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On some generalized invariant means and
almost approximately additive functions

By ROMAN BADORA (Katowice)

Abstract. We continue our investigations from [2]. We are going to prove the
existence of generalized invariant means to some function spaces which are essentially
larger than the space of all bounded functions. Our results are applied to the study of
almost approximately additive functions.

1. Introduction

This paper is a continuation of our study which we carried out in [2].

Let F be a non-void subset of the space of all functions defined on
a semigroup (S, ·) with values in a set Y . We say that F is a left (right)
invariant if and only if

(1) f ∈ F and y ∈ S implies that yf ∈ F (fy ∈ F),

where yf and fy denote the left and right translations of f ∈ F defined by

(2) yf(x) = f(yx), fy(x) = f(xy), x, y ∈ S.

Let F be a left (right) invariant linear space of functions mapping a
semigroup S into a real linear space Y . Let C be a family of subsets of Y
and let F : F → C. In [2] we have introduced a definition generalizing the
concept of an invariant mean:

A linear operator M : F → Y is termed a left (right) invariant F -
mean if and only if it satisfies the following two conditions:

(3) M(f) ∈ F (f), f ∈ F ;

(4) M(yf) = M(f) (M(fy) = M(f)), y ∈ S, f ∈ F .
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In the case where Y = R and F = B(S,R), the space of all real
bounded functions on a semigroup S, defining a map F from B(S,R) into
the family of all non-empty compact intervals of the real line R as follows:

F (f) = [ inf{f(x) : x ∈ S}, sup {f(x) : x ∈ S} ], f ∈ B(S,R),

we infer that our definition reduces to the classical definition of an invariant
mean.

In agreement with the traditional terminology, if there exists at least
one left (right) invariant mean on the space B(S,R) then the underly-
ing semigroup S is said to be left (right) amenable. For the theory of
amenability of semigroups and groups see e.g. M. M. Day [5] and F. P.
Greenleaf [16]. Here we only stress that every Abelian semigroup is
(two-sided) amenable (see M. M. Day [4], and also, J. von Neuman [24],
J. Dixmier [9] and E. Hewitt, K. A. Ross [18], Theorem 17.5), but
amenability is a much weaker condition then commutativity.

Going back to our study from [2] we conssider some special collections
C having the following property:

every subfamily of C any two members of which intersect has a
non-empty intersection.

In this case, we say that the family C has the binary intersection property .
Moreover, we recall that a normed space has the binary intersection prop-
erty if and only if the family of all its closed balls has this property (see
L. Nachbin [23] and M. M. Day [6]). For example, the space of all real
bounded functions on a set has the binary intersection property.

In [2] we have shown that there exists a generalized invariant mean on
the space B(S, Y ) of all bounded functions mapping a semigroup S into
some real linear space Y . Precisely, we have proved the following

Theorem 1. Let (S, ·) be a left (right) amenable semigroup and let
Y be a real locally convex linear topological space. Let F be a left (right)
invariant linear subspace of the space B(S, Y ) of all bounded functions
defined on S with values in Y . Let C be a subfamily of the family of
all closed convex sets in Y having the binary intersection property and
invariant with respect to translations by vectors of Y . Assume that the
map F : F → C satisfies the following conditions:

F (f + g) ⊆ F (f) + F (g), f, g ∈ F ;(5)

F (tf) = tF (f), f ∈ F , t ∈ R \ {0};(6)

f(S) ⊆ F (f), f ∈ F .(7)

Then there exsists a left (right) invariant F -mean on the space F .

In the present paper we are going to extend the concept of an invariant
mean to some function spaces that are larger that the space B(S, Y ) (see
[1], Z. Gajda [11] and [12]).



On some generalized invariant means . . . 125

We shall consider some general situation (Theorem 3) and its spe-
cial case with the space of all essentially bounded functions defined on a
semigroup S with values in Y (Theorem 4).

Next, we present an application of these results to the study of almost
approximately additive functions (see M. Kuczma [21]).

2. Existence theorem

We shall need the following results which were proved in [2]:

Lemma 1. If the family C has the binary intersection property, then
the family C̃ of all non-empty intersections of subfamilies of the family C
has also the binary intersection property.

Lemma 2. Let C be a family of subsets of the real linear space Y hav-
ing the binary intersection property, invariant with respect to translations
by vectors of Y and symmetry to zero. If {Ai : i ∈ I} and {Bq : q ∈ Q}
are two subfamilies of C such that⋂

{Ai : i ∈ I} 6= ∅ and
⋂
{Bq : q ∈ Q} 6= ∅,

then ⋂
{Ai + Bq : i ∈ I, q ∈ Q} =

⋂
{Ai : i ∈ I}+

⋂
{Bq : q ∈ Q}.

Theorem 2. Let X and Y be two real linear spaces and let C be
a family of subsets of Y having the binary intersection property and
invariant with respect to translations by vectors from Y . Assume that the
map F : X → C satisfies the following two conditions:

F (x + y) ⊆ F (x) + F (y), x, y ∈ X;

F (tx) = tF (x), x ∈ X, t ∈ R \ {0}.
Next, let X0 be a linear subspace of the space X and let L0 : X0 → Y
be a linear operator on X0 such that L0(x) ∈ F (x) for all x ∈ X0. Then
there exists a linear operator L : X → Y which is an extension of L0 and
L(x) ∈ F (x) for all x ∈ X.

Now, we shall prove the existence theorem.

Theorem 3. Let (S, ·) be a left (right) amenable semigroup and let
Y be a real locally convex linear topological space. Let F be a left (right)
invariant linear space of functions defined on S with values in Y and let
C be a subfamily of the family of all bounded closed convex subsets of
Y having the binary intersection property and invariant with respect to
translations by vectors of Y . Assume that the map F : F → C satisfies
conditions (5), (6) and the following condition:

(8) F (yf) ⊆ F (f) (F (fy) ⊆ F (f)), f ∈ F , y ∈ S.



126 Roman Badora

Then there exists a left (right) invariant F -mean on the space F .

Proof. We shall restrict ourselves to the proof of the “left-hand side
version” of this theorem.

To start with, note that 0 ∈ F (0S), where 0S denotes the function
equal zero on the whole semigroup S. Indeed, by our assumptions, the
non-empty set F (0S) is convex and putting t = −1 in (6) we get that the
set F (0S) is symmetric; therefore, 0 ∈ F (0S).

The generalized Hahn–Banach theorem (Theorem 2), for the space
X = F and the subspace X0 degenerated to zero, implies that there exists
a linear operator L : F → Y such that

(9) L(f) ∈ F (f), f ∈ F .

Let f ∈ F be fixed; we consider the mapping:

(10) S 3 y 7→ L(yf) ∈ Y.

From condition (9) and (8) we obtain immediately that

(11) L(yf) ∈ F (yf) ⊆ F (f), y ∈ S,

which ensures that function (10) is bounded, i.e. belongs to the space
B(S, Y ) of all bounded functions transforming S into Y .

Let F̃ denote the space of all functions f̃ : S → Y of the form:

(12) f̃(y) = L(yf), y ∈ S

for some function f ∈ F . Then the space F̃ is a linear subspace of the
space B(S, Y ) and left invariant. To proved that it is left invariant we
observe first that:

(13) y(zf) = zyf

for all f ∈ F and y, z ∈ S. Indeed, for every x ∈ S we get:

y(zf)(x) =z f(yx) = f(zyx) =zy f(x),

which means that (13) holds.
Now, if f̃ ∈ F̃ is of the form

f̃(y) = L(yf), y ∈ S,

for some f ∈ F , then for any z ∈ S we have:

z f̃(y) = f̃(zy) = L(zyf) = L(y(zf)), y ∈ S.

Consequently, the function z f̃ is of the form (12) (with the function zf
as f).



On some generalized invariant means . . . 127

Let f̃ ∈ F̃ be fixed; from condition (11) we obtain:

(14) f̃(S) ⊆ F (f)

for each f ∈ F such that

f̃(y) = L(yf), y ∈ S.

Therefore, the family

{F (f) : f ∈ F and f̃(y) = L(yf), y ∈ S}
has non-empty intersection F̃ (f̃). Thereby, we have defined a map F̃ from
F̃ into the family C̃ of all non-empty intersections of some subfamilies of
C. By Lemma 1 the family C̃ has also the binary intersection property.
By Lemma 2 and the assumed properties of F we obtain that the map F̃
satisfies condition (5) and (6). Moreover, condition (14) implies that the
map F̃ satisfies condition (7).

Hence, we can apply Theorem 1 to the space F̃ , the family C̃ and the
map F̃ defined above. Now let M̃ denote a left invariant F̃ -mean on F̃ .

We define an operator M : F → Y by the formula:

M(f) = M̃y(L(yf)), f ∈ F ,

where the subscript y next to M̃ indicates that the mean M̃ is applied to
a function of the variable y.

It is clear that the operator M is linear, whereas from (11) we infer
that

M(f) ∈ F (f), f ∈ F .

The identity (13) combined with the left invariance of M̃ yields:

M(zf) = M̃y(L(y(zf))) = M̃y(L(zyf)) = M̃y(L(yf)) = M(f)

for all f ∈ F and z ∈ S. Thus, the operator M has all the desired
properties for a left invariant F -mean and the proof is finished.

Now, we will give an example of a situation in which all the assump-
tions of Theorem 3 are satisfied.

Let (S, ·) be a semigroup. A non-empty family = of subsets of S will
be called a proper set ideal if:

S /∈ =;(15)

A,B ∈ = implies A ∪B ∈ =;(16)

A ∈ = and B ⊆ A imply B ∈ =.(17)

Moreover, if the set yA = {x ∈ S : yx ∈ A} belongs to the family =
whenever A ∈ = and y ∈ S, then the set ideal = is said to be proper
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and left quasi-invariant (in short: p.l.q.i.). Analogously, the set ideal = is
said to be proper and right quasi-invariant (in short: p.r.q.i.) if the set
Ay = {x ∈ S : xy ∈ A} belongs to the family = whenever A ∈ = and
y ∈ S. In the case where the ideal = satisfies both these conditions we
shall call it proper and quasi-invariant (p.q.i.).

The sets belonging to the ideal are intuitively regarded as small sets.
For example, if S is a second category subsemigroup of a topological group
G then the family of all first category subsets of S is a p.q.i. ideal. Also,
if G is a locally compact topological group equipped with the left or right
Haar measure µ and if S is a semigroup of G with positive measure µ then
the family of all subsets of S which have zero measure µ is a p.q.i. ideal
(see also M. Kuczma [21]).

Let (Y, ‖·‖) be a normed space having the binary intercestion property
and let Cb denote the family of all non-empty intersections of closed balls
of Y . This family has also the binary intersection property (see Lemma 1.)
Let = be a set ideal subsets of a semigroup S. For a function f from S into
Y we define =f to be the family of all sets A ∈ = such that f is bounded
on the complement of A.

A function f from S into Y is called =-essentially bounded if and
only if the family =f is non-empty. The space of all =-essentially bounded
functions from S into Y will be denoted by B=(S, Y ).

It is obvious that, in general, the space B=(S, Y ) is essentially larger
than the space B(S, Y ) of all bounded functions from S into Y .

Let f ∈ B=(S, Y ) be fixed. For A ∈ =f we denote by BA(f) the
intersection of all closed balls B of Y such that f(S \A) ⊆ B. The family
Cf = {BA(f) : A ∈ =f} is a subfamily of Cb and for any A, Ã ∈ =f we
have:

∅ 6= f(S \ (A ∪ Ã)) ⊆ BA(f) ∩BÃ(f).

Hence, the intersection of Cf is non-empty and belongs to Cb.
Now, we define a map F=b : B=(S, Y ) → Cb by the following formula:

(18) F=b (f) =
⋂
Cf , f ∈ B=(S, Y ).

Lemma 3. If = is a p.l.q.i. (p.r.q.i) ideal of subsets of S then

(i) the space B=(S, Y ) is a linear left (right) invariant space;
(ii) the map F=b defined by (18) satisfies conditions (5), (6)

and (8).

Proof. (i) The fact that B=(S, Y ) is closed under the pointwise ad-
dition and scalar multiplication is a direct consequence of the observation
that: for every f, g ∈ B=(S, Y )

(19) A ∈ =f , B ∈ =g imply that A ∪B ∈ =f+g
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and

(20) A ∈ =tf for every real t and A ∈ =f .

For the proof of the left invariance of B=(S, Y ) we fix f ∈ B=(S, Y ) and
y ∈ S. Choosing arbitriarily an A ∈ =f we notice that yA ∈ =. Moreover,
if x ∈ S \y A then yx ∈ S \A. Consequently,

(21) yf(x) = f(yx) ∈ f(S \A), x ∈ S \y A.

Since f is bounded on S \A, we infer that yf is bounded on S \y A. Thus
yf ∈ B=(S, Y ).

(ii) Let f, g ∈ B=(S, Y ) be fixed. For any A ∈ =f , Ã ∈ =g and for
any two closed balls B and B̃ of Y such that

f(S \A) ⊆ B and g(S \ Ã) ⊆ B̃

we get
(f + g)(S \ (A ∪ Ã)) ⊆ B + B̃.

Because B + B̃ is a closed ball of Y (see [2], Remark 1) we conclude that

F=b (f + g) ⊆ B + B̃.

Hence, by Lemma 2, we get

F=b (f + g) ⊆ F=b (f) + F=b (g),

which proves (5).
Condition (6) is a result of the fact that

=tf = =f

for every f ∈ B=(S, Y ) and t ∈ R \ {0}. Then

tBA(f) = BA(tf)

and

tF=b (f) = t
⋂
Cf = t

⋂
{BA(f) : A ∈ =f}

=
⋂
{tBA(f) : A ∈ =f} =

⋂
{BA(tf) : A ∈ =f}

=
⋂
{BA(tf) : A ∈ =tf} =

⋂
Ctf = F=b (tf)

for all f ∈ B=(S, Y ) and t ∈ R \ {0}.
It remains to prove condition (8). Let f ∈ B=(S, Y ) and y ∈ S be

fixed. From the proof of (i) we obtain

A ∈ =f implies yA ∈ =yf
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and, by condition (21),

yF (S \y A) ⊆ f(S \A).

Therefore,
B

yA(yf) ⊆ BA(f)

and

F=b (yf) =
⋂
{BÃ(yf) : Ã ∈ =yf} ⊆

⋂
{B

yA(yf) : A ∈ =f}
⊆

⋂
{BA(f) : A ∈ =f} = F=b (f).

The proof of the “right-hand side version” of this lemma is analogous
to that presented above; thus the proof of our lemma is complete.

Consequently, the space B=(S, Y ) and the map F=b fulfil all the as-
sumptions of Theorem 3. We will sum up these observations in the form
of a theorem which will be applied in the sequel.

For f ∈ B=(S, Y ) we will denote by b=(f) the value of F=b at f .

Theorem 4. Let (S, ·) be a left (right) amenable semigroup and let
(Y, ‖·‖) be a real normed space which has the binary intersection property.
Then there exists a linear operator M= : B=(S, Y ) → Y such that:

(22) M=(f) ∈ b=(f), f ∈ B=(S, Y )

and

(23) M=(yf) = M=(f) (M=(fy) = M=(f)), f ∈ B=(S, Y ), y ∈ S.

This theorem is an abstract version of Theorem 1 from [1].

3. An application

Let (S, ·) be a semigroup and let (Y, ‖ · ‖) be a normed space. A
function f : S → Y is called additive if and only if it satisfies Cauchy’s
functional equation:

(24) f(xy) = f(x) + f(y)

for all x, y ∈ S.
The problem of stability of equation (24) (for mappings from a Banach

space into another Banach space) was first considered by D. H. Hyers [19]
(see also J. Rätz [25] and Z. Moszner [22]).
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In 1960 P. Erdös [10] raised the following problem:
Suppose that a function f : R→ R satisfies relation (24) for almost all

(x, y) ∈ R2 (in the sence of the planar Lebesgue measure). Does there exist
an additive function a : R → R such that f(x) = a(x) almost everywhere
in R (in the sense of the linear Lebesgue measure)? A positive answer to
this question was given, in a more general setting, by N. G. Bruijn [3]
(see also W. B. Jurkat [20], J. L. Denny [7], [8], R. Ger [13], [14]).

An interesting combination of these two problems was considered for
the first time by R. Ger [15] (see also J. Tabor [28]). The main result of
[15] states that any function f defined on an Abelian group S with values
in some linear space Y and fulfilling condition

(25) f(xy)− f(x)− f(y) ∈ V

for almost all pairs (x, y) ∈ S2, where the set V ⊆ Y is, in a sense,
small (such a function f is called almost approximately additive) is almost
everywhere uniformly close to an additive mappings.

Now, we are going to present an application of the theory developed in
the preceding chapter to a further study of almost approximately additive
functions.

Our approach is motivated by the result of Z. Gajda [12] who pointed
out that Ger’s theorem holds true for functions transforming an amenable
semigroup into a boundedly complete linear lattice or into a semi-reflexive
locally convex linear topological space (see also L. Székelyhidi [26], [27]).
We will show that the result of Z. Gajda can be carried over to almost
approximately additive functions with values in a normed space having the
binary intersection property. Moreover, we reduce slightly the assumption
imposed on the set V .

Now, we assume that S is a subsemigroup of a group (G, ·) such that:

(26) G = S · S−1,

where S · S−1 = {x · y−1 : x, y ∈ S}.
Further assume that we are given a proper ideal = of subsets of G

with the following property:

(27) y ∈ G and A ∈ = imply y ·A, A · y, A−1 ∈ =,

where y ·A = {yx : x ∈ A}, A ·y = {xy : x ∈ A} and A−1 = {x−1 : x ∈ A}.
This condition, taking into account that the ideal = is in a group, implies
that the ideal = is p.l.q.i. and p.r.q.i. . Proper set ideals in G satisfying
(27) are known in the literature under the name “proper linearly invariant
(in short: p.l.i.) ideals” (see R. Ger [15] and M. Kuczma [21]).

The relation between the subsemigroup S of G and the p.l.i. ideal =
is experssed in the following supplementary assumption:

(28) S /∈ =.
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Then the family
=(S) = {A ∩ S : A ∈ =}

is a proper ideal of subsets of S which is both left and right quasi-invariant.
Now, we are going to itroduce the notion “almost everywhere”. Given

a proper ideal = of subsets of some non-empty set X, we say that a given
condition is satisfied =-almost everywhere in X (written =-a.e. on X) if
and only if there exists a set A ∈ = such that the condition in question is
satisfied for every x ∈ X \A.

Next, given a subset N of G×G and an element x ∈ G, we put

N[x] = {y ∈ G : (x, y) ∈ N}.
In accordance with the notation applied in R. Ger [15] and M. Kuczma
[21], for a p.l.i. ideal = of subsets of G the symbol Ω(=) will stand for the
family of all sets N ⊆ G×G with the property that

(29) N[x] ∈ = =− a.e. on G.

It is not difficult to check that Ω(=) is a p.l.i. ideal in the product group
G × G. Any p.l.i. ideal in G × G consisting of sets N satisfying (29) is
said to be conjugate to = . In this sence Ω(=) is the maximal p.l.i. ideal
conjugate to =.

We are now in a position formulate and to prove the main result of
this section. We shall formulate this result in the case corresponding to left
invariant mean only. It will be quite obvious now to rephrase the result so
as to obtain its right-handed version. The proof of this alternative theorem
require only minor changes and, therefore, will be omitted.

Theorem 5. Let S be a left amenable subsemigroup of a group (G, ·)
subject to condition (26) and assume that = is a p.l.i. ideal of subsets of
G fulfilling (28). Let (Y, ‖ · ‖) be a real normed space having the binary
intersection property. Moreover, let f : S → Y be a function such that for
a certain set N ∈ Ω(=) relation:

(30) f(xy)− f(x)− f(y) = B(x, y)

holds whenever (x, y) ∈ S × S \ N , where B : S × S → Y is a map such
that the functions:

B(x, ·) : S → Y

belong to the space B=(S)(S, Y ) for =(S)-almost all x from S. Then there
exists an additive mapping a : G → Y such that

(31) a(x)− f(x) ∈ b=(S)(B(x, ·)) =(S)− a.e. on S.

Proof. Since N ∈ Ω(=), one can find a set U ′ ∈ = such that

N[x] ∈ =, x ∈ G \ U ′.
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Moreover, from our assumption on the map B, it follows that there exists
a set U ′′ in =(S) such that the functions B(x, ·) : S → Y belong to
B=(S)(S, Y ) for each x ∈ S \ U ′′. Let U = U ′ ∪ U ′′.

First we observe that for any fixed x ∈ S \ U the function

(32) S 3 y 7→ f(xy)− f(y) ∈ Y

is =(S)-essentially bounded. Inded, given an element x ∈ S \ U we have:

(33) f(xy)− f(x) = f(x) + B(x, y), y ∈ S \ (N[x] ∩ S).

Moreover, the set N[x] ∩ S is evidently an element of the ideal =(S) and
map

(34) S 3 y 7→ f(x) + B(x, y) ∈ Y

belongs to B=(S)(S, Y ) (because x ∈ S \U ⊆ S \U ′′). Therefore, function
(32) is in the space B=(S)(S, Y ).

Let M=(S) stand for an operator on B=(S)(S, Y ) into Y which fulfils
conditions (22) and (23), and whose existence results from Theorem 4. We
define a function g : S → Y by the formula:

g(x) =

{
M
=(S)
y (f(xy)− f(y)) for all x ∈ S \ U

0 for x ∈ U,

where the subscript y next to M=(S) indicates the fact that M=(S) is
applied to a function of the variable y.

Now choose u, v ∈ S \U in such a manner that uv ∈ S \U , too. Then,
by the definition of g and the left invariance of M=(S), we get:

g(u) + g(v) = M=(S)
y (f(uy)− f(y)) + M=(S)

y (f(vy)− f(y))

= M=(S)
y (f(uvy)− f(vy)) + M=(S)

y (f(vy)− f(y))

= M=(S)
y (f(uvy)− f(y)) = g(uv).

This means that
g(uv) = g(u) + g(v)

for all (u, v) ∈ S2 \N ′, where

N ′ = (U ×G) ∪ (G× U) ∪ {(u, v) ∈ G×G : uv ∈ U}.
It is clear that N ′ ∈ Ω(=) and, consequently, the function g is almost
additive with respect to the ideal Ω(=) ∩ S × S. By a theorem of R. Ger
(see [13], Theorem 1; see also M. Kuczma [21], Chapter XVIII, §7) there
exists an additive mapping a : G → Y and a set V ∈ =(S) such that

(35) a(x) = g(x)
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for all x ∈ S \ V .
Choosing again an x ∈ S\U we infer that N[x] ∈ = and from condition

(34) we conclude that function (32) and (34) are =(S)-a.e. equal on S.
Therefore, the map

S 3 y 7→ f(xy)− f(y)− f(x)−B(x, y) ∈ Y

is equal to zero =(S)-a.e. on S and

0 = M=(S)
y (f(xy)− f(y)− f(x)−B(x, y))

= M=(S)
y (f(xy)− f(y))−M=(S)

y (f(x) + B)x, y))

= M=(S)
y (f(xy)− f(y))− f(x)−M=(S)

y (B(x, y)).

Consequently,

g(x)− f(x) = M=(S)
y (B(x, y)) ∈ b=(S)(B(x, ·))

for every x ∈ S \ U , which combined with (35) yields (31) and completes
the proof.
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