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P-Berwald manifolds

By SÁNDOR BÁCSÓ (Debrecen) and ZOLTÁN SZILASI (Debrecen)

Dedicated to Professor Lajos Tamássy on the occasion of his 85th birthday

Abstract. We introduce a new class of special Finsler manifolds, the class of p-

Berwald manifolds. P-Berwald manifolds are defined as Finsler manifolds for which the

projected Berwald curvature vanishes. We show that an at least 3-dimensional Finsler

manifold is a p-Berwald manifold if and only if it is a weakly Berwald Douglas manifold.

2-dimensional p-Berwald manifolds are characterized by means of a differential equation

concerning the main scalar. We prove that a p-Berwald manifold is R-quadratic if and

only if its stretch tensor vanishes.

1. Introduction

By a p-Berwald manifold we mean a Finsler manifold whose projected Ber-

wald curvature vanishes. The concept of a “projected Finsler tensor” was first

systematically investigated by M. Matsumoto under the quite strange term

“indicatorizaion”, using the arsenal of classical tensor calculus [8]. An index-free

description of Matsumoto’s indicatorization was presented by Sz. Vattamány

[18], working on TTM and using the Frölicher–Nijenhuis calculus of vector-valued

forms. It seems to us that the pull-back bundle
◦

τ
∗

TM is a more economical

framework for these constructions, and the Berwald derivative arising naturally

from a Finsler structure is an adequate tool for calculations in this setting. For the
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readers’ convenience, we briefly summarize these basic technicalities in Section 2,

and, partly, in Section 3. We follow the notation and conventions of reference [17]

and, with some modifications, [5]. These papers also give some links to the classical

approach. In Section 4 we discuss basic curvature relations in a Finsler manifold.

The most interesting is formulated in Proposition 4.2; it has a “converse” (see

(25)) in p-Berwald manifolds. In Section 5 it turns out that in n > 2 dimensions

p-Berwald manifolds form the intersection of the class of Douglas manifolds and

the class of weakly Berwald manifolds – of two classes of special Finsler manifolds

which have been investigated extensively [1]–[4], [6].

2. Preliminaries

Throughout the paper M will be an n-dimensional (n ≥ 1), second countable,

Hausdorff, smooth manifold. C∞(M) is the ring of real-valued smooth functions

on M ; the C∞(M)-module of smooth vector fields on M is denoted by X(M). d

is the operator of exterior derivative, iX is the substitution operator induced by

X ∈ X(M).

If TM is the 2n-dimensional manifold of all tangent vectors to M , and

τ : TM → M is the natural projection, the “foot map”, then τ is said to be the

tangent bundle of M , TM is the total space of the tangent bundle. The complete

lift of a function f ∈ C∞(M) is

f c : v ∈ TM 7−→ f c(v) := v(f).

The complete lift of a vector field X ∈ X(M) is the unique vector field

Xc ∈ X(TM) such that

Xcf c = (Xf)c, f ∈ C∞(M).

Let T̃M ⊂ TM be an open subset satisfying τ(T̃M) = M , and let

τ̃ := τ ↾ T̃M . If

τ̃∗TM =: T̃M ×M TM :=
{
(u, v) ∈ T̃M × TM | τ̃ (u) = τ(v)

}

and π̃(u, v) := u for (u, v) ∈ τ̃∗TM , then π̃ is a vector bundle of rank n, the

pull-back of τ over τ̃ . The most important special cases arise when T̃M := TM ,

τ̃ := τ and T̃M :=
◦

TM := TM\o(M) (o ∈ X(M) is the zero vector field),

τ̃ :=
◦

τ := τ ↾
◦

TM . Then we get the pull-back bundles π : TM ×M TM → TM

and
◦

π :
◦

TM ×M TM →
◦

TM .

We denote by Γ(π̃) the C∞(T̃M)-module of smooth sections of π̃. A typical
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element of Γ(π̃) is of the form

X̃ : v ∈ T̃M 7−→ X̃(v) = (v, X(v)) ∈ T̃M ×M TM,

where X : T̃M → TM is a smooth map such that τ ◦X = τ̃ . Any vector field X

on M yields a section

X̂ : v ∈ T̃M 7−→ X̂(v) = (v, X ◦ τ̃(v)) ∈ T̃M ×M TM,

of π̃, called a basic vector field. Basic vector fields generate the C∞(T̃M)-module

Γ(π̃). The canonical section δ of π̃ sends v ∈ T̃M to (v, v) ∈ τ̃∗TM .

We denote by T
k
l (π̃) the C∞(T̃M)-module of all tensors of type (k, l) over

Γ(π̃) ((k, l) ∈ N × N; T
0
0(π̃) := C∞(T̃M)). Elements of T

1
l (π̃) may naturally be

interpreted as Γ(π̃)-valued C∞(T̃M)-multilinear maps. The unit tensor in T
1
1(π̃)

will simply be denoted by 1. We note that T
k
l (π) may (and will) be considered

as a submodule of T
k
l (

◦

π).

i denotes the canonical bundle injection T̃M ×M TM → T T̃M, j is the

canonical bundle surjection of T T̃M onto T̃M ×M TM . Then j ◦ i = 0, while

J := i ◦ j is another canonical bundle map, the vertical endomorphism of T T̃M.

i, j and J induce the C∞(T̃M)-homomorhpisms

Γ(π̃) −→ X(TM), X̃ 7−→ iX̃ := i ◦ X̃,

X(T̃M) −→ Γ(π), ξ 7−→ jξ := j ◦ ξ,

X(T̃M) −→ X(TM), ξ 7−→ Jξ := J ◦ ξ.

Then

X
v(T̃M) := i(Γ(π̃)) = Im(J) = Ker(J)

is the C∞(T̃M)-module of vertical vector fields on T̃M , Xv := iX̂ is the vertical

lift of X ∈ X(M). C := iδ is a canonical vertical vector field on T̃M , the Liouville

vector field. For any vector field X on M we have

[C, Xv] = −Xv, [C, Xc] = 0. (1)

We define the vertical differential ∇vF ∈ T
0
1(π̃) of a function F ∈ C∞(T̃M)

by

∇vF (X̃) := (iX̃)F, X̃ ∈ Γ(π̃). (2)

The vertical differential of a section Ỹ ∈ Γ(π̃) is the (1, 1) tensor ∇vỸ ∈ T
1
1(π̃)

given by

∇vỸ (X̃) =: ∇veX Ỹ := j
[
iX̃, η

]
, X̃ ∈ Γ(π̃), (3)
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where η ∈ X(T̃M) is such that jη = Ỹ . (It is easy to check that the result does

not depend on the choice of η.) Using the Leibnizian product rule as a guiding

principle, the operators ∇veX may uniquely be extended to a tensor derivation of

the tensor algebra of Γ(π̃). Forming the vertical differential of a tensor over Γ(π̃),

we use the following convention: if, e.g., A ∈ T
1
2(π̃), then ∇v(A) ∈ T

1
3(π̃), given

by

∇vA(X̃, Ỹ , Z̃) := (∇veXA)(Ỹ , Z̃) = ∇veXA(Ỹ , Z̃) − A(∇veX Ỹ , Z̃) − A(Ỹ ,∇veX Z̃).

3. Finsler functions and associated objects

Let mλ, where λ is a real number, denote the map v ∈ TM 7→ λv ∈ TM .

By a Finsler function we mean a function F : TM → R satisfying:

(F1) F is smooth on
◦

TM .

(F2) F ◦ mλ = λF for all real numbers λ ≥ 0.

(F3) F ≥ 0 and equals 0 only on o(M).

(F4) The (0, 2) tensor g := 1
2∇

v∇vF 2 ∈ T
0
2(

◦

π) is (fibrewise) positive definite.

A Finsler manifold is a pair (M, F ) consisting of a manifold M and a Finsler

function on TM . By Euler’s theorem on homogeneous functions, condition (F2)

may equivalently be written in the form CF = F . E := 1
2F 2 is the energy function

of the Finsler manifold. It is positive-homogeneous of degree 2, i.e., CE = 2E,

smooth on
◦

TM and identically zero on o(M). It may be shown (see e.g. [19]) that,

actually, E is C1 on TM and is C2, if and only if, E is the norm associated with

a Riemannian structure on M in which case E is smooth on TM . g = ∇v∇vE is

said to be the metric tensor of (M, F ). For any vector fields X , Y on M we have

g(X̂, Ŷ ) = Xv(Y vE). (4)

Since [Xv, Y v] = 0, this implies that g is symmetric. It would have been suf-

ficient to assume only the (fibrewise) non-singularity of this tensor for positive

definiteness is then a consequence of the other conditions on F .

Now we list some basic data arising immediately from a Finsler function.

(i) δ♭ : X̃ ∈ Γ(
◦

π) 7−→ δ♭(X̃) := g(X̃, δ) - the canonical 1-form of (M, F ),

(ii) ℓ := 1
F δ ∈ Γ(

◦

π) - the normalized support element field,

(iii) ℓ♭ := 1
F

δ♭ ∈ T
0
1(

◦

π) - the dual form of ℓ,

(iv) η := g − ℓ♭ ⊗ ℓ♭ - the angular metric tensor.
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We have the following relation:

δ♭ = F∇vF = ∇vE. (5)

Indeed for any vector field X on M , δ♭(X̂) := g(X̂, δ) = g(δ, X̂) =

∇v∇vE(δ, X̂) = ∇v

δ∇
vE(X̂) = C(XvE) − ∇vE(∇v

δX̂)
(3)
= [C, Xv]E + Xv(CE) −

∇vE(j[C, Xc])
(1)
= −XvE + 2XvE = 1

2XvF 2 = F (XvF )
(3)
= F∇vF (X̂), which

proves the formula.

From this observation relations

g(δ, δ) = δ♭(δ) = F 2, ℓ♭(ℓ) = g(ℓ, ℓ) = 1, (6)

η = g −∇vF ⊗∇vF (7)

are immediately deduced.

If (M, F ) is a Finsler manifold, then there is a unique vector field S on TM

defined to be zero on o(M), and defined on
◦

TM to be the unique vector field such

that

iSd(∇vF 2 ◦ j) = −dF 2.

Then S is C1 on TM , smooth on
◦

TM and has the properties

JS = C, [C, S] = S, (8)

therefore S is a spray, called the canonical spray of the Finsler manifold. It is

less known, but a proof of this really fundamental fact may also be found in

Warner’s above cited paper [19]. The canonical spray induces an Ehresmann

connection H :
◦

TM ×M TM −→ T
◦

TM such that for any vector field X on M ,

Xh := HX̂ := H ◦ X̂ :=
1

2
(Xc + [Xv, S]). (9)

H is said to be the Barthel connection of (M, F ), Xh is the horizontal lift of X .

H is homogeneous in the sense that
[
C, Xh

]
= 0, X ∈ X(M). (10)

Indeed, 2[C, Xh] = [C, Xc] + [C, [Xv, S]]
(1)
= [C, [Xv, S]] = −[Xv, [S, C]] −

[S, [C, Xv]]
(1)),((8)

= [Xv, S] + [S, Xv] = 0.

An important property of the Barthel connection is that the Finsler function

is a first integral for the horizontal lifts, i.e.,

XhF = 0, X ∈ X(M). (11)

Equivalently, dF ◦ H = 0. For a recent, simple proof of this fact we refer to [16].

To the Barthel connection (as to any Ehresmann connection) we associate
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(i) the horizontal projector h := H ◦ j,

(ii) the vertical projector v := 1
T

◦

TM
− h,

(iii) the vertical map V : T
◦

TM →
◦

TM ×M TM such that i ◦ V = v.

We define the h-Berwald differentials ∇hF ∈ T
0
1(

◦

π) (F ∈ C∞(
◦

TM)) and

∇hỸ ∈ T
1
1(

◦

π) (Ỹ ∈ Γ(
◦

π)) by the following rules:

∇hF (X̃) := (HX̃)F, X̃ ∈ Γ(
◦

π); (12)

∇hỸ (X̃) := ∇heX Ỹ := V
[
HX̃, iỸ

]
, X̃ ∈ Γ(

◦

π). (13)

Then the operators ∇heX (X̃ ∈ Γ(
◦

π)) may uniquely be extended to the whole tensor

algebra of Γ(
◦

π) as tensor derivations. Forming the h-Berwald differential of an

arbitrary tensor, we adopt the same convention as in the vertical case. We note

that the homogeneity of the Barthel connection implies

∇hδ = 0. (14)

From the operators ∇v and ∇h we build the Berwald derivative

∇ : (ξ, Ỹ ) ∈ X(
◦

TM) × Γ(
◦

π) 7−→ ∇ξỸ := ∇v

VξỸ + ∇h

jξỸ ∈ Γ(
◦

π).

Then, by (3) and (13),

∇ξỸ = j
[
vξ,HỸ

]
+ V

[
hξ, iỸ

]
.

In particular,

∇
i eX Ỹ = ∇veX Ỹ , ∇

H eX Ỹ = ∇HeX Ỹ ; X̃, Ỹ ∈ Γ(
◦

π);

∇Xv Ŷ = 0, ∇Xh Ŷ = V
[
Xh, Y v

]
; X, Y ∈ X(M). (15)

4. Curvature properties

We assume for the remainder of the paper that (M, F ) is a fixed n-dimensional

Finsler manifold. To introduce some curvature data in (M, F ), we start from the

classical curvature tensor R∇ of the Berwald derivative on M given by

R∇(ξ, η)Z̃ := ∇ξ∇ηZ̃ −∇η∇ξZ̃ −∇[ξ,η]Z̃, (ξ, η ∈ X(
◦

TM), Z̃ ∈ Γ(
◦

π)).
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By the affine curvature tensor of (M, F ) we mean the tensor H ∈ T
1
3(

◦

π) given by

H(X̃, Ỹ )Z̃ := R∇(HX̃,HỸ )Z̃; X̃, Ỹ , Z̃ ∈ Γ(
◦

π).

Here we followed L. Berwald’s terminology. According to Z. Shen’s usage, we say

that (M, F ) is R-quadratic if ∇vH = 0, i.e., the affine curvature “depends only

on the position”.

The type (1, 3) tensor B given by

B(X̃, Ỹ )Z̃ := R∇(iX̃,HỸ )Z̃; X̃, Ỹ , Z̃ ∈ Γ(
◦

π)

is said to be the Berwald curvature of (M, F ). Evaluating on basic vector fields,

we find that

B(X̂, Ŷ )Ẑ = V
[
Xv,

[
Y h, Zv

]]
or iB(X̂, Ŷ )Ẑ =

[
Xv,

[
Y h, Zv

]]
.

It is then a straightforward matter to check that B is totally symmetric. We also

have:

δ ∈
{
X̃, Ỹ , Z̃

}
⇒ B(X̃, Ỹ )Z̃ = 0. (16)

A Finsler manifold is said to be a Berwald manifold if its Berwald curvature

vanishes. (M, F ) is a weakly Berwald manifold provided trB = 0, where tr

denotes the trace of the C∞(
◦

TM)-linear map X̃ 7→ B(X̃, Ỹ )Z̃.

We shall need the following Bianchi identity:

∇vH(X̃, Ỹ , Z̃, Ũ) + ∇hB(Ỹ , Z̃, X̃, Ũ) −∇hB(Z̃, Ỹ , X̃, Ũ) = 0 (17)

(X̃, Ỹ , Z̃, Ũ ∈ Γ(
◦

π)); see [14], p. 1331.

The Landsberg tensor of (M, F ) is

P := −
1

2
∇hg. (18)

As a special case of 2.50, Lemma 5 in [14], we obtain

Lemma 4.1. The Berwald curvature and the Landsberg tensor of a Finsler

manifold are related by

∇vE ◦ B = −2P, (19)

where E is the energy function.
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Notice that relation (19) implies immediately that Berwald manifolds have

vanishing Landsberg tensor.

By the stretch tensor of (M, F ) we mean the tensor Σ ∈ T
0
4(

◦

π) given by

1

2
Σ(X̃, Ỹ , Z̃, Ũ) := ∇hP(X̃, Ỹ , Z̃, Ũ) −∇hP(Ỹ , X̃, Z̃, Ũ). (20)

The next important observation gives an index-free reformulation of relation

(3.3.2.5) in [10]. For completeness we present an immediate (and also index-free)

proof, which differs essentially from Matsumoto’s argument based on classical

tensor calculus.

Proposition 4.2. For any sections X̃ , Ỹ , Z̃, Ũ in Γ(
◦

π),

∇vE ◦ ∇vH(X̃, Ỹ , Z̃, Ũ) = Σ(Ỹ , X̃, Z̃, Ũ). (21)

Proof. It is enough to check the relation for basic vector fields X̂, Ŷ , Ẑ, Û .

∇vE(∇vH(X̂, Ŷ , Ẑ, Û))
(2)
= (i∇vH(X̂, Ŷ , Ẑ, Û))E

(17)
= i(−∇hB(Ŷ , Ẑ, X̂, Û) + ∇hB(Ẑ, Ŷ , X̂, Û))E.

Here

∇hB(Ŷ , Ẑ, X̂, Û) = (∇Y hB)(Ẑ, X̂, Û) = ∇Y hB(Ẑ, X̂)Û

− B(∇Y hẐ, X̂)Û − B(Ẑ,∇Y hX̂)Û − B(Ẑ, X̂)∇Y hÛ ,

and by (15)

∇Y hB(Ẑ, X̂)Û = V
[
Y h, iB(Ẑ, X̂)Û

]
.

Therefore, applying (19) we get

i∇hB(Ŷ , Ẑ, X̂, Û)E =
[
Y h, iB(Ẑ, X̂)Û

]
E + 2P(∇Y hẐ, X̂, Û)

+ 2P(Ẑ,∇Y hX̂, Û) + 2P(Ẑ, X̂,∇Y hÛ).

Since Y hE = 0 by (11), at the right-hand side the first term is

Y h((iB(Ẑ, X̂)Û)E)
(19)
= −2Y hP(Ẑ, X̂, Û),

therefore the right-hand side is just −2∇hP(Ŷ , Ẑ, X̂, Û). In the same way we find

that

i∇hB(Ẑ, Ŷ , X̂, Û)E = −2∇hP(Ẑ, Ŷ , X̂, Û).

Hence

∇vE
(
∇vH(X̂, Ŷ , Ẑ, Û)

)
= 2

(
∇hP(Ŷ , Ẑ, X̂, Û) −∇hP(Ẑ, Ŷ , X̂, Û)

)

(20)
= Σ(Ŷ , Ẑ, X̂, Û),

as was to be proved. �

Corollary 4.3. R-quadratic Finsler manifolds have vanishing stretch tensor.
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5. P-Berwald manifolds

Lemma 5.1. If

p := 1−
1

2E
∇vE ⊗ δ, (22)

then p(δ) = 0, and p is a projection operator on Γ(
◦

π), i.e., p2 = p.

Proof. Since the energy function is positive-homogeneous of degree 2,

p(δ) := δ −
1

2E
∇vE(δ)δ = δ −

1

2E
(CE)δ = δ − δ = 0.

Using this observation, for any section X̃ in Γ(
◦

π),

p2(X̃) = p(X̃ −
1

2E
(iX̃)Eδ) = p(X̃),

thus proving the claim. �

By the projected tensor of a tensor K ∈ T
0
k(

◦

π) or L ∈ T
1
k(

◦

π) we mean the

tensors pK and pL given by

pK(X̃1, . . . , X̃k) := K(pX̃1, . . . ,pX̃k)

and

pL(X̃1, . . . , X̃k) := p(L(pX̃1, . . . ,pX̃k)).

Corollary 5.2. Let K ∈ T
0
k(

◦

π), L ∈ T
1
k(

◦

π) . If

δ ∈
{
X̃1, . . . , X̃k

}
⇒ K(X̃1, . . . , X̃k) = 0, L(X̃1, . . . , X̃k) = 0,

then pK = K, pL = p ◦ L.

Example. The projected tensor of the metric tensor g is the angular metric

tensor η. Indeed, for any vector fields X , Y on M ,

pg(X̂, Ŷ ) := g
(
p(X̂),p(Ŷ )

)
= g

(
X̂ −

1

2E
(XvE)δ, Ŷ −

1

2E
(Y vE)δ

)

= g(X̂, Ŷ ) −
1

2E
(XvE)g(δ, Ŷ ) −

1

2E
(Y vE)g(X̂, δ)

+
1

4E2
(XvE)(Y vE)g(δ, δ)

(5),(6)
= g(X̂, Ŷ ) −

1

F 2
(XvE)∇vE(Ŷ )

−
1

F 2
(Y vE)∇vE(X̂) +

1

F 2
(XvE)(Y vE)

=

(
g −

1

F 2
∇vE ⊗∇vE

)
(X̂, Ŷ ) = (g −∇vF ⊗∇vF )(X̂, Ŷ ) = η(X̂, Ŷ ).



378 Sándor Bácsó and Zoltán Szilasi

Lemma 5.3. The projected tensor of the Berwald curvature of a Finsler

manifold is

pB = B +
1

E
P ⊗ δ. (23)

Proof. By (16) and Corollary 5.2, pB = p ◦ B. Now, for any vector fields

X , Y , Z on M ,

(pB)(X̂, Ŷ , Ẑ) = p(B(X̂, Ŷ )Ẑ)
(22)
= B(X̂, Ŷ )Ẑ −

1

2E
(iB(X̂, Ŷ )Ẑ)Eδ

(19)
= B(X̂, Ŷ )Ẑ +

1

E
P(X̂, Ŷ , Ẑ)δ =

(
B +

1

E
P ⊗ δ

)
(X̂, Ŷ , Ẑ),

hence our statement. �

Definition. By a p-Berwald manifold we mean a Finsler manifold in which

the projected Berwald curvature vanishes, i.e., which has the property

B +
1

E
P ⊗ δ = 0. (24)

Proposition 5.4. Any p-Berwald manifold is a weakly Berwald manifold.

Proof. We have to show that if (M, F ) is a p-Berwald manifold, then

trB = 0. By (24) and Lemma 1 of [15], trB = − 1
E

tr(P ⊗ δ) = − 1
E

iδP. Here

iδP = − 1
2 iδ∇

hg = 0; for an index-free proof of this well-known fact we refer to

[14], 3.11 (p. 1381). �

Theorem 5.5. A p-Berwald manifold is R-quadratic, if and only if, its

stretch tensor vanishes.

Proof. The necessity of the condition is a consequence of Corollary 4.3. To

prove the sufficiency, we show that in a p-Berwald manifold we have

∇vH(X̃, Ỹ , Z̃, Ũ) =
1

F 2
Σ(Ỹ , Z̃, X̃, Ũ) ⊗ δ; X̃, Ỹ , Z̃, Ũ ∈ Γ(

◦

π). (25)

Observe first that

∇hB
(24)
= −∇h

(
1

E
P ⊗ δ

)
(11),(14)

= −
1

E
∇hP⊗ δ.

Now, applying Bianchi identity (17), we get

∇vH(X̃, Ỹ, Z̃, Ũ) = ∇hB(Z̃, Ỹ, X̃, Ũ) −∇hB(Ỹ, Z̃, X̃, Ũ) = −
1

E
(∇hP(Z̃, Ỹ, X̃, Ũ)

−∇hP(Ỹ , Z̃, X̃, Ũ)) ⊗ δ
(20)
=

1

F 2
Σ(Ỹ , Z̃, X̃, Ũ).

This proves (25), whence the statement follows. �
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To give a more precise characterization of p-Berwald manifolds, we need the

concept of Douglas manifolds. By the Douglas curvature of a Finsler manifold we

mean the tensor

D := B−
1

n + 1
(trB⊙ 1 + (∇v trB) ⊗ δ), (26)

where the symbol ⊙ denotes symmetric product (without any extra numerical

factor). An index-free representation of the Douglas curvature was first presented

by J. Szilasi and Sz. Vattamány [13]; formula (26) is just a “pull back version”

of formula (6.2b) of the cited paper. Finsler manifolds with vanishing Douglas

curvature were baptized Douglas manifolds by S. Bácsó and M. Matsumoto,

who devoted a series of papers to their thorough investigation [1]–[4]. Observe

that in weakly Berwald manifolds, and hence in p-Berwald manifolds the Douglas

and Berwald curvature coincide.

Lemma 5.6. The projected tensor of the Douglas curvature is

pD = pB −
1

n + 1
trB⊙ p = B +

1

E
P ⊗ δ −

1

n + 1
trB⊙ p. (27)

Proof. First we check that D satisfies the condition of Corollary 5.2, i.e.,

D(X̃, Ỹ )Z̃ = 0, if δ ∈
{
X̃, Ỹ , Z̃

}
. Let, for example, X̃ := δ. Then

D(δ, Ỹ , Z̃) := B(δ, Ỹ , Z̃) −
1

n + 1
(trB(δ, Ỹ )Z̃ + trB(Ỹ , Z̃)δ + trB(Z̃, δ)Ỹ )

−
1

n + 1
(∇C trB)(Ỹ , Z̃)δ

(16)
= −

1

n + 1
(trB(Ỹ , Z̃)δ + ∇C trB)(Ỹ , Z̃)δ).

It is known (see e.g. [13], Proposition 4.4) that B is homogeneous of degree −1,

i.e., ∇CB = −B. Thus ∇C trB = tr∇CB = − trB, and hence D(δ, Ỹ , Z̃) = 0.

The other two cases may be handled similarly. Now it follows that

pD = p ◦ D = pB−
1

n + 1
(p(trB⊙ 1) + p(∇v trB ⊗ δ).

Here, for any vector fields X , Y , Z on M ,

p(trB ⊙ 1(X̂, Ŷ , Ẑ)) := p(trB ⊙ 1(pX̂,pŶ ,pẐ))
(16),Cor.5.2

= p(trB(X̂, Ŷ )p(Ẑ)

+ trB(Ŷ , Ẑ)p(X̂) + trB(Ẑ, X̂)p(Ŷ )) = trB(X̂, Ŷ )p(Ẑ)

+ trB(Ŷ , Ẑ)p(X̂) + trB(Ẑ, X̂)p(Ŷ )

= (trB ⊙ P)(X̂, Ŷ , Ẑ),
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while

p(∇v trB⊗ δ)(X̂, Ŷ , Ẑ) = p((∇v

p bX trB)(pŶ ,pẐ)δ) = 0,

since p(δ) = 0.

This concludes the proof of (27). �

Theorem 5.7. If (M, F ) is a Finsler manifold of dimension n > 2, then

(M, F ) is a p-Berwald manifold, if and only if, it is a weakly Berwald Douglas

manifold.

Proof. If (M, F ) is a p-Berwald manifold, then it is weakly Berwald by

Proposition 5.4, therefore (27) reduces to pD = 0. However, by a theorem of

T. Sakaguchi [11] (see also [18]), pD = 0 is equivalent to the vanishing of the

Douglas tensor under the condition n > 2.

Conversely, if (M, F ) is a weakly Berwald Douglas manifold, then D =

pD = 0 and trB = 0 imply by (27) that (M, F ) is a p-Berwald manifold. �

Finally, we have a look at the “exceptional case” dimM = 2. Then one can

choose a section m ∈ Γ(
◦

π) such that

g(ℓ, m) = 0, g(m, m) = 1;

the pair (ℓ, m) is said to be a Berwald frame on (M, F ). An immediate calculation

shows that the only non vanishing component of the tensor ∇vg with respect to

(ℓ, m) is the function

I :=
1

2
∇vg(m, m, m),

it is called the main scalar of (M, F ). For the Landsberg tensor of (M, F ) we

have the expression

2P =
SI

I
∇vg, (28)

where S is the canonical spray. By (16), the only surviving component of the

Berwald curvature is B(m, m)m. It may be shown that

B(m, m)m = −
2SI

F
ℓ +

(
(im)(SI) + (Hm)I

)
m, (29)

where H is the Barthel connection arising from S according to (9). By (28) and

(29), condition B + 1
E P ⊗ δ = 0 takes the form

B(m, m)m +
1

2E

SI

I
∇vg(m, m, m)δ = 0. (30)

Since 1
2E

SI
I
∇vg(m, m, m)δ = 1

E
(SI)δ = 2

F
(SI)ℓ, (29) and (30) yield

(im)SI + (Hm)I = 0. (31)

Thus we obtain:
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Theorem 5.8. A two-dimensional Finsler manifold is a p-Berwald manifold,

if and only if, the main scalar satisfies relation (31).
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[6] S. Bácsó and R. Yoshikawa, Weakly-Berwald spaces, Publicationes Mathematicae Debre-

cen 61 (2002), 219–231.

[7] D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemann–Finsler Geometry,
Springer Verlag, 2000.

[8] M. Matsumoto, On the indicatrices of a Finsler space, Periodica Mathematica Hungarica

8 (1977), 185–191.

[9] M. Matsumoto, Foundations of Finsler Geometry and special Finsler spaces, Kaiseisha

Press, 1986.

[10] M. Matsumoto, Finsler Geometry in the 20th Century, in: Handbook of Finsler Geometry,
(by P. Antonelli, ed.), Kluwer Academic Publishers, Dordrecht, 2003.

[11] T. Sakaguchi, On Finsler spaces of scalar curvature, Tensor, N. S. 38 (1982), 211–219.

[12] Z. Shen, Differential Geometry of Spray and Finsler spaces, Kluwer Academic Press, 2001.
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