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On a special diophantine equation a
(

x
n

)
= byr + c

By YUAN PING-ZHI (Hunan Changsha)

Abstract. Let a, b, c be given integers. In this paper, we shall prove that apart
from n = 4, c/a = −1/24 or 3/128, r = 2 and b/a is not a square, the diophantine
equation a

�x
n

�
= byr + c has only finitely many solutions, and all these solutions can be

effectively bounded in terms of a, b, c and n.

In 1966, Avanesov [1] has proved that all the positive integral solu-
tions of the diophantine equation

(
x

3

)
=

(
y

2

)

are given by (x, y) = (3, 2), (5, 5), (10, 16), (22, 56), (36, 120).
In 1988, P. Kiss [2] has proved that if p is a given odd prime, then

the diophantine equation (
x

p

)
=

(
y

2

)

has only finitely many positive integral solutions, and all these can be
effectively determined.

In 1991, Brindza [3], by using Baker’s effective method, has proved
that for any given n ∈ N with n ≥ 3, the hyperelliptic equation

(
x

n

)
=

(
y

2

)

has only finitely many positive integral solutions, and all these can be
effectively computed.

In this paper, we shall discuss the following more general diophantine
equation

(1) a

(
x

n

)
= byr + c
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where a, b, c ≥ 3 are given integers. We have:

Theorem 1. Let a 6= 0, b 6= 0, c, n ≥ 3 be given integers. Then apart
from n = 4, c/a = −1/24 or 3/128, r = 2 and b/a is not a square, all
rational integer solutions x, y, r of the equation (1) with x, y > 1, r > 1
satisfy

max(|x|, y, r) < C1

where C1 is an effectively computable constant depending only on a, b, c
and n.

Obviously, a = 8, b = 1, c = −1, r = 2 give the result of Brindza [3].
First, we give the following lemmas.

Lemma 1. (1976, Schinzel and Tijdeman). Let f(x) ∈ Z[x] be a
polynomial with at least two distinct roots. If b 6= 0, m ≥ 0, x, y with
|y| > 1 satisfy the equation f(x) = bym, then m < C2, where C2 is an
effectively computable constant depending only on b and f .

Lemma 2. (1984, Brindza). Let f(x) = a0(x−α1)γ1 . . . (x−αn)γn ∈
Z[x], m ≥ 2, n ≥ 2 and let qi = m/(m, ri) for i = 1, . . . , n. Suppose
that (q1, . . . , qn) is not a permutation of (q, 1, . . . , 1) or (2, 2, 1, . . . , 1) and
y, z ∈ Z satisfy the equation f(x) = bym. Then max(|x|, |y|) < C3, where
C3 is an effectively computable constant depending only on b,m and f .

Lemma 3. (1975, Baker). Let m = 2, f(x) ∈ Z[x] be a polynomial
with at least three simple roots. Then there exists an effectively com-
putable constant C4 depending only on b and f such that for any x, y ∈ Z
satisfying the equation f(x) = bym, we have max(|x|, |y|) < C4

Remark. For the proof of Lemmas 1,2 and 3, we refer to Th.10.2,
Th.8.3 and Th.6.2 of [4], respectively.

Lemma 4. Let k > 1 be an integer. Then

(i)
(
2k
k

)
> 22k/2k

(ii)
(
2k+1

k

)
> 22k+1/(2k + 1).

Proof. (i) From (1+1)2k = 1+
(
2k
1

)
+ · · ·+ (

2k
k

)
+ · · ·+ (

2k
2k−1

)
+1 <

2k
(
2k
k

)
. We get (

2k

k

)
> 22k/2k

(ii) Similarly (1+1)2k+1 = 1+
(
2k+1

1

)
+· · ·+(

2k+1
k

)
+

(
2k+1
k+1

)
+· · ·+(

2k+1
2k

)
+

1 < (2k + 1)
(
2k+1

k

)
implies

(
2k + 1

k

)
> 22k+1/(2k + 1) .
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Put

(2) fn(x) = x(x− 1) . . . (x(n− 1))− c

a
n!

It follows from (1) that

(3) fn(x) =
b

a
n! yr

From Lemma 1, if fn(x) has at least two simple roots, then r is effectively
bounded in terms of a, b, c and n; From Lemma 2, if r ≥ 2 and (q1, . . . , qn)
is not a permutation of (q, 1, . . . , 1) or (2, 2, 1, . . . , 1), then the equation
(3) has only finitely many solutions, and all these can be effectively com-
puted; From Lemma 3, if r = 2, and f(x) has at least three simple roots,
then (3) has only finitely many solutions, and all these can be effectively
determined.

From the discussions above, if we can prove that fn(x) has at least
three simple roots when a 6= 0, c ∈ Z, then (3), so (1) has only finitely
many solutions, and all these can be effectively determined.

On the simple roots of fn(x), we give the following theorem:

Theorem 2. Let a 6= 0, c 6= 0 be rational integers and n ≥ 3. Then
apart from fn(x) = x(x− 1)(x− 2)(x− 3)+1 and x(x− 1)(x− 2)(x− 3)−
9
16 , fn(x) has at least three simple roots.

Proof. We have fn(0) = fn(1) = · · · = fn(n− 1) = − c
an! . It is well

known that there exist xi ∈ (i− 1, i), i = 1, · · · , n− 1 with f ′n(xi) = 0 by
Rolle’s Theorem. Since degf ′n(x) = n− 1,

f ′n(x) = (x− x1) · · · (x− xn−1)

It is easily seen that the roots of f ′n(x) are real and simple, so the multiple
roots of fn(x) are twofold roots and the imaginary roots of fn(x) are
simple.

Now we consider the following two cases.

Case I. c/a > 0.
(i) If n = 2k + 1 is odd and x > n − 1, then f(x) is a monotone

increasing function and fn(n − 1) < 0, fn(+∞) = +∞, therefore fn(x)
has a simple root x∗1 > n− 1.

It is easily seen that fn(x) reaches its maximal values at x = x1, x3, . . . ,
x2k−1. If f(x2j−1) > 0, j ∈ {1, . . . , k}, then fn(x) has exactly two real
simple roots in the interval (2j−2, 2j−1); If f(x2j−1) = 0, j ∈ {1, . . . , k},
then x2j−1 is the twofold root of fn(x); And if fn(x2j−1) < 0, then fn(x)
has no real roots in the interval (2j − 2, 2j − 1), and it is easily seen from
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the above discussions that we can assume x2j−1 as corresponding to two
conjugate imaginary simple roots of fn(x) in this case.

Thus we know from above that if we can prove that fn(x1), fn(x3), . . . ,
fn(x2k−1) are not all zero, then fn(x) has at least three simple roots. De-
fine

(4) f∗n(x) = fn(x) +
c

a
n! = x(x− 1)(x− 2) . . . (x− n + 1) .

We know from the above discussions that fn(x1) resp. f∗n(x1) is the largest
of the fn(x) (resp. the f∗n(x)) in the interval (0,1). Then

(5) f∗n(x1) = x1(x1 − 1) . . . (x1 − 2k) ≥

≥ 1
2

(
−1

2

)(
1
2
− 2

)
· · ·

(
1
2
− 2k

)
=

(4k)!
24k+1 · (2k)!

If k is even, then f∗n(xk+1) = xk+1(xk+1−1) . . . (xk+1−k−1) . . . (xk+1−2k)
If k is odd, then f∗n(xk) = xk(xk − 1) . . . (xk − k) . . . (xk − 2k). Below we
shall prove that if n > 3, then

f∗n(x1) >

{
f∗n(xk+1), if k is even.

f∗n(xk), if k is odd.

It follows from Lemma 4 that

f∗n(x1) >
22k · k! · k!

2 · (4k) · (2k)

Hence, if 22k > 42k2(k + 1), i.e. k > 4, then

f∗n(x1) >
22k · k! · k!

2 · (4k) · (2k)
>

k!(k + 1)!
4

≥
{

f∗n(xk+1), if k is even,

f∗n(xk), if k is odd.

If k = 4, then f∗9 (x1) > f∗9 (x5), since 16!
217·8! > 4!·5!

4 ; if k = 3, then f∗7 (x1) >

f∗n(x3), since 12!
213·6! > 3!·4!

4 , if k = 2, then f∗5 (x1) > f∗5 (x3), since 8!
29·4! >

2!·3!
4 ; if k = 1, then n = 3, since f∗3 (x) = x(x − 1)(x − 2); then x1 =

3−√3
3 , x2 = 3+

√
3

3 , f∗3 (x1) = 2
√

3
9 is not rational number, so f3(x1) 6= 0.

Which proves that fn(x) has at least three simple roots in this case.

(ii) Let n = 2k be even. Since fn(x) is a monotone decreasing function
as x < 0, and a monotone increasing function as x > n − 1, and fn(0) =
fn(n− 1) = − c

an!, fn(−∞) = fn(+∞) = +∞, in this case fn(x) has two
simple roots x∗1 < 0, x∗2 > n− 1.
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It is easily seen that fn(x), so f∗n(x) reaches its maximal values at
x = x2, x4, . . . , x2k−2, since

f∗n(x2) >
3
2
· 1
2
·
(
−1

2

)(
3
2
− 3

)
· · ·

(
3
2
− 2k + 1

)
=

=
3 · 1 · 3 · · · · · (4k − 5)

22k
=

3 · (4k − 4)!
24k−2 · (2k − 2)!

If k is even, then f∗n(xk) ≤ k!·k!
4 , if k is odd, then f∗n(xk+1) ≤ (k−1)!·(k+1)!

4
It follows from Lemma 4 that

f∗n(x2) >
3 · 22k−2 · (k − 1)! · (k − 1)!

4 · (4k − 2)(2k − 2)

Hence, if 3 · 22k−5 > (k − 1)2k(k + 1), i.e. k ≥ 8, then

f∗n(x2) >

{
f∗n(xk), if k is even,

f∗n(xk+1), if k is odd.

If k = 7, then f∗14(x2) > f∗14(x8), since 3·24!
226·12! > 6!·8!

4 ; if k = 6, then
f∗12(x2) > f∗12(x6), since 3·20!

222·10! > 6!·6!
4 ; if k = 5, then f∗10(x2) > f∗10(x6),

since 3·16!
218·8! > 4!·6!

4 ; if k = 4, put u = x− 7
2 , then

f∗8 (u) =
(

u +
7
2

)(
u +

5
2

)(
u +

3
2

)(
u +

1
2

)(
u− 1

2

) (
u− 3

2

)
·

·
(

u− 5
2

)(
u− 7

2

)

It is easy to prove that f ′8(u) has a root u = 0, this implies that f ′8(x) has
a solution x = 7

2 ∈ (3, 4), and so x4 = 7
2 . Then

f∗8 (x2) ≥ 3
2
· 1
2

(
−1

2

)
·
(
−3

2

)
·
(
−5

2

)
·
(
−7

2

)
·
(
−9

2

)
·
(
−11

2

)
>

>

(
7
2

)2

·
(

5
2

)2

·
(

3
2

)2

·
(

1
2

)2

= f∗8 (x4)

If k = 3, then f∗6 (x) = (x2 − 5x)(x2 − 5x + 4)(x2 − 5x + 6) and f ′6(x) =
(2x − 5)(3(x2 − 5x) + (x2 − 5x) + 26). Hence x3 = 5

2 , and x2 is the root
of x2 − 5x + 10+2

√
7

3 = 0 or x2 − 5x + 10−2
√

7
3 = 0. So f∗6 (x2) = 10+2

√
7

3 ·
−2+2

√
7

3 ·−8+2
√

7
3 ·(−1) is not a rational number, hence f6(x2) 6= 0. If k = 2,

then f∗n(x) = f∗4 (x) = x(x − 1)(x − 2)(x − 3) = (x2 − 3x)2 + 2(x2 − 3x),
x2 = 3

2 , since f∗4
(

3
2

)
= 9/16, so if c

an! = 9/16, that is c
a = 3/128, f4(x) =
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(x− 3
2 )2(x2− 3x+ 1

4 ) has only two simple roots and if b/a is not a square,
and (2x − 3)2 − 8 = b/ay2 has a solution, then f4(x) = by2 has infinitely
many solutions.

Case II. c/a < 0.
(i) If n = 2k + 1 is odd, then f∗n(x) has a simple root x∗1 with x∗1 < 0,

and f∗n(x) reaches its minimal values at x = x2, x4, . . . , x2k,
since |f∗n(x2k)| > 1

2 · 1
2 · 3

2 · · · · · 4k−1
2 = (4k)!

24k+1·(2k)!
.

All the remaining cases are similar to the case of c/a > 0, and n = 2k + 1.
(ii) If n = 2k is even, then f∗n(x) reaches its minimal values at x =

x1, x3, . . . , x2k−1. Put x = u + 2k−1
2 , then it is easily seen that fn(xi) =

fn(x2k−i) for i = 1, . . . , k. Therefore, if we can prove that

f∗n(x1) <

{
f∗n(xk−2), if k is odd,

f∗n(xk−1), if k is even,

then fn(x) has at least four simple roots, since

f∗n(x1) < −1
2
· 1
2
· (2− 1

2
) · · · · · (2k − 1− 1

2
) = − (4k − 2)!

24k−1 · (2k − 1)!

0 > f∗n(xk−2) > − (k − 2)! (k + 2)!
4

, 0 > f∗n(xk−1) ≥ (k − 1)! (k + 1)!
4

.

It follows from Lemma 4 that

|f∗n(x1)| > 22k−1 · k! · (k − 1)!
2 · (4k − 2) · (2k − 1)

.

If 22k−1(k − 1) > (2k − 1)!(k + 1)(k + 2), i.e. k ≥ 7, then

|f∗n(x1)| > |f∗n(xk−2)| or |f∗n(xk−1)| .
If k = 6, then |f∗n(x1)| > |f∗n(x5)|, since 22!

223·11! > 5!·7!
4 ; if k = 5, then

|f∗n(x1)| > |f∗n(x3)|, since 18!
219·9! > 3!·7!

4 ; if k = 4, then |f∗n(x1)| > |f∗n(x3)|,
since 14!

215·7! > 3!·5!
4 ; if k = 3, then n = 6, this case is similar to the case of

c/a > 0 and n = 6, f∗6 (x1), f∗6 (x3) are not rational numbers, and f6(x1) 6=
0, f6(x3) 6= 0. If k = 2, then n = 4, f∗4 (x) = (x2 − 3x)2 + 2(x2 − 3x),
x1 = 3−√5

2 , f∗4 (x1) = −1. Hence if c
an! = −1. i.e., c/a = −1/24, then

f4(x) = (x2−3x+1)2. It is easily seen that if b
an! = a2

1, and x2−3x+1 ≡
0 (moda∗1) (here a∗1 is the numberator p of a1 as a1 is represented by
p/q, (p, q) = 1, p, q ∈ Z) has a solution, then f4(x) = n! y2 has infinitely
many solutions. This completes the proof of Theorem 2.
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Proof of Theorem 1. It follows from Theorem 2 that apart from
the two cases described in Theorem 1, f(x) has at least three simple roots.
Then

max(|x|, y, r) < C1(a, b, c, n) ,

where C1(a, b, c, n) is an effectively computable constant depending only
on a, b, c and n. This completes the proof of Theorem 1.

Remarks. It is easily seen from the proof of Theorem 2 that if a, b, c
are given algebraic integers, K = Q(a, b, c), then apart from n = 4, c/a =
−1/24 or 3/128;n = 3, c/a = ±

√
3

108 ;n = 6, c/a = − 1
6! · 10−2

√
7

3 · 2+2
√

7
3 ·

8+2
√

7
3 or c/a = 1

6! · 10+2
√

7
3 · 2

√
7−2
3 · 8−2

√
7

3 , fn(x) =
(

x
n

)− c
a , has at least

three simple roots. Then there are only finitely many x, y ∈ K satisfying
the equation

a

(
x

n

)
= byr + c, n ≥ 3

and all these can be effectively determined.
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