On a special diophantine equation $a\binom{x}{n}=b y^{r}+c$

By YUAN PING-ZHI (Hunan Changsha)

Abstract

Let a, b, c be given integers. In this paper, we shall prove that apart from $n=4, c / a=-1 / 24$ or $3 / 128, r=2$ and b / a is not a square, the diophantine equation $a\binom{x}{n}=b y^{r}+c$ has only finitely many solutions, and all these solutions can be effectively bounded in terms of a, b, c and n.

In 1966, Avanesov [1] has proved that all the positive integral solutions of the diophantine equation

$$
\binom{x}{3}=\binom{y}{2}
$$

are given by $(x, y)=(3,2),(5,5),(10,16),(22,56),(36,120)$.
In 1988, P. Kiss [2] has proved that if p is a given odd prime, then the diophantine equation

$$
\binom{x}{p}=\binom{y}{2}
$$

has only finitely many positive integral solutions, and all these can be effectively determined.

In 1991, Brindza [3], by using Baker's effective method, has proved that for any given $n \in N$ with $n \geq 3$, the hyperelliptic equation

$$
\binom{x}{n}=\binom{y}{2}
$$

has only finitely many positive integral solutions, and all these can be effectively computed.

In this paper, we shall discuss the following more general diophantine equation

$$
\begin{equation*}
a\binom{x}{n}=b y^{r}+c \tag{1}
\end{equation*}
$$

where $a, b, c \geq 3$ are given integers. We have:
Theorem 1. Let $a \neq 0, b \neq 0, c, n \geq 3$ be given integers. Then apart from $n=4, c / a=-1 / 24$ or $3 / 128, r=2$ and b / a is not a square, all rational integer solutions x, y, r of the equation (1) with $x, y>1, r>1$ satisfy

$$
\max (|x|, y, r)<C_{1}
$$

where C_{1} is an effectively computable constant depending only on a, b, c and n.

Obviously, $a=8, b=1, c=-1, r=2$ give the result of BRindza [3]. First, we give the following lemmas.

Lemma 1. (1976, Schinzel and Tijdeman). Let $f(x) \in Z[x]$ be a polynomial with at least two distinct roots. If $b \neq 0, m \geq 0, x, y$ with $|y|>1$ satisfy the equation $f(x)=b y^{m}$, then $m<C_{2}$, where C_{2} is an effectively computable constant depending only on b and f.

Lemma 2. (1984, BRINDZA). Let $f(x)=a_{0}\left(x-\alpha_{1}\right)^{\gamma_{1}} \ldots\left(x-\alpha_{n}\right)^{\gamma_{n}} \in$ $Z[x], m \geq 2, n \geq 2$ and let $q_{i}=m /\left(m, r_{i}\right)$ for $i=1, \ldots, n$. Suppose that $\left(q_{1}, \ldots, q_{n}\right)$ is not a permutation of $(q, 1, \ldots, 1)$ or $(2,2,1, \ldots, 1)$ and $y, z \in Z$ satisfy the equation $f(x)=b y^{m}$. Then $\max (|x|,|y|)<C_{3}$, where C_{3} is an effectively computable constant depending only on b, m and f.

Lemma 3. (1975, Baker). Let $m=2, f(x) \in Z[x]$ be a polynomial with at least three simple roots. Then there exists an effectively computable constant C_{4} depending only on b and f such that for any $x, y \in Z$ satisfying the equation $f(x)=b y^{m}$, we have $\max (|x|,|y|)<C_{4}$

Remark. For the proof of Lemmas 1,2 and 3, we refer to Th.10.2, Th.8.3 and Th.6.2 of [4], respectively.

Lemma 4. Let $k>1$ be an integer. Then
(i) $\binom{2 k}{k}>2^{2 k} / 2 k$
(ii) $\binom{2 k+1}{k}>2^{2 k+1} /(2 k+1)$.

Proof. (i) From $(1+1)^{2 k}=1+\binom{2 k}{1}+\cdots+\binom{2 k}{k}+\cdots+\binom{2 k}{2 k-1}+1<$ $2 k\binom{2 k}{k}$. We get

$$
\binom{2 k}{k}>2^{2 k} / 2 k
$$

(ii) Similarly $(1+1)^{2 k+1}=1+\binom{2 k+1}{1}+\cdots+\binom{2 k+1}{k}+\binom{2 k+1}{k+1}+\cdots+\binom{2 k+1}{2 k}+$ $1<(2 k+1)\binom{2 k+1}{k}$ implies

$$
\binom{2 k+1}{k}>2^{2 k+1} /(2 k+1)
$$

$$
\text { On a special diophantine equation } a\binom{x}{n}=b y^{r}+c
$$

Put

$$
\begin{equation*}
f_{n}(x)=x(x-1) \ldots(x(n-1))-\frac{c}{a} n! \tag{2}
\end{equation*}
$$

It follows from (1) that

$$
\begin{equation*}
f_{n}(x)=\frac{b}{a} n!y^{r} \tag{3}
\end{equation*}
$$

From Lemma 1, if $f_{n}(x)$ has at least two simple roots, then r is effectively bounded in terms of a, b, c and n; From Lemma 2, if $r \geq 2$ and $\left(q_{1}, \ldots, q_{n}\right)$ is not a permutation of $(q, 1, \ldots, 1)$ or $(2,2,1, \ldots, 1)$, then the equation (3) has only finitely many solutions, and all these can be effectively computed; From Lemma 3, if $r=2$, and $f(x)$ has at least three simple roots, then (3) has only finitely many solutions, and all these can be effectively determined.

From the discussions above, if we can prove that $f_{n}(x)$ has at least three simple roots when $a \neq 0, c \in Z$, then (3), so (1) has only finitely many solutions, and all these can be effectively determined.

On the simple roots of $f_{n}(x)$, we give the following theorem:
Theorem 2. Let $a \neq 0, c \neq 0$ be rational integers and $n \geq 3$. Then apart from $f_{n}(x)=x(x-1)(x-2)(x-3)+1$ and $x(x-1)(x-2)(x-3)-$ $\frac{9}{16}, f_{n}(x)$ has at least three simple roots.

Proof. We have $f_{n}(0)=f_{n}(1)=\cdots=f_{n}(n-1)=-\frac{c}{a} n$!. It is well known that there exist $x_{i} \in(i-1, i), i=1, \cdots, n-1$ with $f_{n}^{\prime}\left(x_{i}\right)=0$ by Rolle's Theorem. Since $\operatorname{deg} f_{n}^{\prime}(x)=n-1$,

$$
f_{n}^{\prime}(x)=\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)
$$

It is easily seen that the roots of $f_{n}^{\prime}(x)$ are real and simple, so the multiple roots of $f_{n}(x)$ are twofold roots and the imaginary roots of $f_{n}(x)$ are simple.

Now we consider the following two cases.
Case I. c/a>0.
(i) If $n=2 k+1$ is odd and $x>n-1$, then $f(x)$ is a monotone increasing function and $f_{n}(n-1)<0, f_{n}(+\infty)=+\infty$, therefore $f_{n}(x)$ has a simple root $x_{1}^{*}>n-1$.

It is easily seen that $f_{n}(x)$ reaches its maximal values at $x=x_{1}, x_{3}, \ldots$, $x_{2 k-1}$. If $f\left(x_{2 j-1}\right)>0, j \in\{1, \ldots, k\}$, then $f_{n}(x)$ has exactly two real simple roots in the interval $(2 j-2,2 j-1)$; If $f\left(x_{2 j-1}\right)=0, j \in\{1, \ldots, k\}$, then $x_{2 j-1}$ is the twofold root of $f_{n}(x)$; And if $f_{n}\left(x_{2 j-1}\right)<0$, then $f_{n}(x)$ has no real roots in the interval $(2 j-2,2 j-1)$, and it is easily seen from
the above discussions that we can assume $x_{2 j-1}$ as corresponding to two conjugate imaginary simple roots of $f_{n}(x)$ in this case.

Thus we know from above that if we can prove that $f_{n}\left(x_{1}\right), f_{n}\left(x_{3}\right), \ldots$, $f_{n}\left(x_{2 k-1}\right)$ are not all zero, then $f_{n}(x)$ has at least three simple roots. Define

$$
\begin{equation*}
f_{n}^{*}(x)=f_{n}(x)+\frac{c}{a} n!=x(x-1)(x-2) \ldots(x-n+1) \tag{4}
\end{equation*}
$$

We know from the above discussions that $f_{n}\left(x_{1}\right)$ resp. $f_{n}^{*}\left(x_{1}\right)$ is the largest of the $f_{n}(x)$ (resp. the $\left.f_{n}^{*}(x)\right)$ in the interval $(0,1)$. Then

$$
\begin{align*}
& f_{n}^{*}\left(x_{1}\right)=x_{1}\left(x_{1}-1\right) \ldots\left(x_{1}-2 k\right) \geq \tag{5}\\
& \geq \frac{1}{2}\left(-\frac{1}{2}\right)\left(\frac{1}{2}-2\right) \cdots\left(\frac{1}{2}-2 k\right)=\frac{(4 k)!}{2^{4 k+1} \cdot(2 k)!}
\end{align*}
$$

If k is even, then $f_{n}^{*}\left(x_{k+1}\right)=x_{k+1}\left(x_{k+1}-1\right) \ldots\left(x_{k+1}-k-1\right) \ldots\left(x_{k+1}-2 k\right)$ If k is odd, then $f_{n}^{*}\left(x_{k}\right)=x_{k}\left(x_{k}-1\right) \ldots\left(x_{k}-k\right) \ldots\left(x_{k}-2 k\right)$. Below we shall prove that if $n>3$, then

$$
f_{n}^{*}\left(x_{1}\right)> \begin{cases}f_{n}^{*}\left(x_{k+1}\right), & \text { if } k \text { is even } \\ f_{n}^{*}\left(x_{k}\right), & \text { if } k \text { is odd }\end{cases}
$$

It follows from Lemma 4 that

$$
f_{n}^{*}\left(x_{1}\right)>\frac{2^{2 k} \cdot k!\cdot k!}{2 \cdot(4 k) \cdot(2 k)}
$$

Hence, if $2^{2 k}>4^{2} k^{2}(k+1)$, i.e. $k>4$, then

$$
f_{n}^{*}\left(x_{1}\right)>\frac{2^{2 k} \cdot k!\cdot k!}{2 \cdot(4 k) \cdot(2 k)}>\frac{k!(k+1)!}{4} \geq \begin{cases}f_{n}^{*}\left(x_{k+1}\right), & \text { if } k \text { is even } \\ f_{n}^{*}\left(x_{k}\right), & \text { if } k \text { is odd }\end{cases}
$$

If $k=4$, then $f_{9}^{*}\left(x_{1}\right)>f_{9}^{*}\left(x_{5}\right)$, since $\frac{16!}{2^{17} \cdot 8!}>\frac{4!\cdot 5!}{4}$; if $k=3$, then $f_{7}^{*}\left(x_{1}\right)>$ $f_{n}^{*}\left(x_{3}\right)$, since $\frac{12!}{2^{13!} \cdot 6!}>\frac{3!\cdot 4!}{4}$, if $k=2$, then $f_{5}^{*}\left(x_{1}\right)>f_{5}^{*}\left(x_{3}\right)$, since $\frac{8!}{2^{9} \cdot 4!}>$ $\frac{2!\cdot 3!}{4}$; if $k=1$, then $n=3$, since $f_{3}^{*}(x)=x(x-1)(x-2)$; then $x_{1}=$ $\frac{3-\sqrt{3}}{3}, x_{2}=\frac{3+\sqrt{3}}{3}, f_{3}^{*}\left(x_{1}\right)=\frac{2 \sqrt{3}}{9}$ is not rational number, so $f_{3}\left(x_{1}\right) \neq 0$. Which proves that $f_{n}(x)$ has at least three simple roots in this case.
(ii) Let $n=2 k$ be even. Since $f_{n}(x)$ is a monotone decreasing function as $x<0$, and a monotone increasing function as $x>n-1$, and $f_{n}(0)=$ $f_{n}(n-1)=-\frac{c}{a} n!, f_{n}(-\infty)=f_{n}(+\infty)=+\infty$, in this case $f_{n}(x)$ has two simple roots $x_{1}^{*}<0, x_{2}^{*}>n-1$.

$$
\text { On a special diophantine equation } a\binom{x}{n}=b y^{r}+c
$$

It is easily seen that $f_{n}(x)$, so $f_{n}^{*}(x)$ reaches its maximal values at $x=x_{2}, x_{4}, \ldots, x_{2 k-2}$, since

$$
\begin{aligned}
f_{n}^{*}\left(x_{2}\right)>\frac{3}{2} \cdot \frac{1}{2} \cdot\left(-\frac{1}{2}\right) & \left(\frac{3}{2}-3\right) \cdots\left(\frac{3}{2}-2 k+1\right)
\end{aligned}=
$$

If k is even, then $f_{n}^{*}\left(x_{k}\right) \leq \frac{k!\cdot k!}{4}$, if k is odd, then $f_{n}^{*}\left(x_{k+1}\right) \leq \frac{(k-1)!\cdot(k+1)!}{4}$ It follows from Lemma 4 that

$$
f_{n}^{*}\left(x_{2}\right)>\frac{3 \cdot 2^{2 k-2} \cdot(k-1)!\cdot(k-1)!}{4 \cdot(4 k-2)(2 k-2)}
$$

Hence, if $3 \cdot 2^{2 k-5}>(k-1)^{2} k(k+1)$, i.e. $k \geq 8$, then

$$
f_{n}^{*}\left(x_{2}\right)> \begin{cases}f_{n}^{*}\left(x_{k}\right), & \text { if } k \text { is even } \\ f_{n}^{*}\left(x_{k+1}\right), & \text { if } k \text { is odd }\end{cases}
$$

If $k=7$, then $f_{14}^{*}\left(x_{2}\right)>f_{14}^{*}\left(x_{8}\right)$, since $\frac{3 \cdot 24!}{2^{26 \cdot 12!}}>\frac{6!\cdot 8!}{4}$; if $k=6$, then $f_{12}^{*}\left(x_{2}\right)>f_{12}^{*}\left(x_{6}\right)$, since $\frac{3 \cdot 20!}{2^{22} \cdot 10!}>\frac{6!\cdot 6!}{4}$; if $k=5$, then $f_{10}^{*}\left(x_{2}\right)>f_{10}^{*}\left(x_{6}\right)$, since $\frac{3 \cdot 16!}{2^{18} \cdot 8!}>\frac{4!\cdot 6!}{4}$; if $k=4$, put $u=x-\frac{7}{2}$, then

$$
\begin{array}{r}
f_{8}^{*}(u)=\left(u+\frac{7}{2}\right)\left(u+\frac{5}{2}\right)\left(u+\frac{3}{2}\right)\left(u+\frac{1}{2}\right)\left(u-\frac{1}{2}\right)\left(u-\frac{3}{2}\right) . \\
\cdot\left(u-\frac{5}{2}\right)\left(u-\frac{7}{2}\right)
\end{array}
$$

It is easy to prove that $f_{8}^{\prime}(u)$ has a root $u=0$, this implies that $f_{8}^{\prime}(x)$ has a solution $x=\frac{7}{2} \in(3,4)$, and so $x_{4}=\frac{7}{2}$. Then

$$
\begin{array}{r}
f_{8}^{*}\left(x_{2}\right) \geq \frac{3}{2} \cdot \frac{1}{2}\left(-\frac{1}{2}\right) \cdot\left(-\frac{3}{2}\right) \cdot\left(-\frac{5}{2}\right) \cdot\left(-\frac{7}{2}\right) \cdot\left(-\frac{9}{2}\right) \cdot\left(-\frac{11}{2}\right)> \\
>\left(\frac{7}{2}\right)^{2} \cdot\left(\frac{5}{2}\right)^{2} \cdot\left(\frac{3}{2}\right)^{2} \cdot\left(\frac{1}{2}\right)^{2}=f_{8}^{*}\left(x_{4}\right)
\end{array}
$$

If $k=3$, then $f_{6}^{*}(x)=\left(x^{2}-5 x\right)\left(x^{2}-5 x+4\right)\left(x^{2}-5 x+6\right)$ and $f_{6}^{\prime}(x)=$ $(2 x-5)\left(3\left(x^{2}-5 x\right)+\left(x^{2}-5 x\right)+26\right)$. Hence $x_{3}=\frac{5}{2}$, and x_{2} is the root of $x^{2}-5 x+\frac{10+2 \sqrt{7}}{3}=0$ or $x^{2}-5 x+\frac{10-2 \sqrt{7}}{3}=0$. So $f_{6}^{*}\left(x_{2}\right)=\frac{10+2 \sqrt{7}}{3}$. $\frac{-2+2 \sqrt{7}}{3} \cdot \frac{-8+2 \sqrt{7}}{3} \cdot(-1)$ is not a rational number, hence $f_{6}\left(x_{2}\right) \neq 0$. If $k=2$, then $f_{n}^{*}(x)=f_{4}^{*}(x)=x(x-1)(x-2)(x-3)=\left(x^{2}-3 x\right)^{2}+2\left(x^{2}-3 x\right)$, $x_{2}=\frac{3}{2}$, since $f_{4}^{*}\left(\frac{3}{2}\right)=9 / 16$, so if $\frac{c}{a} n!=9 / 16$, that is $\frac{c}{a}=3 / 128, f_{4}(x)=$
$\left(x-\frac{3}{2}\right)^{2}\left(x^{2}-3 x+\frac{1}{4}\right)$ has only two simple roots and if b / a is not a square, and $(2 x-3)^{2}-8=b / a y^{2}$ has a solution, then $f_{4}(x)=b y^{2}$ has infinitely many solutions.

Case II. $c / a<0$.
(i) If $n=2 k+1$ is odd, then $f_{n}^{*}(x)$ has a simple root x_{1}^{*} with $x_{1}^{*}<0$, and $f_{n}^{*}(x)$ reaches its minimal values at $x=x_{2}, x_{4}, \ldots, x_{2 k}$, since $\left|f_{n}^{*}\left(x_{2 k}\right)\right|>\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{3}{2} \cdots \cdot \frac{4 k-1}{2}=\frac{(4 k)!}{2^{4 k+1} \cdot(2 k)!}$. All the remaining cases are similar to the case of $c / a>0$, and $n=2 k+1$.
(ii) If $n=2 k$ is even, then $f_{n}^{*}(x)$ reaches its minimal values at $x=$ $x_{1}, x_{3}, \ldots, x_{2 k-1}$. Put $x=u+\frac{2 k-1}{2}$, then it is easily seen that $f_{n}\left(x_{i}\right)=$ $f_{n}\left(x_{2 k-i}\right)$ for $i=1, \ldots, k$. Therefore, if we can prove that

$$
f_{n}^{*}\left(x_{1}\right)< \begin{cases}f_{n}^{*}\left(x_{k-2}\right), & \text { if } k \text { is odd } \\ f_{n}^{*}\left(x_{k-1}\right), & \text { if } k \text { is even }\end{cases}
$$

then $f_{n}(x)$ has at least four simple roots, since

$$
\begin{gathered}
f_{n}^{*}\left(x_{1}\right)<-\frac{1}{2} \cdot \frac{1}{2} \cdot\left(2-\frac{1}{2}\right) \cdots \cdot\left(2 k-1-\frac{1}{2}\right)=-\frac{(4 k-2)!}{2^{4 k-1} \cdot(2 k-1)!} \\
0>f_{n}^{*}\left(x_{k-2}\right)>-\frac{(k-2)!(k+2)!}{4}, \quad 0>f_{n}^{*}\left(x_{k-1}\right) \geq \frac{(k-1)!(k+1)!}{4} .
\end{gathered}
$$

It follows from Lemma 4 that

$$
\left|f_{n}^{*}\left(x_{1}\right)\right|>\frac{2^{2 k-1} \cdot k!\cdot(k-1)!}{2 \cdot(4 k-2) \cdot(2 k-1)}
$$

If $2^{2 k-1}(k-1)>(2 k-1)!(k+1)(k+2)$, i.e. $k \geq 7$, then

$$
\left|f_{n}^{*}\left(x_{1}\right)\right|>\left|f_{n}^{*}\left(x_{k-2}\right)\right| \quad \text { or } \quad\left|f_{n}^{*}\left(x_{k-1}\right)\right| .
$$

If $k=6$, then $\left|f_{n}^{*}\left(x_{1}\right)\right|>\left|f_{n}^{*}\left(x_{5}\right)\right|$, since $\frac{22!}{2^{23} \cdot 11!}>\frac{5!\cdot 7!}{4}$; if $k=5$, then $\left|f_{n}^{*}\left(x_{1}\right)\right|>\left|f_{n}^{*}\left(x_{3}\right)\right|$, since $\frac{18!}{2^{19} \cdot 9!}>\frac{3!\cdot 7!}{4}$; if $k=4$, then $\left|f_{n}^{*}\left(x_{1}\right)\right|>\left|f_{n}^{*}\left(x_{3}\right)\right|$, since $\frac{14!}{2^{15} \cdot 7!}>\frac{3!\cdot 5!}{4}$; if $k=3$, then $n=6$, this case is similar to the case of $c / a>0$ and $n=6, f_{6}^{*}\left(x_{1}\right), f_{6}^{*}\left(x_{3}\right)$ are not rational numbers, and $f_{6}\left(x_{1}\right) \neq$ $0, f_{6}\left(x_{3}\right) \neq 0$. If $k=2$, then $n=4, f_{4}^{*}(x)=\left(x^{2}-3 x\right)^{2}+2\left(x^{2}-3 x\right)$, $x_{1}=\frac{3-\sqrt{5}}{2}, f_{4}^{*}\left(x_{1}\right)=-1$. Hence if $\frac{c}{a} n!=-1$. i.e., $c / a=-1 / 24$, then $f_{4}(x)=\left(x^{2}-3 x+1\right)^{2}$. It is easily seen that if $\frac{b}{a} n!=a_{1}^{2}$, and $x^{2}-3 x+1 \equiv$ $0\left(\bmod a_{1}^{*}\right)$ (here a_{1}^{*} is the numberator p of a_{1} as a_{1} is represented by $p / q,(p, q)=1, p, q \in Z)$ has a solution, then $f_{4}(x)=n!y^{2}$ has infinitely many solutions. This completes the proof of Theorem 2.

Proof of Theorem 1. It follows from Theorem 2 that apart from the two cases described in Theorem 1, $f(x)$ has at least three simple roots. Then

$$
\max (|x|, y, r)<C_{1}(a, b, c, n),
$$

where $C_{1}(a, b, c, n)$ is an effectively computable constant depending only on a, b, c and n. This completes the proof of Theorem 1.

Remarks. It is easily seen from the proof of Theorem 2 that if a, b, c are given algebraic integers, $K=Q(a, b, c)$, then apart from $n=4, c / a=$ $-1 / 24$ or $3 / 128 ; n=3, c / a= \pm \frac{\sqrt{3}}{108} ; n=6, c / a=-\frac{1}{6!} \cdot \frac{10-2 \sqrt{7}}{3} \cdot \frac{2+2 \sqrt{7}}{3}$. $\frac{8+2 \sqrt{7}}{3}$ or $c / a=\frac{1}{6!} \cdot \frac{10+2 \sqrt{7}}{3} \cdot \frac{2 \sqrt{7}-2}{3} \cdot \frac{8-2 \sqrt{7}}{3}, f_{n}(x)=\binom{x}{n}-\frac{c}{a}$, has at least three simple roots. Then there are only finitely many $x, y \in K$ satisfying the equation

$$
a\binom{x}{n}=b y^{r}+c, \quad n \geq 3
$$

and all these can be effectively determined.

References

[1] E. T. Avanesov, Solutions of a problem on figurate numbers (in Russian), Acta Arith. 12 (1966), 409-420.
[2] P. KISs, On the number solutions of the diophantine equation $\binom{x}{p}=\binom{y}{2}$, Fibonacci Quarterly 26 (1988), 127-130.
[3] B. Brindza, On a special superelliptic equation $\binom{x}{n}=\binom{y}{2}$, Publ. Math. Debrecen 39/1-2 (1991), 159-162.
[4] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge University Press, 1986.

