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Abstract. Let X be a real linear topological space and M : R→ R be continuous

and multiplicative. We determine the continuous solutions f : X → R of the functional

equation

f(x + M(f(x))y)f(x)f(y)[f(x + M(f(x))y)− f(x)f(y)] = 0.

In this way we generalize in particular a result of Z. Daróczy published in 1966, con-

cerning the continuous solutions of the GoÃla̧b–Schinzel functional equation.

1. Introduction

Let R denote the set of reals. The functional equation

f(x + f(x)y) = f(x)f(y) (GS)

has appeared for the first time in the paper [14] by S. GoÃla̧b and A. Schinzel

and has been extensively investigated there in the class of functions f : R → R.
The equation has been obtained by S. GoÃla̧b while looking for subgroups of the
centroaffine group of R2 (see, e.g., [25, p. 12–13]). However, equation (GS) can
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also be derived from the equation

f(x + y) = f(x)f
(

y

f(x)

)
, (1)

obtained a bit earlier by J. Aczél [1] in connection with his research in the theory
of geometric objects (it is enough to replace y by f(x)y in (1)). Later equation
(GS) has been given the name: the GoÃla̧b–Schinzel functional equation. For more
details and further references concerning it we refer to [2] and to the survey paper
[7]; for some recent results see, e.g., [15], [16], [17], [20], [21].

The first and very elegant description of the continuous solutions of (GS),
with more general domains (Hilbert space), has been provided by Z. Daróczy

in [12], and it seems that this influenced further research of solutions satisfying
some continuity conditions.

Motivated by R. Ger (cf. [13]) and stability results for (GS) proved in [9],
[10], [11] the first two authors of this paper have determined in [3] the continuous
solutions f : R→ R of the functional equation

f(x + f(x)y)f(x)f(y)[f(x + f(x)y)− f(x)f(y)] = 0. (2)

Namely the following theorem has been proved.

Theorem 1. A continuous function f : R→ R is a solution of equation (2)
if and only if one of the following three conditions holds.

(α) f ≡ 0.

(β) There is c ∈ R such that f(x) = max {cx + 1, 0} for x ∈ R or f(x) = cx + 1
for x ∈ R.

(γ) There is a ∈ (0,∞) such that f is of one of the following two forms:

f(x) ≤ 1− x

a
for x ∈ (a,∞) and f(x) = 0 for x ∈ (−∞, a];

f(x) ≤ 1 +
x

a
for x ∈ (−∞,−a) and f(x) = 0 for x ∈ [−a,∞).

Now, in the present paper we generalize that result by determining the con-
tinuous solutions f : X → R of the equation

f(x + M(f(x))y)f(x)f(y)[f(x + M(f(x))y)− f(x)f(y)] = 0, (3)

where X is a real linear topological space and M : R → R is a continuous
multiplicative function. Thus we obtain in particular a generalization of the result
of Z. Daróczy [12]. We also provide some examples of possible applications.
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Note that in the case: M(x) = 1 for x ∈ R, (3) becomes

f(x + y)f(x)f(y)[f(x + y)− f(x)f(y)] = 0, (4)

which can be regarded as a form of the following conditional version

if f(x)f(y)f(x + y) 6= 0, then f(x + y) = f(x)f(y)

of the well known exponential equation

f(x + y) = f(x)f(y) (5)

(for details concerning equation (5) see, e.g., [2]); if M(x) = x for x ∈ R, (3)
becomes equation (2), which also can be considered as a conditional form of the
GoÃla̧b–Schinzel equation (GS). Therefore solving (3) in some class of functions, we
could say that we determine solutions (in that class of functions) of the equations
‘lying between’ (4) and (2). Moreover, our results correspond to some recent
papers (see, e.g., [6], [8], [18], [22], [23], [24]) on conditional versions of (GS),
motivated by a problem raised by P. Kahlig and originating in meteorology and
fluid mechanics (cf. [18]).

In the sequel X denotes a real linear space, unless explicitly stated otherwise.
Next, given f : X → R, for each x ∈ X we define fx : R → R by: fx(t) := f(tx)
for t ∈ R.

2. The exponential case

We start with the case where M(x) = 1 for every x ∈ R, i.e. we determine
the continuous solutions f : X → R of (4).

Lemma 1. Let f : R→R be a continuous solution of (4) and S := {x∈R :
f(x) 6= 0}. Then one of the following two statements is valid.

(i) S = R.

(ii) 0 /∈ S, every connected component of S is a finite interval, and S+S ⊂ R\S.

Proof. Assume that S 6= R. Let I = (a, b) be a connected component of S.
We first show that I is a finite interval. For the proof by contradiction suppose
that, for instance, a = −∞ (the case b = ∞ is analogous). Clearly we have b < ∞
and the continuity of f implies f(b) = 0. Take w ∈ I with w < 0. For every x ∈ I,
x < b we have x+w ∈ I, whence (4) implies f(x+w) = f(x)f(w). Consequently
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letting x → b we obtain f(b + w) = f(b)f(w) = 0, which leads to a contradiction,
because b + w ∈ I.

Let w, u ∈ S, w belong to a connected component I1 of S, and u belong
to a connected component I2 of S. As we have just shown, I1 and I2 are finite
intervals, so we may write that Ii := (ai, bi) with some ai, bi ∈ R, for i = 1, 2.
Suppose f(b1 + u) 6= 0. Since f is continuous, there exists ε ∈ (0, b1 − a1) such
that f(t + u) 6= 0 for t ∈ (b1 − ε, b1). Next, by (4), we get f(t + u) = f(t)f(u)
for t ∈ (b1 − ε, b1), whence, as t goes to b1, we obtain f(b1 + u) = f(b1)f(u) = 0
which gives the contradiction. Therefore we have f(b1 + u) = 0. Similarly, we
can prove that f(a2 + w) = 0.

Thus we have shown that f((b1 + I2) ∪ (I1 + a2)) = {0}. Since I1 + I2 ⊂
(b1 + I2)∪ (I1 +a2)∪{b1 +a2}, by the continuity of f we obtain f(I1 + I2) = {0}.
This proves that S + S ⊂ R \ S, which implies that 0 /∈ S. ¤

Lemma 2. Let f : X → R be a continuous solution of (4), 0 ∈ f(X), x ∈ X,

f(x) 6= 0, and a(x) := sup {t ∈ (−∞, 1) : f(tx) = 0}. Then 1 > a(x) ≥ 0 and

f(a(x)x + z) = 0 for every z ∈ X with f(z) 6= 0.

Proof. There is w ∈ X with f(w) = 0. Write fw(t) := f(tw) for t ∈ R
and Sw := {t ∈ R : fw(t) 6= 0}. Then fw is a continuous solution of (4) and,
by Lemma 1, 0 /∈ Sw, whence f(0) = f(0w) = fw(0) = 0. This means that
0 ≤ a(x) < 1. Clearly f(tx) 6= 0 for t ∈ (a(x), 1).

Take z ∈ X with f(z) 6= 0 and suppose that f(a(x)x + z) 6= 0. Then there is
ε ∈ (0, 1 − a(x)) such that, for every t ∈ (a(x), a(x) + ε), we have f(tx + z) 6= 0
and consequently f(tx + z) = f(tx)f(z). Hence

0 6= f(a(x)x + z) = lim
t→a(x)+0

f(tx + z) = lim
t→a(x)+0

f(tx)f(z) = f(a(x)x)f(z) = 0.

This contradiction completes the proof. ¤

Now we are in a position to prove the following.

Proposition 1. Let f : X→R be continuous and S := {x∈X : f(x) 6=0}.
Then f is a solution of equation (4) if and only if one of the following two state-

ments is valid.

(i) There is a continuous linear functional g : X → R such that f = exp ◦g.

(ii) S + S ⊂ X \ S.

Proof. Obviously, any function f : R → R fulfilling either (i) or (ii) is a
solution of (4).
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Now, let f : X → R be a continuous solution of (4). If 0 /∈ f(X), then clearly
f is a solution of (5) and we have statement (i) with g := ln ◦f (cf., e.g., [2]). So
assume that f(w) = 0 for some w ∈ X.

Take x, y ∈ S. If x = sy with some s ∈ R, then, by Lemma 1 applied to
fy, x + y ∈ X \ S. It remains to consider the case where x and y are linearly
independent. For the proof by contradiction suppose that f(x + y) 6= 0.

In view of Lemma 2, a(x) ≥ 0. Next, since f is continuous, there is ε ∈
(0, 1 − a(x)) with f(y + εx) 6= 0. Write z := y + εx. Then, on account of
Lemma 2, f((a(x)+ ε)x+ y) = f(a(x)x+ z) = 0. Let σ := sup {t ∈ (a(x)+ ε, 1) :
f(tx+ y) = 0}. Clearly 1 > σ ≥ a(x)+ ε, f(σx) 6= 0, f(tx) 6= 0 and f(tx+ y) 6= 0
for t ∈ (σ, 1). Hence f(tx + y) = f(tx)f(y) for t ∈ (σ, 1) and consequently

0 = f(σx + y) = lim
t→σ+0

f(tx + y) = lim
t→σ+0

f(tx)f(y) = f(σx)f(y) 6= 0.

This contradiction proves that x + y /∈ S. ¤

The following example shows that without the assumption of continuity of f

the statement of Proposition 1 is not valid.

Example 1. Let f : R → R, f(x) = 0 for x < 1 and f(x) = ex for x ≥ 1.
Then f is discontinuous at 1 and either of conditions (i), (ii) does not hold.

Example 2. Let a, b ∈ (0,∞), b < 2a. Then clearly S := (a, b) satisfies the
condition: S + S ⊂ R \ S.

3. The GoÃla̧b–Schinzel case

Next, we consider the case M(x) = x for x ∈ R. We start with a lemma,
which follows immediately from Theorem 1 and [7, Remark 1].

Lemma 3. Let f : R → R be continuous and f(R) 6= {0}. Then the

following three statements are valid.

(i) f is a solution of equation (2) if, and only if, f satisfies equation (GS) or it

is a solution of the functional equation

f(x + f(x)y)f(x)f(y) = 0. (6)

(ii) f is a solution of (GS) if, and only if, statement (β) of Theorem 1 holds.

(iii) f is a solution of (6) if, and only if, statement (γ) of Theorem 1 is valid.
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Proposition 2. Let f : X → R be continuous and f(X) 6= {0}. Then, the

following two statements are valid.

(i) f is a solution of (2) if, and only if, f satisfies equation (GS) or it is a solution

of the functional equation (6).

(ii) f is a solution of equation (GS) if, and only if, there exists a continuous

linear functional L : X → R such that f has one of the two following forms:

f(x) = L(x) + 1 for x ∈ X; (7)

f(x) = max{L(x) + 1, 0} for x ∈ X. (8)

Proof. Statement (ii) is already well known (see [7] or [5]) and the sufficient
condition of statement (i) is trivial. So, it remains to prove the necessary condition
of statement (i).

Assume that f is a solution of (2). With x = y = 0 in (2) we have f(0) ∈
{0, 1}. Observe also that fx is a continuous solution of (2) for every x ∈ X.

If f(0) = 0, then, for each x∈X, fx(0)= 0, whence, by Lemma 3, fx : R→R
is a solution of equation (6) and therefore f(X) ⊂ (−∞, 0]. Take z, w ∈ X with
f(z)f(w) 6= 0. Since f(z), f(w), f(z + f(z)w) ∈ (−∞, 0], we have f(z)f(w) > 0
and consequently f(z + f(z)w) 6= f(z)f(w). This means that f(z + f(z)w) = 0,
because f is a solution of (2). Thus we have proved that f satisfies equation (6).

If f(0) = 1, then fx(0) = f(0) = 1 for each x ∈ X. In view of Lemma 3, this
means that fx 6≡ 0 satisfies equation (GS) for each x ∈ X.

Let H = f−1({1}). If H = X, then f ≡ 1 and consequently (7) holds with
L ≡ 0. So, we suppose now that H 6= X. The continuity of f implies that H is a
closed subset of X. We will prove that H is a closed hyperplane of X.

Observe that H = {x ∈ X : fx ≡ 1}. In fact, if x ∈ H, then there exists
c(x) ∈ R such that either fx(t) = max{c(x)t + 1, 0} for t ∈ R or fx(t) = c(x)t + 1
for t ∈ R. Since f(x) = fx(1) = 1, we have c(x) = 0, which implies fx ≡ 1.

First we show that H is a linear subspace of X. Obviously, if x ∈ H, then
λx ∈ X for all λ ∈ R. Next, take x, y ∈ H. Then fx = fy ≡ 1, whence in view of
(2), for every t ∈ R, we get

0 = f(tx + f(tx)ty)f(tx)f(ty)[f(tx + f(tx)ty)− f(tx)f(ty)]

= f(tx + ty)[f(tx + ty)− 1].

Thus fx+y(R) ⊂ {0, 1}. As f is continuous and fx+y(0) = f(0) = 1, this yields
fx+y ≡ 1 and so x + y ∈ H. We prove now that H is of codimension 1. For the
proof by contradiction suppose that there exist two linearly independent vectors
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x1 and x2 in X such that the linear subspace K of X, generated by x1 and x2,
satisfies

K ∩H = {0}. (9)

Since fxi
(R) is either R or [0,∞) for i = 1, 2, there exist t1, t2 ∈ R such that

f(t1x1) < 1 and f(t2x2) > 1. Next, by the continuity of f , 1 ∈ f([t1x1, t2x2]),
where [t1x1, t2x2] = {λt1x1 + (1 − λ)t2x2; λ∈ [0, 1]}. So there exists x0∈H ∩
[t1x1, t2x2]. Since x1 and x2 are linearly independent, 0 does not belong to
[t1x1, t2x2] and therefore x0 6= 0. This contradicts (9).

Thus we have shown that H is a closed hyperplane of X and consequently
there exists a nontrivial continuous linear functional l : X → R such that H =
Ker l. Furthermore, for every x0 ∈ X \ H, we have X = H ⊕ Rx0, whence, for
each x ∈ X, there exist unique z(x) ∈ H, t(x) ∈ R such that

x = z(x) + t(x)x0 (10)
and

t(x) =
l(x)
l(x0)

. (11)

Now, observe that one of the following two possibilities holds:

(a) there are x0 ∈ X \H and c0 ∈ R \ {0} such that fx0(t) = 1 + c0t for t ∈ R;

(b) for each x0 ∈ X \H there is c0 ∈ R \ {0} with fx0(t) = max{1 + c0t, 0} for
t ∈ R (which yields fx0(R) ⊂ [0,∞)).

Consider first the case (a). In view of (10), replacing x by z(x) and y by
t(x)x0 in (2), we get

f(x) = f(z(x) + t(x)x0) = f(z(x) + f(z(x))t(x)x0) = f(t(x)x0) = 1 + c0t(x)

for x ∈ X with f(x) 6= 0 and t(x) 6= − 1
c0

. Hence, for every t ∈ R \ { − 1
c0

}
,

f(tx0 + H) ⊂ {1 + c0t, 0}, which yields f(tx0 + H) = {1 + c0t}, because f is
continuous, H is connected, and 0 6= 1 + c0t = f(tx0 + 0) ∈ f(tx0 + H). So
f(z + tx0) = 1 + c0t for all z ∈ H, t ∈ R \ { − 1

c0

}
. Next, the continuity of f

implies f(z + tx0) = 1 + c0t for all z ∈ H, t ∈ R. Consequently (10) and (11)
imply that, for every x ∈ X, we have f(x) = 1 + c0

l(x)
l(x0)

, which gives (7) with
L = c0

l(x0)
l.

In the case (b), we argue analogously as in the previous one (note that in
this case f(x) 6= 0 or f(−x) 6= 0 for all x ∈ X). Namely, take x0 ∈ X \H. Then
f(tx0 + H) = {1 + c0t} for each t ∈ R with c0t > −1. Without loss of generality
we can assume that c0 > 0 (clearly, we can always replace x0 by −x0). Further,
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since f(X) = fx0(R) = [0,∞), for each x ∈ X with f(x) 6= 0, there is d ∈
(− 1

c0
,∞) with f(x) = f(dx0) and therefore, since either f(f(x)−1(dx0 − x)) 6= 0

or f(f(dx0)−1(x− dx0)) 6= 0, we have

f(dx0) = f

(
x + f(x)

dx0 − x

f(x)

)
= f(x)f

(
dx0 − x

f(x)

)

or

f(x) = f

(
dx0 + f(dx0)

x− dx0

f(dx0)

)
= f(dx0)f

(
x− dx0

f(dx0)

)
.

This shows that x−dx0 ∈ H and consequently x ∈ (− 1
c0

,∞)x0+H for each x ∈ X

with f(x) 6= 0. Hence, from (10) and (11), we obtain (8) with L = c0
l(x0)

l. ¤

The following example shows that statement (i) of Proposition 2 does not
hold without the assumption of continuity of f .

Example 3. The function f : R → R, given by: f(x) = x + 1 for x < 0 and
f(x) = 0 for x ≥ 0, satisfies equation (2), but it is neither a solution of (6) (take
x = −2 and y = − 1

2 ) nor of (GS) (take x = −2 and y = 0).

4. The general case

Finally we have the tools to present the main result of this paper. In this part,
as before, M : R→ R is a continuous multiplicative function with M(R) 6= {0}.

Remark 1. According to [19, p. 311, Theorem 6], either M(R) = {1}, or
there is a > 0 such that M(x) = |x|a for x ∈ R or M(x) = |x|asgn (x) for x ∈ R.
Thus, if M(R) 6= {1}, then either M is odd and bijective, or M is even and the
function M0 := M

∣∣
[0,∞)

is a bijection on [0,∞).

Theorem 2. Let X be a real linear topological space, f : X → R be continu-

ous, and f(u)f(v)f(u+M(f(u))v) 6= 0 for some u, v ∈ X. Then f is a solution of

equation (3) if, and only if, there exists a continuous linear functional L : X → R
such that,

1◦ in the case where M(R) = {1}, f = exp ◦L;

2◦ in the case where M is odd, f(x) = M−1(L(x) + 1) for x ∈ X or f(x) =
M−1(max {L(x) + 1, 0}) for x ∈ X.

3◦ in the case where M is even and M(R) 6= {1}, f(x) = M−1
0 (max {L(x)+1, 0})

for x ∈ X, where M0 := M
∣∣
[0,∞)

.
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Proof. The case M(R) = {1} results from Proposition 1. So assume that
M(R) 6= {1} and f is a solution of equation (3). Then clearly g := M ◦ f is
a continuous solution of (2), whence, according to Proposition 2, there exists a
continuous linear functional L : X → R such that g(x) = L(x) + 1 for x ∈ X

or g(x) = max {L(x) + 1, 0} for x ∈ X. In view of Remark 1, this yields the
form of f when M is odd. If M is even, then g(X) ⊂ [0,∞) and consequently
g(x) = max {L(x) + 1, 0} for x ∈ X. Clearly, it is enough to show now that
f(X) ⊂ [0,∞).

So, let x ∈ X and f(x) 6= 0. Then M(fx(t)) = M(f(tx)) = g(tx) =
max {L(tx) + 1, 0} = max {ct + 1, 0} for t ∈ R, where c := L(x). Hence, for
every s, t ∈ R with ct, cs ∈ (−1,∞),

fx(s + (cs + 1)t) = fx(s)fx(t), (12)

because c(s + M(fx(s))t) = c[s + (cs + 1)t] = (cs + 1)(ct + 1) − 1 > −1. Next
M(fx(1)) = M(f(x)) 6= 0, whence 0 < M(fx(1)) = c + 1 and consequently
c > −1. Clearly fx(s) 6= 0 for s ∈ R with cs + 1 > 0.

Note that c = 0 yields f(x) = fx

(
1
2 + 1

2

)
= fx

(
1
2

)2
> 0 (in view of (12)). So

it remains to consider the case c 6= 0. Let s :=
√

c+1−1
c . Then cs+1 =

√
c + 1 > 0,

fx(s) 6= 0, and, by (12), f(x) = fx(1) = fx(s + (cs + 1)s) = fx(s)fx(s) > 0.
The converse is easy to verify (in view of Proposition 2(ii)). ¤

Theorem 2 yields the following corollary, which is a generalization of state-
ment (i) of Proposition 2.

Corollary 1. Let X be a real linear topological space and f : X → R be

continuous. Then f is a solution of equation (3) if and only if f satisfies one of

the following two functional equations:

f(x)f(y)f(x + M(f(x)y) = 0, (13)

f(x + M(f(x)y) = f(x)f(y). (14)

Remark 2. In view of Corollary 1, the investigation of the solutions f : X → R
of equation (13) could be of some interest. The form of continuous f : R → R,
satisfying (13), can be easily deduced from Lemma 3. However, in a more general
situation it needs some longer arguments and therefore will be considered in a
separate paper. Also solutions f : X → R of equation (3), under assumptions
weaker than continuity, will be investigated in a next publication.

We complete the paper with three examples of applications of Theorem 2.
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Corollary 2. Let X be a real linear topological space, z ∈ X\{0}, f : X → R
be continuous, S := {x ∈ X : f(x) 6= 0}, and ? : X × X → X be given by:

x ? y := x + f(x)y. Then

x ? (y ? z) = (x ? y) ? z for x, y ∈ S with x ? y ∈ S (15)

if, and only if, f satisfies (GS) (and consequently ? is associative) or f is a

solution of equation (6) (which means that x ? y /∈ S for every x, y ∈ S).

Proof. It is easy to check that (15) holds if and only if f is a solution of
equation (2).

Assume that f is a solution of (2) and does not satisfy equation (6). Then
f(u)f(v)f(u + f(u)v) 6= 0 for some u, v ∈ X. Consequently, f has the form
described in Proposition 2(ii), which means that it is a solution to (GS). A simple
calculation shows that then ? is associative. The converse is trivial. ¤

In what follows, given a real linear space X, we define a binary operation
∗ : (R0×X)2 → R0×X by: (a, x)∗(b, y) := (ab, x+M(a)y), where R0 := R\{0}.
It is easy to check that (R0 ×X, ?) is a group. For more details concerning some
special cases of this group see [5, p. 60].

Corollary 3. Let M(R) 6= {1}, X be a real linear topological space, f :
X → R be continuous, and D := {(f(x), x) : x ∈ X, f(x) 6= 0}. Then D is a

subsemigroup of (R×X, ∗) if, and only if, f satisfies (14) (which implies that D

is a subgroup of (R0 ×X, ∗)).
Proof. Let S := {x ∈ X : f(x) 6= 0}. Clearly D is a subsemigroup of

(R×X, ∗) if, and only if,

(f(x), x) ∗ (f(y), y) = (f(x)f(y), x + M(f(x))y) ∈ D for x, y ∈ S. (16)

Next, it is easily seen that (16) is equivalent to the following condition:

f(x + M(f(x))y) = f(x)f(y) for x, y ∈ S. (17)

Hence, if D is a subsemigroup of (R0 × X, ∗), then f satisfies equation (3) and
consequently, by Corollary 1, f is a solution of (14). Using similar arguments as
in the proof of [5, Theorem 1(ii)], one can prove that this implies that D is a
subgroup of (R0 ×X, ∗). ¤

Corollary 4. Let X be a real linear topological space and f : X → R be

continuous. Then f satisfies the conditional functional equation

if f(x) 6= 0, then f(x + y) = f(x)f
(

y

f(x)

)
(18)

if, and only if, f is a solution of equation (GS).
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Proof. The case f ≡ 0 is trivial. So, suppose that f(z) 6= 0 for some z ∈ X.
Let f be a solution of (18). Then f is a solution of equation (2) (it is enough

to replace y by f(x)y in (18)); whence, by Corollary 1, f satisfies (GS), because
(18) (with x = z and y = zf(z)) implies that f(z)f(z + f(z)z) 6= 0.

Now assume that f satisfies (GS). Take x, y ∈ X with f(x) 6= 0. Then
replacing y by f(x)−1y in (GS) we get f(x + y) = f(x)f

(
y

f(x)

)
. ¤
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[8] J. Brzdȩk and A. Mureńko, On a conditional GoÃla̧b–Schinzel equation, Arch. Mat.
(Basel) 84 (2005), 503–511.

[9] J. Chudziak, Approximate solutions of the GoÃla̧b–Schinzel functional equation, J. Approx.
Theory 136 (2005), 21–25.

[10] J. Chudziak, Stability of the generalized GoÃla̧b–Schinzel equation, Acta Math. Hung. 113
(2006), 133–144.

[11] J. Chudziak and J. Tabor, On the stability of the GoÃla̧b–Schinzel functional equation, J.
Math. Anal. Appl. 302 (2005), 196–200.
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22 N. Brillouët-Belluot et al. : On continuous solutions of a class. . .

[18] P. Kahlig and J. Matkowski, A modified GoÃla̧b–Schinzel equation on a restricted do-

main (with applications to meteorology and fluid mechanics), Österreich. Akad. Wiss.
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[21] A. Mureńko, On solutions of a conditional generalization of the GoÃla̧b–Schinzel equation,
Publ. Math. Debrecen 63 (2003), 693–702.

[22] M. Sablik, A conditional GoÃla̧b–Schinzel equation, Anz. Österreich. Akad. Wiss.
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