On the Weyl curvature of Deszcz

By BILKIS JAHANARA (Leuven), STEFAN HAESEN (Leuven), MIROSLAVA PETROVIĆ-TORGAŠEV (Kragujevac) and LEOPOLD VERSTRAELEN (Leuven)

Abstract

Geometrical characterizations are given for the (0,6)-tensor $R \cdot C$ and the $(0,6)$ Tachibana-Weyl tensor $Q(g, C):=-\wedge_{g} \cdot C$, whereby C denotes the $(0,4)$ Weyl conformal curvature tensor of a Riemannian manifold $(M, g), R$ denotes the curvature operator acting on C as a derivation, and where the natural metrical endomorphism \wedge_{g} also acts as a derivation on C. By comparison of these $(0,6)$-tensors $R \cdot C$ and $Q(g, C)$, a new scalar valued Riemannian curvature invariant $L_{C}(p, \pi, \bar{\pi})$ is determined on (M, g), called the Weyl curvature of Deszcz, which in general depends on two tangent 2-planes π and $\bar{\pi}$ at the same point p, and of which the isotropy determines that M is Weyl pseudo-symmetric in the sense of Deszcz.

1. Introduction

Recently, the parallel transport of Riemann curvatures and Ricci curvatures on a (semi-)Riemannian manifold (M, g) around infinitesimal co-ordinate parallelograms was studied in [13] and [14]. There, amongst others, new geometrical interpretations of the $(0,6)$ curvature tensor $R \cdot R$, whereby the first R stands for the curvature operator acting as a derivation on the second R which stands for the $(0,4)$ Riemann-Christoffel curvature tensor, of the $(0,6)$ Tachibana tensor $Q(g, R):=-\wedge_{g} \cdot R$, whereby the metrical endomorphism \wedge_{g} also acts as a derivation on the $(0,4)$ Riemann-Christoffel curvature tensor, as well as of the $(0,4)$ curvature tensor $R \cdot S$, whereby S denotes the $(0,2)$ Ricci tensor and of the

[^0]Tachibana-Ricci tensor $Q(g, S):=-\wedge_{g} \cdot S$ are given. By comparison of the $(0,6)$ tensors $R \cdot R$ and $Q(g, R)$, a new scalar valued Riemannian invariant curvature function was determined on (M, g), the so-called double sectional curvature or the sectional curvature of Deszcz $L_{R}(p, \pi, \bar{\pi})$, which depends on two tangent 2-planes π and $\bar{\pi}$ at any point p of M. The manifolds (M, g) for which the sectional curvature of Deszcz is isotropic, i.e., does not depend on the planes at p, but remains a scalar valued function which at most depends only on the points of M, are the manifolds which are pseudo-symmetric in the sense of Deszcz (see e.g. [7], [17]). And similarly, by comparison of the (0,4)-tensors $R \cdot S$ and $Q(g, S)$, another new scalar valued Riemannian invariant curvature function was determined on (M, g), the so-called Ricci curvature of $\operatorname{Deszcz}, L_{S}(p, d, \bar{\pi})$, which depends on a tangent direction d and a tangent plane $\bar{\pi}$ at any point p of M. The manifolds (M, g) for which the Ricci curvature of Deszcz is isotropic, i.e., depends at most only on the points of M, are the manifolds which are Ricci pseudo-symmetric in the sense of Deszcz (see e.g. [7], [8], [14]).

In the present article, we basically make a similar study concerning the $(0,4)$ Weyl conformal curvature tensor C on a manifold (M, g) of dimension $n \geq 4$. New geometrical interpretations of the (0,6)-tensors $R \cdot C$ and $Q(g, C):=-\wedge_{g} \cdot C$ are given, in particular thus characterizing the Weyl semi-symmetric spaces (R. $C=0)$ and the conformally flat spaces $(C=0)$. Then, the conformal sectional curvature of Deszcz or the Weyl curvature of $\operatorname{Deszcz}, L_{C}(p, \pi, \bar{\pi})$, is defined. This scalar curvature invariant $L_{C}(p, \pi, \bar{\pi})$ is isotropic with respect to both planes π and $\bar{\pi}$ at all points p of M if and only if the manifold is Weyl pseudo-symmetric in the sense of Deszcz (see e.g. [5], [6], [7]). For dimension $n=3, C$ vanishes identically and therefore hereafter we always assume $n \geq 4$. Further, we recall that when $n \geq 5$, a Riemannian manifold M is pseudo-symmetric if and only if it is Weyl pseudo-symmetric, but that for $n=4$ the class of Weyl pseudo-symmetric spaces is essentially larger than the class of pseudo-symmetric spaces as shown in [5].

2. A geometrical interpretation of $R \cdot C$

In an n-dimensional ($n \geq 4$) Riemannian manifold M with metric tensor g, let ∇ denote the Levi-Civita connection. Then, the (1, 1)-curvature operator $\mathcal{R}(X, Y)$, the $(0,4)$ curvature tensor R, the $(0,2)$ Ricci tensor S and the scalar curvature τ of (M, g) are respectively given by:

$$
\mathcal{R}(X, Y)=\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]},
$$

$$
\begin{gather*}
R\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=g\left(\mathcal{R}\left(X_{1}, X_{2}\right) X_{3}, X_{4}\right), \\
S(X, Y)=\sum_{i=1}^{n} R\left(E_{i}, X, Y, E_{i}\right), \quad \tau=\sum_{j=1}^{n} S\left(E_{j}, E_{j}\right), \tag{1}
\end{gather*}
$$

whereby $\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$ denotes any local orthonormal frame field on M, [., .] denotes the Lie bracket of vector fields and $X_{1}, X_{2}, X_{3}, X_{4}, X, Y$ denote any tangent vector fields on M. And, for $n \geq 4$, the $(0,4)$ Weyl conformal curvature tensor C is then given by

$$
\begin{align*}
& C\left(X_{1}, X_{2}, X_{3}, X_{4}\right):=R\left(X_{1}, X_{2}, X_{3}, X_{4}\right) \\
& \quad+\frac{1}{n-2}\left\{g\left(X_{1}, X_{3}\right) S\left(X_{2}, X_{4}\right)+g\left(X_{2}, X_{4}\right) S\left(X_{1}, X_{3}\right)\right. \\
& \left.\quad-g\left(X_{1}, X_{4}\right) S\left(X_{2}, X_{3}\right)-g\left(X_{2}, X_{3}\right) S\left(X_{1}, X_{4}\right)\right\} \\
& \quad+\frac{\tau}{(n-1)(n-2)}\left\{g\left(X_{1}, X_{4}\right) g\left(X_{2}, X_{3}\right)-g\left(X_{1}, X_{3}\right) g\left(X_{2}, X_{4}\right)\right\} \tag{2}
\end{align*}
$$

The (0,6)-tensor $R \cdot C$ is obtained by the action of the curvature operator \mathcal{R} as a derivation on the $(0,4)$ Weyl conformal curvature tensor C :

$$
\begin{align*}
(R \cdot C) & \left(X_{1}, X_{2}, X_{3}, X_{4} ; X, Y\right)=(\mathcal{R}(X, Y) \cdot C)\left(X_{1}, X_{2}, X_{3}, X_{4}\right) \\
= & -C\left(\mathcal{R}(X, Y) X_{1}, X_{2}, X_{3}, X_{4}\right)-C\left(X_{1}, \mathcal{R}(X, Y) X_{2}, X_{3}, X_{4}\right) \\
& -C\left(X_{1}, X_{2}, \mathcal{R}(X, Y) X_{3}, X_{4}\right)-C\left(X_{1}, X_{2}, X_{3}, \mathcal{R}(X, Y) X_{4}\right) \tag{3}
\end{align*}
$$

Now let \mathcal{P} be any co-ordinate parallelogram on the manifold M cornered at the point p for which the co-ordinate values x and y at p change along the sides by amounts Δx and Δy (Figure 1). Let $\vec{x}=\left.\frac{\partial}{\partial x}\right|_{p}$ and $\vec{y}=\left.\frac{\partial}{\partial y}\right|_{p}$ be the natural tangent vectors at p of the x and y co-ordinate lines, respectively.
Then, as is well known and which goes back to Schouten in 1918 [16], after parallel transport of any vector \vec{z} at p all around an infinitesimal co-ordinate parallelogram \mathcal{P} (Figure 2), the resulting vector \vec{z}^{\star} at p is given by

$$
\begin{equation*}
\vec{z}^{\star}=\vec{z}+[\mathcal{R}(\vec{x}, \vec{y}) \vec{z}] \Delta x \Delta y+O^{>2}(\Delta x, \Delta y) \tag{4}
\end{equation*}
$$

For any plane π tangent to M at p the Weyl sectional curvature or, in short, the Weyl curvature, $K_{C}(p, \pi)$, is given by

$$
\begin{equation*}
K_{C}(p, \pi)=C(\vec{v}, \vec{w}, \vec{w}, \vec{v}) \tag{5}
\end{equation*}
$$

whereby \vec{v} and \vec{w} is any pair of orthonormal tangent vectors at p spanning $\pi=\vec{v} \wedge$ \vec{w}. Since C is a curvature tensor, similarly as shown by Cartan for the RiemannChristoffel tensor R and the Riemann sectional curvatures K, the knowledge of the

Figure 1. A co-ordinate parallelogram

Figure 2. Parallel transport of a vector around a co-ordinate parallelogram
"full" tensor C is equivalent to the knowledge of the Weyl sectional curvatures K_{C}. Using (2), the Weyl sectional curvature of a plane $\pi=\vec{v} \wedge \vec{w}$ at $p \in M$ can be expressed in terms of the Riemann sectional curvature $K(p, \pi)=R(\vec{v}, \vec{w}, \vec{w}, \vec{v})$ and of the Ricci curvatures of the directions d and \bar{d} corresponding with the vectors \vec{v} and \vec{w}, i.e., $\operatorname{Ric}(p, d)=S(\vec{v}, \vec{v}), \operatorname{Ric}(p, \bar{d})=S(\vec{w}, \vec{w})$, as follows,

$$
K_{C}(p, \pi)=K(p, \pi)-\frac{1}{n-2}\{\operatorname{Ric}(p, d)+\operatorname{Ric}(p, \bar{d})\}+\frac{\tau}{(n-1)(n-2)}
$$

By the metrical character of the Levi-Civita connection ∇, in particular, any pair of orthonormal vectors \vec{v} and \vec{w} at p after parallel transport around any co-ordinate parallelogram \mathcal{P} yields again a pair of orthonormal vectors \vec{v}^{\star} and \vec{w}^{\star} at p. These vectors span the plane $\pi^{\star}=\vec{v}^{\star} \wedge \vec{w}^{\star}$ which is the parallel transported plane around \mathcal{P} of the plane $\pi=\vec{v} \wedge \vec{w}$ (Figure 3).

Figure 3. Parallel transport of a plane around a co-ordinate parallelogram
Hence, by (3), (4) and (5) and by the fact that C is a curvature tensor, it follows that

$$
\begin{aligned}
K_{C}\left(p, \pi^{\star}\right) & =C\left(\vec{v}^{\star}, \vec{w}^{\star}, \vec{w}^{\star}, \vec{v}^{\star}\right) \\
& =K_{C}(p, \pi)-[(R \cdot C)(\vec{v}, \vec{w}, \vec{w}, \vec{v} ; \vec{x}, \vec{y})] \Delta x \Delta y+O^{>2}(\Delta x, \Delta y)
\end{aligned}
$$

We recall that a Riemannian manifold is said to be Weyl semi-symmetric if $R \cdot C=0$. Then, denoting by $\Delta_{\bar{\pi}}^{\star} K_{C}(p, \pi)=K_{C}(p, \pi)-K_{C}\left(p, \pi^{\star}\right)$ the change in Weyl sectional curvature $K_{C}(p, \pi)$ under the parallel transport of the plane π around an infinitesimal parallelogram \mathcal{P}, we can formulate the following.

Theorem 1. In second order approximation, the tensor $R \cdot C$ of a Riemannian manifold (of dimension ≥ 4) measures the change of the Weyl sectional curvature $K_{C}(p, \pi)$ of a plane $\pi=\vec{v} \wedge \vec{w}$ at any point p under parallel transport around any infinitesimal co-ordinate parallelogram \mathcal{P} cornered at p and tangent to \vec{x} and \vec{y}, i.e.,

$$
\begin{equation*}
\Delta_{\pi}^{\star} K_{C}(p, \pi) \approx[(R \cdot C)(\vec{v}, \vec{w}, \vec{w}, \vec{v} ; \vec{x}, \vec{y})] \Delta x \Delta y \tag{6}
\end{equation*}
$$

where $\bar{\pi}$ is the tangent plane at p spanned by \vec{x} and \vec{y}.
Corollary 2. A Riemannian manifold (of dimension ≥ 4) is Weyl semisymmetric if and only if, up to second order, the Weyl sectional curvature for any 2-plane π at any point p is invariant under the parallel transport of π around any infinitesimal co-ordinate parallelogram \mathcal{P} cornered at p.

The next properties readily follow from the algebraic symmetries of the Weyl tensor C.

Lemma 3. The tensor $R \cdot C$ has the following algebraic symmetry properties:

$$
\begin{align*}
& (R \cdot C)\left(X_{1}, X_{2}, X_{3}, X_{4} ; X, Y\right)=-(R \cdot C)\left(X_{2}, X_{1}, X_{3}, X_{4} ; X, Y\right) \tag{i}\\
& \quad=-(R \cdot C)\left(X_{1}, X_{2}, X_{4}, X_{3} ; X, Y\right)=(R \cdot C)\left(X_{3}, X_{4}, X_{1}, X_{2} ; X, Y\right) \\
& \quad=-(R \cdot C)\left(X_{1}, X_{2}, X_{3}, X_{4}, Y, X\right) \\
& \quad(R \cdot C)\left(X_{1}, X_{2}, X_{3}, X_{4} ; X, Y\right)+(R \cdot C)\left(X_{1}, X_{3}, X_{4}, X_{2} ; X, Y\right) \tag{ii}\\
& \quad+(R \cdot C)\left(X_{1}, X_{4}, X_{2}, X_{3} ; X, Y\right)=0
\end{align*}
$$

3. On the Tachibana-Weyl tensor

The simplest $(0,6)$-tensor on a Riemannian manifold which has the same algebraic symmetry properties as the $(0,6)$-tensor $R \cdot C$ may well be the $(0,6)$ tensor $Q(g, C):=-\wedge_{g} \cdot C$, defined by the action as a derivation on C of the metrical endomorphism $X \wedge_{g} Y$. This endomorphism is defined by sending a tangent vector field Z to the tangent vector field given by

$$
\left(X \wedge_{g} Y\right) Z=g(Y, Z) X-g(X, Z) Y
$$

Then,

$$
\begin{aligned}
& Q(g, C)\left(X_{1}, X_{2}, X_{3}, X_{4} ; X, Y\right):=-\left[\left(X \wedge_{g} Y\right) \cdot C\right]\left(X_{1}, X_{2}, X_{3}, X_{4}\right) \\
& \quad=C\left(\left(X \wedge_{g} Y\right) X_{1}, X_{2}, X_{3}, X_{4}\right)+C\left(X_{1},\left(X \wedge_{g} Y\right) X_{2}, X_{3}, X_{4}\right) \\
& \quad+C\left(X_{1}, X_{2},\left(X \wedge_{g} Y\right) X_{3}, X_{4}\right)+C\left(X_{1}, X_{2}, X_{3},\left(X \wedge_{g} Y\right) X_{4}\right)
\end{aligned}
$$

By analogy with the action of the natural metrical endomorphism as a derivation on the $(0,4)$ curvature tensor R, i.e., $Q(g, R):=-\wedge_{g} \cdot R$, which is called the Tachibana tensor of the Riemannian manifold (M, g), we will call $Q(g, C):=$ $-\wedge_{g} \cdot C$ the Tachibana-Weyl tensor of (M, g).

Concerning the geometrical meaning of this tensor we first state the following.

Theorem 4. A Riemannian manifold (M, g) of dimension $n \geq 4$ is conformally flat if and only if its Tachibana-Weyl tensor vanishes identically.

Proof. By a classical result of Weyl, a Riemannian manifold of dimension ≥ 4 is conformally flat if and only if its conformal curvature tensor C vanishes identically [18]. And, of course, $C \equiv 0$ automatically implies that $Q(g, C) \equiv 0$.

Conversely, if $Q(g, C) \equiv 0$ we need to show that $C \equiv 0$. Algebraically, just like the fact that $Q(g, R) \equiv 0$ implies that the sectional curvature K of the Riemannian manifold (M, g) is constant (see e.g. [9]), $Q(g, C) \equiv 0$ straightforwardly implies that K_{C} is constant. And, since the trace of C is zero, the result follows.

A different kind of geometrical meaning of the tensor $Q(g, C)$ corresponds somewhat to the one given in Theorem 1 for the tensor $R \cdot C$. It is related to the geometrical meaning of the endomorphism \wedge_{g} according to which

$$
\widetilde{\vec{z}}=\vec{z}-\left[\left(\vec{x} \wedge_{g} \vec{y}\right) \vec{z}\right] \Delta \varphi+O^{>1}(\Delta \varphi)
$$

whereby $\widetilde{\vec{z}}$ is the vector obtained from a tangent vector \vec{z} at p after the rotation over an angle $\Delta \varphi$ of the projection of \vec{z} on $\bar{\pi}=\vec{x} \wedge \vec{y}$, while keeping the component of \vec{z} perpendicular to $\bar{\pi}$ fixed (Figure 4) [13].

Figure 4. A geometrical interpretation of the vector $\left(\vec{x} \wedge_{g} \vec{y}\right) \vec{z}$
Now, consider at p any two orthonormal vectors \vec{v} and \vec{w} and let $\widetilde{\vec{v}}$ and $\widetilde{\vec{w}}$ be the vectors obtained from \vec{v} and \vec{w} after such a rotation over an infinitesimal angle $\Delta \varphi$ of the projections of \vec{v} and \vec{w} on $\bar{\pi}=\vec{x} \wedge \vec{y}$. Comparing the Weyl sectional
curvatures of the planes $\pi=\vec{v} \wedge \vec{w}$ and $\widetilde{\pi}=\widetilde{\vec{v}} \wedge \widetilde{\vec{w}}$, we find that

$$
K_{C}(p, \widetilde{\pi})=K_{C}(p, \pi)-[Q(g, C)(\vec{v}, \vec{w}, \vec{w}, \vec{v} ; \vec{x}, \vec{y})] \Delta \varphi+O^{>1}(\Delta \varphi)
$$

Then, denoting by $\tilde{\Delta_{\bar{\pi}}} K_{C}(p, \pi)=K_{C}(p, \pi)-K_{C}(p, \tilde{\pi})$ the change in Weyl sectional curvature $K_{C}(p, \pi)$ under the above kind of rotations over an infinitesimal angle $\Delta \varphi$, we can formulate the following.

Theorem 5. In first order approximation, the Tachibana-Weyl tensor $Q(g, C)$ of a Riemannian manifold (of dimension ≥ 4) measures the change of the Weyl sectional curvature $K_{C}(p, \pi)$ of a plane $\pi=\vec{v} \wedge \vec{w}$ at any point p under an infinitesimal rotation over an angle $\Delta \varphi$ of the projections of \vec{v} and \vec{w} on $\bar{\pi}=\vec{x} \wedge \vec{y}$, i.e.,

$$
\begin{equation*}
\widetilde{\Delta_{\bar{\pi}}} K_{C}(p, \pi) \approx[Q(g, C)(\vec{v}, \vec{w}, \vec{w}, \vec{v} ; \vec{x}, \vec{y})] \Delta \varphi \tag{7}
\end{equation*}
$$

4. Definition and properties of the Weyl curvature of Deszcz

Let (M, g) be an $n(\geq 4)$-dimensional Riemannian manifold which is not conformally flat and denote by \mathcal{U}_{C} the set of points where the Tachibana-Weyl tensor $Q(g, C)$ is not identically zero, i.e., $\mathcal{U}_{C}=\left\{p \in M \mid Q(g, C)_{p} \neq 0\right\}$. Then, at a point $p \in \mathcal{U}_{C}$, a plane $\pi=\vec{v} \wedge \vec{w}$ is said to be Weyl curvature-dependent with respect to a plane $\bar{\pi}=\vec{x} \wedge \vec{y}$ when $Q(g, C)(\vec{v}, \vec{w}, \vec{w}, \vec{v} ; \vec{x}, \vec{y}) \neq 0$. This definition is independent of the choice of bases for π and $\bar{\pi}$.

At a point $p \in \mathcal{U}_{C}$, let a plane $\pi=\vec{v} \wedge \vec{w}$ be Weyl curvature-dependent with respect to a plane $\bar{\pi}=\vec{x} \wedge \vec{y}$. Then, we define the Weyl curvature of Deszcz of the planes π and $\bar{\pi}$ at the point p as the scalar

$$
L_{C}(p, \pi, \bar{\pi})=\frac{(R \cdot C)(\vec{v}, \vec{w}, \vec{w}, \vec{v} ; \vec{x}, \vec{y})}{Q(g, C)(\vec{v}, \vec{w}, \vec{w}, \vec{v} ; \vec{x}, \vec{y})}
$$

This definition is again independent of the choice of bases for the planes π and $\bar{\pi}$.
Theorem 6. At any point $p \in \mathcal{U}_{C}$, the tensor $R \cdot C$ of a Riemannian manifold M is completely determined by the Weyl curvatures of $\operatorname{Deszcz} L_{C}(p, \pi, \bar{\pi})$.

Proof. Assume there exists a $(0,6)$-tensor W with the same algebraic symmetries as $R \cdot C$ and so that for any two Weyl curvature-dependent planes $\pi=\vec{v} \wedge \vec{w}$ and $\bar{\pi}=\vec{x} \wedge \vec{y}$ at p,

$$
\frac{(R \cdot C)(\vec{v}, \vec{w}, \vec{w}, \vec{v} ; \vec{x}, \vec{y})}{Q(g, C)(\vec{v}, \vec{w}, \vec{w}, \vec{v} ; \vec{x}, \vec{y})}=\frac{W(\vec{v}, \vec{w}, \vec{w}, \vec{v} ; \vec{x}, \vec{y})}{Q(g, C)(\vec{v}, \vec{w}, \vec{w}, \vec{v} ; \vec{x}, \vec{y})}
$$

We have to prove that $\forall \vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}, \vec{x}_{4}, \vec{x}_{5}, \vec{x}_{6} \in T_{p} M$,

$$
(R \cdot C)\left(\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}, \vec{x}_{4} ; \vec{x}_{5}, \vec{x}_{6}\right)=W\left(\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}, \vec{x}_{4} ; \vec{x}_{5}, \vec{x}_{6}\right) .
$$

Let T be the (0,6)-tensor $T=R \cdot C-W$. Obviously, T has the same algebraic symmetries as $R \cdot C$ and W. Further, for every pair of Weyl curvature-dependent planes $\pi=\vec{v} \wedge \vec{w}$ and $\bar{\pi}=\vec{x} \wedge \vec{y}$,

$$
\begin{equation*}
T(\vec{v}, \vec{w}, \vec{w}, \vec{v} ; \vec{x}, \vec{y})=0 . \tag{8}
\end{equation*}
$$

When two planes $\pi=\vec{v} \wedge \vec{w}$ and $\bar{\pi}=\vec{x} \wedge \vec{y}$ are not Weyl curvature-dependent there holds that $Q(g, C)(\vec{v}, \vec{w}, \vec{w}, \vec{v} ; \vec{x}, \vec{y})=0$. Using the following argument from [10] we show that also in this case $T(\vec{v}, \vec{w}, \vec{w}, \vec{v} ; \vec{x}, \vec{y})=0$. Namely, since $Q(g, C)(\vec{v}, \vec{w}, \vec{w}, \vec{v} ; \vec{x}, \vec{y})$ is a polynomial in the components of $\vec{v}, \vec{w}, \vec{x}$ and \vec{y}, the zero set does not contain any open subset (for otherwise $Q(g, C)_{p} \equiv 0$, which would be a contradiction with $p \in \mathcal{U}_{C}$). We can then choose series of tangent vectors $\vec{v}_{l} \rightarrow \vec{v}, \vec{w}_{l} \rightarrow \vec{w}, \vec{x}_{l} \rightarrow \vec{x}$ and $\vec{y}_{l} \rightarrow \vec{y}$ such that for any $l, \vec{v}_{l} \wedge \vec{w}_{l}$ is Weyl curvaturedependent with respect to $\vec{x}_{l} \wedge \vec{y}_{l}$. We have for every l that $T\left(\vec{v}_{l}, \vec{w}_{l}, \vec{w}_{l}, \vec{v}_{l} ; \vec{x}_{l}, \vec{y}_{l}\right)=0$ and thus in the limit we find that also $T(\vec{v}, \vec{w}, \vec{w}, \vec{v} ; \vec{x}, \vec{y})=0$. Hence, (8) holds for all $\vec{v}, \vec{w}, \vec{x}, \vec{y} \in T_{p} M$. Using polarization and the symmetric properties of $R \cdot C$ completes the proof.

Corollary 7. The Weyl semi-symmetric spaces are characterized by the vanishing of the Weyl curvatures of Deszcz.

A Riemannian manifold $M(n \geq 4)$ is said to be Weyl pseudo-symmetric at a point $p \in \mathcal{U}_{C}$ if there exists a scalar $L_{C}(p)$ such that,

$$
\left.R \cdot C\right|_{p}=\left.L_{C}(p) Q(g, C)\right|_{p} .
$$

The manifold (M, g) is called Weyl pseudo-symmetric in the sense of Deszcz if it is Weyl pseudo-symmetric at every point of $\mathcal{U}_{C} \subset M$.

Theorem 8. A Riemannian manifold $(M, g)(n \geq 4)$ is Weyl pseudo-symmetric in the sense of Deszcz if and only if at all of its points $p \in \mathcal{U}_{C}$ all the Weyl curvatures of Deszcz are the same, i.e., for all Weyl curvature-dependent planes π and $\bar{\pi}$ at $p, L_{C}(p, \pi, \bar{\pi})=L_{C}(p)$.

Proof. If $\left.R \cdot C\right|_{p}=\left.L_{C}(p) Q(g, C)\right|_{p}$ at p, the statement is obvious. So assume that $L_{C}(p, \pi, \bar{\pi})=L_{C}(p)$ for every two Weyl curvature-dependent planes π and $\bar{\pi}$. Then,

$$
(R \cdot C)(\vec{v}, \vec{w}, \vec{w}, \vec{v} ; \vec{x}, \vec{y})=L_{C}(p) Q(g, C)(\vec{v}, \vec{w}, \vec{w}, \vec{v} ; \vec{x}, \vec{y}) .
$$

The tensor $T=R \cdot C-L_{C} Q(g, C)$ has the same algebraic symmetries as $R \cdot C$. For two Weyl curvature-dependent planes $\pi=\vec{v} \wedge \vec{w}$ and $\bar{\pi}=\vec{x} \wedge \vec{y}$, there holds that $T(\vec{v}, \vec{w}, \vec{w}, \vec{v} ; \vec{x}, \vec{y})=0$. If both planes are not Weyl curvature-dependent, an argument as in the proof of Theorem 6 shows that $T\left(\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{2}, \vec{x}_{1} ; \vec{x}_{5}, \vec{x}_{6}\right)=0$, $\forall \vec{x}_{1}, \vec{x}_{2}, \vec{x}_{5}, \vec{x}_{6} \in T_{p} M$, and by polarization it then follows that

$$
T\left(\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}, \vec{x}_{4} ; \vec{x}_{5}, \vec{x}_{6}\right)=0, \quad \forall \vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}, \vec{x}_{4} ; \vec{x}_{5}, \vec{x}_{6} \in T_{p} M
$$

5. Pseudo-symmetry and the squaroids of Levi-Civita

Next, we give a geometrical interpretation of the Weyl curvature of Deszcz L_{C} in terms of the squaroids of Levi-Civita (see e.g. [2], [9], [13, 15]). Starting from any two tangent vectors \vec{v} and \vec{w} at any point p of M, Levi-Civita constructed in 1917 his so-called parallelogramoids as follows. Consider through p the geodesic α with tangent \vec{v} and let q be the point on this geodesic at an infinitesimal distance A from p. Denote by \vec{w}^{\star} the vector obtained after parallel transport of \vec{w} from p to q along α. Then, through p and q consider the geodesics β_{p} and β_{q} which are tangent to \vec{w} and \vec{w}^{\star}, respectively. Fix on them the points \bar{p} and \bar{q} at a same infinitesimal distance B from p and q, respectively. The parallelogramoid cornered at p with sides tangent to \vec{v} and \vec{w} is then completed by the geodesic $\bar{\alpha}$ through \bar{p} and \bar{q}. Let A^{\prime} be the geodesic distance between \bar{p} and \bar{q}. Levi-Civita showed that, in first order approximation, the sectional curvature $K(p, \pi)$ of the plane $\pi=\vec{v} \wedge \vec{w}$ can be expressed as

$$
K(p, \pi) \approx \frac{A^{2}-A^{\prime 2}}{A^{2} B^{2} \sin ^{2}(\theta)}
$$

whereby θ is the angle between the vectors \vec{v} and \vec{w}.
Let \vec{v} and \vec{w} be orthonormal vectors at any point $p \in M$. Consider the LeviCivita squaroid based on \vec{v} and \vec{w} with side ε, i.e., the parallelogramoid for which $A=B=\varepsilon$ (Figure 5). Then, when ε^{\prime} is the length of the closing geodesic, the sectional curvature $K(p, \pi)$ is given by

$$
K(p, \pi) \approx \frac{\varepsilon^{2}-\varepsilon^{\prime 2}}{\varepsilon^{4}}
$$

Consider at $p \in M$ an orthonormal basis $\left\{\vec{v}=\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}, \ldots, \vec{e}_{n}\right\}$ of $T_{p} M$ and construct for every plane $\vec{v} \wedge \vec{e}_{j}(j \neq 1)$ the squaroid of Levi-Civita, all with the same sides ε. Let us denote the lengths of the completing geodesics by ε_{j}^{\prime}. The

Figure 5. A squaroid of Levi-Civita
Ricci curvatures $\operatorname{Ric}(p, d)$, with d the direction of the vector \vec{v}, can then, up to first order approximation, be expressed as

$$
\operatorname{Ric}(p, d) \approx \sum_{j \neq 1} \frac{\varepsilon^{2}-\varepsilon_{j}^{\prime 2}}{\varepsilon^{4}}
$$

Now, consider two planes $\pi=\vec{v} \wedge \vec{w}$ and $\bar{\pi}=\vec{x} \wedge \vec{y}$ at a point p of M and parallely transport the frame $\left\{\vec{v}=\vec{e}_{1}, \vec{w}=\vec{e}_{2}, \vec{e}_{3}, \ldots, \vec{e}_{n}\right\}$ to $\left\{\vec{v}^{\star}=\vec{e}_{1}^{\star}, \vec{w}^{\star}=\right.$ $\left.\vec{e}_{2}^{\star}, \vec{e}_{3}^{*}, \ldots, \vec{e}_{n}^{\star}\right\}$ around an infinitesimal co-ordinate parallelogram \mathcal{P}. We construct for every plane $\vec{v}^{\star} \wedge \vec{e}_{j}^{\star}(j \neq 1)$ and for every plane $\vec{w}^{\star} \wedge \vec{e}_{k}^{\star}(k \neq 2)$, the squaroids of Levi-Civita, all with the same sides ε and denote the lengths of the completing geodesics by $\varepsilon_{j}^{\star \prime}$ and $\varepsilon_{k}^{\star \prime}$, respectively.
Then, according to the formulas for the tensors $R \cdot R$ and $R \cdot S$ which are analogous to formula (6) for the tensor $R \cdot C$ [13], [14], we find, up to second order approximation with respect to Δx and Δy, that

$$
(R \cdot R)(\vec{v}, \vec{w}, \vec{w}, \vec{v} ; \vec{x}, v e c y) \approx \frac{\left(\varepsilon_{2}^{\star \prime}\right)^{2}-\left(\varepsilon_{2}^{\prime}\right)^{2}}{\varepsilon^{4}} \frac{1}{\Delta x \Delta y},
$$

and

$$
(R \cdot S)(\vec{v}, \vec{v} ; \vec{x}, \vec{y}) \approx \sum_{j \neq 1} \frac{\left(\varepsilon_{j}^{\star \prime}\right)^{2}-\left(\varepsilon_{j}^{\prime}\right)^{2}}{\varepsilon^{4}} \frac{1}{\Delta x \Delta y}
$$

Let $\left\{\widetilde{\vec{v}}=\widetilde{\vec{e}}_{1}, \widetilde{\vec{w}}=\widetilde{\vec{e}}_{2}, \widetilde{\vec{e}}_{3}, \ldots, \widetilde{\vec{e}}_{n}\right\}$ be the frame which is obtained after an infinitesimal rotation as before of the frame $\left\{\vec{v}=\vec{e}_{1}, \vec{w}=\vec{e}_{2}, \vec{e}_{3}, \ldots, \vec{e}_{n}\right\}$ with respect to the plane $\bar{\pi}=\vec{x} \wedge \vec{y}$, and construct for every plane $\widetilde{\vec{v}} \wedge \widetilde{\vec{e}}_{j}(j \neq 1)$ and for every
plane $\widetilde{\vec{w}} \wedge \widetilde{\vec{e}}_{k}(k \neq 2)$ the squaroids of Levi-Civita, all with the same side ε, and denote the lengths of the completing geodesics by $\widetilde{\varepsilon}_{j}$ and $\widetilde{\varepsilon}_{k}$, respectively.
In this case, according to the formulas for the Tachibana tensors $Q(g, R)$ and $Q(g, S)$ which are analogous to formula (7) for the Tachibana-Weyl tensor $Q(g, C)$, we find, up to first order with respect to the angle $\Delta \varphi$ of infinitesimal rotation, that

$$
Q(g, R)(\vec{v}, \vec{w}, \vec{w}, \vec{v} ; \vec{x}, \vec{y}) \approx \frac{\left(\widetilde{\varepsilon}_{2}^{\prime}\right)^{2}-\left(\varepsilon_{2}^{\prime}\right)^{2}}{\varepsilon^{4}} \frac{1}{\Delta \varphi}
$$

and

$$
Q(g, S)(\vec{v}, \vec{v} ; \vec{x}, \vec{y}) \approx \sum_{j \neq 1} \frac{\left(\widetilde{\varepsilon}_{j}^{\prime}\right)^{2}-\left(\varepsilon_{j}^{\prime}\right)^{2}}{\varepsilon^{4}} \frac{1}{\Delta \varphi}
$$

We recall from [13], [14] that a plane $\pi=\vec{v} \wedge \vec{w}$ is said to be curvature-dependent with respect to a plane $\bar{\pi}=\vec{x} \wedge \vec{y}$ if $Q(g, R)(\vec{v}, \vec{w}, \vec{w}, \vec{v} ; \vec{x}, \vec{y}) \neq 0$, and that a direction d spanned by a vector \vec{v} is Ricci curvature-dependent with respect to a plane $\bar{\pi}=\vec{x} \wedge \vec{y}$ if $Q(g, S)(\vec{v}, \vec{v} ; \vec{x}, \vec{y}) \neq 0$. These definitions are independent of the choices of bases for the planes π and $\bar{\pi}$ and the direction d, respectively.
Then, the sectional curvature of $\operatorname{Deszcz} L_{R}(p, \pi, \bar{\pi})$ of the plane π which is curvature-dependent with respect to $\bar{\pi}$ at $p \in \mathcal{U}_{R}=\left\{x \in M \mid Q(g, R)_{x} \neq 0\right\}$, and the Ricci curvature of $\operatorname{Deszcz} L_{S}(p, d, \bar{\pi})$ of the direction d which is Ricci curvature-dependent with respect to the plane $\bar{\pi}$ at a point $p \in \mathcal{U}_{S}=\{x \in M \mid$ $\left.Q(g, S)_{x} \neq 0\right\}$, can respectively be expressed as

$$
L_{R}(p, \pi, \bar{\pi}) \approx \frac{\left(\varepsilon_{2}^{\star \prime}\right)^{2}-\left(\varepsilon_{2}^{\prime}\right)^{2}}{\left(\widetilde{\varepsilon}_{2}^{\prime}\right)^{2}-\left(\varepsilon_{2}^{\prime}\right)^{2}} \frac{\Delta \varphi}{\Delta x \Delta y}
$$

and

$$
L_{S}(p, d, \bar{\pi}) \approx \frac{\sum_{j \neq 1}\left[\left(\varepsilon_{j}^{\star \prime}\right)^{2}-\left(\varepsilon_{j}^{\prime}\right)^{2}\right]}{\sum_{k \neq 1}\left[\left(\widetilde{\varepsilon}_{k}^{\prime}\right)^{2}-\left(\varepsilon_{k}^{\prime}\right)^{2}\right]} \frac{\Delta \varphi}{\Delta x \Delta y}
$$

Because the tensor $R \cdot C$ can be written in terms of the tensors $R \cdot R$ and $R \cdot S$ as,

$$
\begin{aligned}
& (R \cdot C)\left(X_{1}, X_{2}, X_{3}, X_{4} ; X, Y\right)=(R \cdot R)\left(X_{1}, X_{2}, X_{3}, X_{4} ; X, Y\right) \\
& \quad-\frac{1}{n-2}\left\{g\left(X_{1}, X_{4}\right)(R \cdot S)\left(X_{2}, X_{3} ; X, Y\right)+g\left(X_{2}, X_{3}\right)(R \cdot S)\left(X_{1}, X_{4} ; X, Y\right)\right. \\
& \left.\quad-g\left(X_{1}, X_{3}\right)(R \cdot S)\left(X_{2}, X_{4} ; X, Y\right)-g\left(X_{2}, X_{4}\right)(R \cdot S)\left(X_{1}, X_{3} ; X, Y\right)\right\}
\end{aligned}
$$

the Weyl curvature of Deszcz $L_{C}(p, \pi, \bar{\pi})$ of the plane π which is Weyl curvaturedependent with respect to the plane $\bar{\pi}$ at a point $p \in \mathcal{U}_{C}$ can be expressed as

$$
\begin{aligned}
& L_{C}(p, \pi, \bar{\pi}) \approx \\
& \frac{\left(\varepsilon_{2}^{\star \prime}\right)^{2}-\left(\varepsilon_{2}^{\prime}\right)^{2}-\frac{1}{n-2}\left[\sum_{j \neq 1}\left(\left(\varepsilon_{j}^{\star \prime}\right)^{2}-\left(\varepsilon_{j}^{\prime}\right)^{2}\right)+\sum_{k \neq 2}\left(\left(\varepsilon_{k}^{\star \prime}\right)^{2}-\left(\varepsilon_{k}^{\prime}\right)^{2}\right)\right]}{\left(\widetilde{\varepsilon}_{2}^{\prime}\right)^{2}-\left(\varepsilon_{2}^{\prime}\right)^{2}} \frac{\Delta \varphi}{\Delta x \Delta y} .
\end{aligned}
$$

Thus, calibrating the changes of the Riemann, Ricci and Weyl curvatures under parallel translation (\star) around a parallelogram \mathcal{P} with infinitesimal parameter growths Δx and Δy by the changes of the same curvatures under rotation (\sim) over an infinitesimal angle $\Delta \varphi=\Delta x \Delta y$ with respect to $\bar{\pi}$, we find the following approximate geometrical expressions in terms of the squaroids of Levi-Civita of sides ε, for, respectively, the Riemann sectional curvature of Deszcz L_{R}, the Ricci curvature of Deszcz L_{S} and the Weyl curvature of Deszcz L_{C}.

Theorem 9. Let (M, g) be a Riemannian manifold, $p \in \mathcal{U}_{R}$ and $\pi \subset T_{p} M$ curvature-dependent with respect to a tangent plane $\bar{\pi} \subset T_{p} M$. Under the above calibration of infinitesimal parallel translation by associated infinitesimal rotation, the sectional curvature of $\operatorname{Deszcz} L_{R}(p, \pi, \bar{\pi})$ can be expressed in terms of the lengths of closing sides in squaroids of Levi-Civita as follows:

$$
L_{R}(p, \pi, \bar{\pi}) \approx \frac{\left(\varepsilon_{2}^{\star \prime}\right)^{2}-\left(\varepsilon_{2}^{\prime}\right)^{2}}{\left(\widetilde{\varepsilon}_{2}^{\prime}\right)^{2}-\left(\varepsilon_{2}^{\prime}\right)^{2}}
$$

Theorem 10. Let (M, g) be a Riemannian manifold, $p \in \mathcal{U}_{S}$ and d a tangent direction which is Ricci curvature-dependent with respect to a tangent plane $\bar{\pi} \subset T_{p} M$. Under the above calibration of infinitesimal parallel translation by associated infinitesimal rotation, the Ricci curvature of $\operatorname{Deszcz} L_{S}(p, d, \bar{\pi})$ can be expressed in terms of the lengths of closing sides in squaroids of Levi-Civita as follows:

$$
L_{S}(p, d, \bar{\pi}) \approx \frac{\sum_{j \neq 1}\left[\left(\varepsilon_{j}^{\star \prime}\right)^{2}-\left(\varepsilon_{j}^{\prime}\right)^{2}\right]}{\sum_{k \neq 1}\left[\left(\widetilde{\varepsilon}_{k}^{\prime}\right)^{2}-\left(\varepsilon_{k}^{\prime}\right)^{2}\right]}
$$

Theorem 11. Let (M, g) be a Riemannian manifold, $p \in \mathcal{U}_{R}$ and $\pi \subset T_{p} M$ Weyl curvature-dependent with respect to a tangent plane $\bar{\pi} \subset T_{p} M$. Under the above calibration of infinitesimal parallel translation by associated infinitesimal rotation, the Weyl curvature of Deszcz $L_{C}(p, \pi, \bar{\pi})$ can be expressed in terms of the lengths of closing sides in squaroids of Levi-Civita as follows:

$$
\begin{aligned}
& L_{C}(p, \pi, \bar{\pi}) \approx \\
& \qquad \frac{\left(\varepsilon_{2}^{\star \prime}\right)^{2}-\left(\varepsilon_{2}^{\prime}\right)^{2}-\frac{1}{n-2}\left[\sum_{j \neq 1}\left(\left(\varepsilon_{j}^{\star \prime}\right)^{2}-\left(\varepsilon_{j}^{\prime}\right)^{2}\right)+\sum_{k \neq 2}\left(\left(\varepsilon_{k}^{\star \prime}\right)^{2}-\left(\varepsilon_{k}^{\prime}\right)^{2}\right)\right]}{\left(\widetilde{\varepsilon}_{2}^{\prime}\right)^{2}-\left(\varepsilon_{2}^{\prime}\right)^{2}} .
\end{aligned}
$$

Remarks 12. If a manifold (M, g) is pseudo-symmetric, then it is automatically Ricci pseudo-symmetric as well as Weyl pseudo-symmetric, but the converse statements are not true in general. The warped products of a 1-dimensional manifold and a non pseudo-symmetric Einstein manifold of dimension ≥ 3, are non pseudo-symmetric, Ricci pseudo-symmetric manifolds. All Cartan hypersurfaces in the spheres \mathbb{S}^{n+1} with $n=6,12$ or 24 are non pseudo-symmetric, Ricci pseudosymmetric manifolds. The warped products of Riemannian spheres of dimension
≥ 2 with Einstein spaces of dimension ≥ 4 are non conformally flat, non pseudosymmetric, non Einstein, but Ricci pseudo-symmetric manifolds. Examples of non pseudo-symmetric, non conformally flat, but Weyl pseudo-symmetric Riemannian manifolds were obtained in [5] by applying suitable conformal deformations on a non semi-symmetric, non conformally flat, but Weyl semi-symmetric, Riemannian 4-dimensional manifold given by Derdziński in [4]. Also, of course, every conformally flat manifold of dimension ≥ 4 is Weyl pseudo-symmetric, but there do exist conformally flat manifolds of dimension ≥ 4 which are not pseudosymmetric. For more information on various pseudo-symmetries, see e.g. [1], [3], [5], [7], [11], [12].

Acknowledgments. B. Jahanara was supported by a doctoral fellowship of the Interfaculty Council for Development Cooperation of the K. U. Leuven. S. Haesen was partially supported by the Spanish MEC Grant MTM2007-60731 with FEDER founds and the Junta de Andalucía Regional Grant P06-FQM01951. S. Haesen and L. Verstraelen were partially supported by the Research Foundation - Flanders project G.0432.07.

References

[1] M. Belkhelfa, R. Deszcz, M. Glogowska, M. Hotloś, D. Kowalczyk and L. Verstraelen, On some type of curvature conditions, Banach Center Publ. 57 (2002), 179-194.
[2] É. Cartan, Leçons Sur la Géométrie des Espaces de Riemann, Gauthier-Villars, Paris, 1963.
[3] J. Deprez, R. Deszcz and L. Verstraelen, Examples of pseudosymmetric conformally flat warped products, Chinese J. Math. 17 (1989), 51-65.
[4] A. Derdziński, Examples de métriques de Kaehler et d'Einstein autoduales sur le plan complexe, Géométrie Riemannienne en dimension 4, Cedic/Fernand Nathan, Paris, 1981, 334-346.
[5] R. Deszcz, Examples of four-dimensional Riemannian manifolds satisfying some pseudosymmetry curvature conditions, Geometry and Topology, Vol II, (M. Boyom e.a., eds.), World Scientific, Singapore, 1990, 134-143.
[6] R. Deszcz, On four-dimensional Riemannian warped product manifolds satisfying certain pseudosymmetry curvature conditions, Colloquium Math. 62 (1991), 103-120.
[7] R. Deszcz, On pseudosymmetric spaces, Bull. Soc. Math. Belg. A 44 (1992), 1-34.
[8] R. Deszcz, M. Hotloś and Z. Ṣentürk, On Ricci-pseudosymmetric hypersurfaces in space forms, Demonstratio Math. 37 (2004), 203-214.
[9] L. P. Eisenhart, Riemannian Geometry, Princeton University Press, Princeton, 1925.
[10] L. Graves and K. Nomizu, On sectional curvature of indefinite metrics, Math. Ann. 232 (1978), 267-272.
[11] S. Haesen and L.Verstraelen, Classification of the pseudosymmetric spacetimes, J. Math. Phys. 45 (2004), 2343-2346.
[12] S. Haesen and L. Verstraelen, Curvature and symmetries of parallel transport, Chapter 8, in: Differential Geometry and Topology, Discrete and Computational Geometry, (M. Boucetta and J-M. Morvan, eds.), IOS Press, NATO Science Series, 2005, 197-238.
[13] S. Haesen and L. Verstraelen, Properties of a scalar curvature invariant depending on two planes, Manuscripta Math. 122 (2007), 59-72.
[14] B. Jahanara, S. Haesen, Z. Ṣentürk and L. Verstraelen, On the parallel transport of the Ricci curv atures, J. Geom. Phys. 57 (2007), 1771-1777.
[15] T. Levi-Civita, Nozione di parallelismo in una varietá qualcunque e conseguente spezificazione geometrica della curvatura Riemanniana, Rend. Circ. Matem. Palermo 42 (1917), 173-204.
[16] J. Schouten, Die direkte Analysis zur neueren Relativitätstheorie, Verh. Kon. Akad. Wet. Amsterdam 12 (1918), 95.
[17] L. Verstraelen, Comments on the pseudo-symmetry in the sense of Deszcz, Geometry and Topology of Submanifolds, VI, (F. Dillen et al., eds.), World Scientific Publ., Singapore, 1994, 119-209.
[18] H. Weyl, Raum, Zeit, Materie, Springer, Berlin, 1921.
BILKIS JAHANARA
DEPARTMENT OF MATHEMATICS
KATHOLIEKE UNIVERSITEIT LEUVEN
CELESTIJNENLAAN 200B BUS 2400
3001 LEUVEN
BELGIUM
E-mail: Bilkis.Jahanara@wis.kuleuven.be
STEFAN HAESEN
DEPARTMENT OF MATHEMATICS
KATHOLIEKE UNIVERSITEIT LEUVEN
CELESTIJNENLAAN 200B BUS 2400
3001 LEUVEN
BELGIUM
E-mail: Stefan.Haesen@wis.kuleuven.be
MIROSLAVA PETROVIĆ-TORGAŠEV
DEPARTMENT OF MATHEMATICS AND INFORMATICS
UNIVERSITY OF KRAGUJEVAC, FACULTY OF SCIENCE
RADOJA DOMANOVIĆA 12
34000 KRAGUJEVAC
SERBIA
E-mail: mirapt@kg.ac.yu
LEOPOLD VERSTRAELEN
DEPARTMENT OF MATHEMATICS
KATHOLIEKE UNIVERSITEIT LEUVEN
CELESTIJNENLAAN 200B BUS 2400
3001 LEUVEN
BELGIUM
E-mail: Leopold.Verstraelen@wis.kuleuven.be
(Received September 21, 2008)

[^0]: Mathematics Subject Classification: 53A55, 53B20.
 Key words and phrases: conformal sectional curvature of Deszcz, Weyl pseudo-symmetry in the sense of Deszcz, Tachibana-Weyl tensor, parallel transport.

