from blocks Jk(0), k > 1, each of them is a Jordan matrix. We look for A(1) in
the form

A(1) = X

(
P Q

R S

)
X−1.

The equation AA(1)A = A must be satisfied by any {1}-inverse, so we conclude
that

J1PJ1 = J1 ⇒ P = J−1
1

J1QJ0 = 0 ⇒ QJ0 = 0

J0RJ1 = 0 ⇒ J0R = 0

J0SJ0 = J0 ⇒ S = J
(1)
0

For the sake of clarity we choose Q = 0, R = 0. Hence

X

(
J−1

1 0
0 J

(1)
0

)
X−1 ∈ A{1}. (8)
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We now find a {1, 3, 4}-inverse of a block

J0 =




Jk1(0) 0 · · · 0
0 Jk2(0) · · · 0
...

...
. . .

...
0 0 · · · Jkm

(0)




. (9)

We can assume that this inverse can be in the form

J
(1,3,4)
0 =




J
(1,3,4)
k1

(0) 0 · · · 0
0 J

(1,3,4)
k2

(0) · · · 0
...

...
. . .

...
0 0 · · · J

(1,3,4)
km

(0)




. (10)

This special inner inverse for each block Jki(0), i = 1,m, can be found as it is
described in Lemma 1. Arbitrary complex element which participate in the i-th
block we denote as αi. If we enforce the natural condition αi 6= 0, i = 1,m,
then Lemma 2 implies the existence of the inverse of each submatrix J

(1,3,4)
ki

, and
further implies the existence of the inverse for the matrix J0

(1,3,4)

J̃0 =




J̃k1(0) 0 · · · 0
0 J̃k2(0) · · · 0
...

...
. . .

...
0 0 · · · J̃km(0)




. (11)

Since the inverse of the i-th submatrix depends on a parameter αi, J̃0 depends
on complex nonzero parameters α1, . . . , αm.

If we use Ã for the inverse of A(1), it is obvious that

Ã = X

(
J1 0
0 J̃0

)
X−1. (12)

Let N = A− Ã. We have

N = X

(
0 0
0 J0 − J̃0

)
X−1. (13)

The block-diagonal matrix J0 − J̃0 consists of blocks

Jki(0)− J̃ki(0) =




0 · · · 0
...

. . .
...

−α−1
i · · · 0


 , (14)
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and now it is easy to obtain that

N2 = 0. ¤

Remark 1. The condition from the statement of a previous theorem, which
relates to block J1(0), significantly decreases the class of matrices for which the
theorem is applicable. For example, the class of all matrices of the index equal to
1 (there belong non-invertible hermitian, normal and range-hermitian matrices)
is an excellent example for a class to which previous theorem is unapplicable.

Counterexample. Let us deal with the matrix

A =

(
1 0
0 0

)
.

Theorem 1 can not be applied to our matrix A, and A can not be split using a
method described in Theorem 1 as a sum

A = Ã + N, det Ã 6= 0, N2 = 0.

But, we try to find that splitting on some other way. We use the next easy-to-
prove observation

(∀N ∈ C2×2) N2 = 0 6= N ⇔ N =

(
t s

− t2

s −t

)
, t ∈ C, s ∈ C \ {0}.

Now we have

A = Ã + N =

(
a b

c d

)
+

(
t s

− t2

s −t

)
,

where we assume that det Ã = ad− bc 6= 0. This imply a = 1− t, b = −s, c = t2

s

i d = t, and further

A = Ã + N =

(
1− t −s

t2

s t

)
+

(
t s

− t2

s −t

)
, det Ã = t,

and we now conclude that must be t 6= 0. Indeed, we find the desired splitting!

Theorem 2. Any singular condiagonalizable complex matrix A ∈ Cn×n
r such

that k = dim kerAL − dimkerA > 0 can be split into the sum

A = Ã + N, (15)

where Ã is invertible, Ã−1 ∈ A{1}, and N satisfy NN = NN = 0.
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Proof. Let the matrix A satisfy conditions from this theorem. Then, it can
be, because of Proposition 2, expressed as

A = S

(
D1 0
0 D0

)
S
−1

= SBS
−1

, (16)

where

D1 = diag

{
λ1, . . . , λp,

(
0 µ1

µ1 0

)
, . . . ,

(
0 µq

µq 0

)}

is the invertible matrix, and

D0 = diag

{(
0 0
1 0

)
, . . . ,

(
0 0
1 0

)}

consists of exactly k blocks, where k = dim ker(AL) − dimker(A) > 0. We use
λi, i = 1, p, to denote nonnegative coneigenvalues of A, while µj and µj , j = 1, q,
are pairs of complex conjugate coneigenvalues.

We look for A{1} in the form

A(1) = S

(
M N

P Q

)
S−1.

Because of AA(1)A = A, we conclude that

D1MD1 = D1 ⇒ M = D−1
1

D1ND0 = 0 ⇒ ND0 = 0

D0PD1 = 0 ⇒ D0P = 0

D0QD0 = D0 ⇒ Q = D
(1)
0

We put N = 0, P = 0. Hence,

S

(
D−1

1 0
0 D

(1)
0

)
S−1 ∈ A{1}. (17)

Now, we look for a {1, 3, 4}-inverse of a block-matrix

D0 =




0 0
1 0

0 0
1 0

. . .
0 0
1 0




. (18)
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in the form

D
(1,3,4)
0 = diag





(
0 0
1 0

)(1,3,4)

, . . . ,

(
0 0
1 0

)(1,3,4)


 . (19)

It is easy to find that

D
(1,3,4)
0 =




0 1
β1 0

0 1
β2 0

. . .
0 1
βk 0




. (20)

Under the assumption that arbitrary complex elements in i-th block is subjected
by condition βi 6= 0, i = 1, k, we can find also

D̃0 = (D(1,3,4)
0 )−1 =




0 β−1
1

1 0
0 β−1

2

1 0
. . .
0 β−1

k

1 0




. (21)

We use Ã for the ordinary inverse of A(1). It is obvious that

Ã = S

(
D1 0
0 D̃0

)
S
−1

. (22)

We have

N = A− Ã = S

(
0 0
0 D0 − D̃0

)
S
−1

. (23)

The block-diagonable matrix D0 − D̃0 contains the blocks
(

0 −βi
−1

0 0

)
. (24)

Now it is easy to obtain that

NN = NN = 0. ¤
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The next result is a constructive proof of a special case of Harte’s theorem
from [5].

Theorem 3. Under the assumptions from Theorem 1, we have

inf
(α1,...,αm)∈Cm

αi 6=0,i=1,m

‖A− Ã‖ = 0, (25)

where αi are parameters which Ã is depended from.

Proof. Writing “inf” for the infimum over the parameters listed in for-
mula (25), we have

inf ‖A− Ã‖ = inf ‖N‖ = inf ‖X
(

0 0
0 J0 − J̃0

)
X−1‖

≤ ‖X‖ ‖X−1‖ inf

∥∥∥∥∥

(
0 0
0 J0 − J̃0

)∥∥∥∥∥ = ‖X‖ ‖X−1‖ inf
(

max
i=1,m

1
|αi|

)
= 0,

because, using Lemmas 3 and 4, we have

inf ‖J0− J̃0‖ = inf
(

max
i=1,m

‖Jki(0)− J̃ki(0)‖
)

= inf
(

max
i=1,m

1
|αi|

)
= inf

αs∈C\{0}
1
|αs| ,

and it is equal to 0 when αs →∞ in a complex plane. ¤

Theorem 4. Under the assumptions from Theorem 1, we have

inf
c(α1,...,αm)∈Cm

αi 6=0,i=1,m

‖Ã−1 −A†‖ = 0, (26)

where αi are parameters which Ã is depended from.

Proof. Again, writing “inf” for the infimum over the parameters listed in
formula (26), we have

inf ‖Ã−1 −A†‖ = inf ‖X
(

0 0
0 J

(1,3,4)
0 − J†0

)
X−1‖

≤ ‖X‖ ‖X−1‖ inf

∥∥∥∥∥

(
0 0
0 J

(1,3,4)
0 − J†0

)∥∥∥∥∥ = ‖X‖ ‖X−1‖ inf
(

max
i=1,m

|αi|
)

= 0,
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because, using Lemmas 5 and 6:

inf ‖J (1,3,4)
0 − J†0‖ = inf

(
max
i=1,m

‖J (1,3,4)
ki

(0)− J†ki
(0)‖

)

= inf
(

max
i=1,m

|αi|
)

= inf
αs∈C\{0}

|αs|,

and it is equal to 0 when αs → 0 in a complex plane. ¤

We actually concluded that we deal with good approximation, but a para-
meter in one case tends to zero, and in other to the infinity. It raises a question
whether it is possible to simultaneously approximate both A with Ã, and A† with
Ã−1. Two next theorems answer to this question negatively.

Theorem 5. Under the assumptions from Theorem 1, we have

inf
(α1,...,αm)∈Cm

αi 6=0,i=1,m

‖A− Ã‖ · ‖Ã−1 −A†‖ ≤ (‖X‖ · ‖X−1‖)2
. (27)

Proof. Writing “inf” for the infimum over the parameters listed in formula
(27), and h for ‖X‖ · ‖X−1‖, we have

inf ‖A− Ã‖ · ‖Ã−1 −A†‖

= inf

∥∥∥∥∥X

(
0 0
0 J0 − J̃0

)
X−1

∥∥∥∥∥ ·
∥∥∥∥∥X

(
0 0
0 J

(1,3,4)
0 − J†0

)
X−1

∥∥∥∥∥
≤ h2 · inf ‖J0 − J̃0‖ · ‖J (1,3,4)

0 − J†0‖

= h2 inf
(

max
i=1,m

‖Jki(0)− J̃ki(0)‖ · max
i=1,m

‖J (1,3,4)
ki

(0)− J†ki
(0)‖

)

= h2 inf
(

max
i=1,m

1/|αi| · max
j=1,m

|αj |
)

= h2 inf
|αt|
|αs| = h2,

since |αt| ≥ |αi| ≥ |αs|, i = 1,m implies |αt|
|αs| ≥ 1; the required infimum is equal

to 1, and it can be reached for a good choice of α = (z, z, . . . , z), z ∈ C\{0}. ¤

Theorem 6. Under the assumptions from Theorem 1, we have

inf
(α1,...,αm)∈Cm

αi 6=0,i=1,m

(‖A− Ã‖+ ‖Ã−1 −A†‖) ≤ 2‖X‖ · ‖X−1‖. (28)
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Proof. Writing “inf” for the infimum over the parameters listed in formula
(28), and h for ‖X‖ · ‖X−1‖, we have

inf(‖A− Ã‖+ ‖Ã−1 −A†‖)

= inf

(∥∥∥∥∥X

(
0 0
0 J0 − J̃0

)
X−1

∥∥∥∥∥ +

∥∥∥∥∥X

(
0 0
0 J

(1,3,4)
0 − J†0

)
X−1

∥∥∥∥∥

)

≤ h2 · inf ‖J0 − J̃0‖ · ‖J (1,3,4)
0 − J†0‖

= h2 inf
(

max
i=1,m

‖Jki(0)− J̃ki(0)‖+ max
i=1,m

‖J (1,3,4)
ki

(0)− J†ki
(0)‖

)

= h2 inf
(

max
i=1,m

1/|αi|+ max
j=1,m

|αj |
)

= h2 inf
(

1
|αt| + |αs|

)
= 2h2,

since |αt| ≥ |αs| imply |αs|+ 1
|αt| ≥ |αt|+ 1

|αt| ≥ 2; the required infimum can be
reached for a good choice of α = (1, 1, . . . , 1). ¤

The results analogous to Theorems 3–6 are valid, with slightly changed
proofs, under the assumptions of Theorem 2, instead of Theorem 1.

4. Another results

We can prove the following results.

Proposition 3 (The spectrum of matrix Ã). If σ(A) = σ(J1) ∪ {0}, then

σ(N) = {0} and

σ(Ã) = σ(J1) ∪
m⋃

ki=1

{
1

ki
√

αki

}
, (29)

where we take exactly ki values of a root of complex number αki .

Proof. If σ(A) = σ(J1)∪ {0}, then σ(Ã) = σ(J1)∪ σ(J̃0). Clearly, σ(J̃0) =
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⋃m
ki=1 σ(J̃ki(0)), and eigenvalues of J̃ki(0) are 1

ki
√

αki
, because

0 =




−σ 1 0 · · · 0 0
0 −σ 1 · · · 0 0
0 0 −σ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −σ 1
1
αi

0 0 · · · 0 −σ




= (−1)kiσki + (−1)ki+1 1
αi

= (−1)ki(σki − 1
αi

),

and now the conclusion can easily be obtained. ¤

Proposition 4 (Properties of the splitting).

1. If we multiply by N from the left (right) side the formula A = Ã + N , we

get that NA = NÃ, (AN = ÃN);

2. Since Ã−1 ∈ A{1}, it have to be AÃ−1A = A; if we multiply this formula from

the left (right) side by Ã−1, we obtain that AÃ−1 and Ã−1A are projectors

PR(A),S , (PT,N(A)) (under the condition R(A)⊕ S = Cn,(T ⊕N(A) = Cm));

this condition is, using Corollary 10, pp. 73, from [1] equivalent to the

existence of a matrix X ∈ A{1, 2}, where R(X) = T, N(X) = S).

3. If we replace A = Ã+N instead of the first (second) A in AÃ−1A = A, then

we obtain: NÃ−1A = NPT,N(A) = 0, (AÃ−1N = PR(A),SN = 0).

4. We can use a result from [2], pp. 9 (If S ∈ T{1}, then STS ∈ T{1, 2}), and

then conclude

Ã−1AÃ−1 = Ã−1(Ã + N)Ã−1 = Ã−1 + Ã−1NÃ−1 ∈ A{1, 2},

because Ã−1 ∈ A{1}.
If a matrix splitting of A is obtained using the method described in Theo-

rem 2, previous proposition still remains true, with some minor changes.
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