On a functional equation with a symmetric component

By JUDITA DASCĂL (Debrecen)

Dedicated to Professor Zoltán Daróczy on the occasion of his seventieth birthday

Abstract. Let $I \subset \mathbb{R}$ be a nonvoid open interval and $r \neq 0, 1, q \in (0, 1)$, such that $r \neq q, r \neq \frac{1}{2}$ and $q \neq \frac{1}{2}$. In this paper we give all the functions $f, g: I \to \mathbb{R}_+$ such that

$$f\left(\frac{x+y}{2}\right)[r(1-q)g(y)-(1-r)qg(x)] = \frac{r-q}{1-2q}\left[(1-q)f(x)g(y)-qf(y)g(x)\right]$$

for all $x, y \in I$.

1. Introduction

Let $J \subset \mathbb{R}$ be a nonvoid open interval and denote the class of continuous and strictly monotone real valued functions defined on the interval J by $\mathcal{CM}(J)$. A function $M: J^2 \to J$ is called a weighted quasi-arithmetic mean on J if there exist $0 and <math>\varphi \in \mathcal{CM}(J)$ such that

$$M(x,y) = \varphi^{-1}(p\varphi(x) + (1-p)\varphi(y)) =: A_{\varphi}(x,y;p).$$

for all $x, y \in J$. The number p is said to be the weight and the function φ is called the *generating function* of the weighted quasi-arithmetic mean M.

Mathematics Subject Classification: 39B22.

Key words and phrases: mean, functional equation, quasi-arithmetic mean.

This research has been supported by the Hungarian Scientific Research Fund (OTKA) Grant NK 68040.

Now we can formulate the general problem as follows: determine all M,N: $J^2 \to J$ weighted quasi-arithmetic means and the constants $\mu \neq 0,1$ and $r \neq 0,1$, such that

$$\mu M(u, v) + (1 - \mu)N(u, v) = ru + (1 - r)v$$

holds for all $u, v \in J$. In detail this equation means the following: determine all the functions $\varphi, \psi \in \mathcal{CM}(J)$ and the constants $r \neq 0, 1, (p, q) \in (0, 1)^2, \mu \neq 0, 1$ such that

$$\mu \varphi^{-1}(p\varphi(u) + (1-p)\varphi(v)) + (1-\mu)\psi^{-1}(q\psi(u) + (1-q)\psi(v)) = ru + (1-r)v$$
holds for all $u, v \in J$.

If we suppose that $\varphi, \psi \in \mathcal{CM}(J)$ are differentiable on J and $\varphi'(u) > 0$, $\psi'(u) > 0$ for all $u \in J$, then with the notations $f := \varphi' \circ \varphi^{-1}$, $g := \psi' \circ \varphi^{-1}$, $I := \varphi(J)$ for the unknown functions $f, g : I \to \mathbb{R}_+$ and $\varphi(u) = x$ and $\varphi(v) = y$ $(x, y \in I)$, from the above equation we have

$$f(px + (1-p)y)[r(1-q)g(y) - (1-r)qg(x)]$$

= $\mu[p(1-q)f(x)g(y) - (1-p)qf(y)g(x)]$ (1)

for all $x, y \in I$. The functional equation (1) depends on the parameters $r \neq 0, 1$, $(p,q) \in (0,1)^2$ and $\mu \neq 0, 1$ for which, if x = y in (1), by f(x) > 0, g(x) > 0 we have

$$\mu(p-q) = r - q. \tag{2}$$

The functional equation (1) was studied in the following special cases:

- (i) $p = q = r = \mu = 1/2$, by J. Matkowski [11], then by Z. Daróczy and Zs. Páles [5] under much weaker conditions.
- (ii) p = q, $(p, q, r) \in (0, 1)^3$ (then by (2) r = q) by Z. DARÓCZY and Zs. PÁLES in [6], [5].
- (iii) $\mu = r$, $(p, q, r) \in (0, 1)^3$ J. Jarczyk and J. Matkowski in [8], and J. Jarczyk [7], P. Burai [1].
- (iv) $\mu = r$ and p = 1/2, $q \neq 1/2$, $(q, r) \in (0, 1)^2$ by Z. Daróczy in [3] without any conditions.
- (v) p = 1/2, $q \neq 1/2$ and $q, r \in (0,1)^2$, $r \neq q$, $r \neq 1/2$ and $\mu = \frac{2(r-q)}{1-2q}$ by Z. DARÓCZY and J. DASCĂL in [4].

In this paper we study the functional equation (1) in the case p=1/2 and $p \neq q$. Hence, by (2) we have $r \neq q$ and $r \neq \frac{1}{2}$ and

$$\mu = \frac{r - q}{\frac{1}{2} - q} = 2 \cdot \frac{r - q}{1 - 2q}.$$

This means we have to determine all the functions $f, g: I \to \mathbb{R}_+$ $(I \subset \mathbb{R} \text{ nonvoid open interval})$ and the constants $r \neq 0, 1, q \in (0, 1)$, such that

$$f\left(\frac{x+y}{2}\right)[r(1-q)g(y) - (1-r)qg(x)] = \frac{r-q}{1-2a}[(1-q)f(x)g(y) - qf(y)g(x)]$$
(3)

holds for all $x, y \in I$.

2. Main result

Theorem 1. Let $I \subset \mathbb{R}$ be a nonvoid open interval and $r \neq 0, 1, q \in (0, 1)$, such that $r \neq q$, $r \neq \frac{1}{2}$ and $q \neq \frac{1}{2}$. If the functions $f, g : I \to \mathbb{R}_+$ are solutions of the functional equation (3) then the following cases are possible:

- (1) If $r \neq \frac{q^2}{q^2 + (1-q)^2}$ and $r \neq \frac{q}{2q-1}$ then there exist constants $a, b \in \mathbb{R}_+$ such that $f(x) = a \quad \text{and} \quad g(x) = b \quad \text{for all } x \in I;$
- (2) If $r = \frac{q^2}{q^2 + (1-q)^2}$ then there exists an additive function $A : \mathbb{R} \to \mathbb{R}$ and positive real numbers c_1, c_2 such that

$$g(x) = c_1 e^{A(x)}$$
 and $f(x) = c_2 e^{2A(x)}$ for all $x \in I$;

(3) If $r = \frac{q}{2q-1}$ then there exist real numbers d_1 , d_2 , d_3 such that

$$g(x) = \frac{1}{d_1 x + d_2} > 0$$
 and $f(x) = d_3 \frac{1}{d_1 x + d_2} > 0$ for all $x, y \in I$.

Conversely, the functions given in the above cases are solutions of equation (3).

To prove Theorem 1 we need the following lemmas.

Lemma 1. Let $I \subset \mathbb{R}$ be a nonvoid open interval and $r \neq 0, 1, 0 < q < 1, r \neq q, r, q \neq 1/2$. If the functions $f, g: I \to \mathbb{R}_+$ satisfy the functional equation (3) then

$$f\left(\frac{x+y}{2}\right)[g(x)+g(y)] = [f(x)g(y)+f(y)g(x)] \tag{4}$$

holds for all $x, y \in I$.

Lemma 2. Let $I \subset \mathbb{R}$ be a nonvoid open interval and $r \neq 0, 1, 0 < q < 1, r \neq q, r, q \neq 1/2$. If the functions $f, g : I \to \mathbb{R}_+$ satisfy the functional equation (3) then

$$f(x)g(y)\{q(1-q)(1-2r)g(y) - [r(1-2q) - q^2(1-2r)]g(x)\}$$

$$= f(y)g(x)\{q(1-q)(1-2r)g(x) - [r(1-2q) - q^2(1-2r)]g(y)\}$$
 (5)

holds for all $x, y \in I$.

These lemmas are proved in [4].

Proof of Theorem 1:

The proof of cases (1) and (2) is the same as the proof of Theorem 1 from [4]. In case (3), when $r = \frac{q}{2q-1}$, by Lemma 2 the equation (5) becomes

$$f(x)g(y)\frac{q(1-q)}{1-2q}[g(x)+g(y)] = f(y)g(x)\frac{q(1-q)}{1-2q}[g(x)+g(y)].$$

for all $x, y \in I$. Hence f(x)g(y) = f(y)g(x), thus

$$f(x) = d_3 g(x)$$
 for some $d_3 > 0$ and for all $x \in I$. (6)

Replacing this form of f in (4) we have

$$g\left(\frac{x+y}{2}\right) = \frac{2}{\frac{1}{g(x)} + \frac{1}{g(y)}},$$

consequently, by [9], [10] there exist an additive function $B: \mathbb{R} \to \mathbb{R}$ and a real number d_2 such that $\frac{1}{g(x)} = B(x) + d_2 > 0$, thus $g(x) = \frac{1}{B(x) + d_2} > 0$ for all $x \in I$, that is, there exists $d_1 \in \mathbb{R}$ such that $B(x) = d_1 x$ for all $x \in I$, thus $g(x) = \frac{1}{d_1 x + d_2}$ for all $x \in I$. Finally, (6) completes the proof of case (3).

3. Application

Returning to the generalized problem we need the following definitions.

Definition 1. Let $\varphi, \psi \in \mathcal{CM}(J)$. If there exist $a \neq 0$ and b such that

$$\psi(x) = a\varphi(x) + b$$
 if $x \in J$

then we say that φ is equivalent to ψ on J and denote it by $\varphi(x) \sim \psi(x)$ if $x \in J$ or in short $\varphi \sim \psi$ on J.

It is well-known that if $0 and <math>\varphi, \psi \in \mathcal{CM}(J)$, then $A_{\varphi}(x, y; p) = A_{\psi}(x, y; p)$ for all $x, y \in J$ if and only if $\varphi \sim \psi$ on J.

We define the following sets:

$$T_{+}(J) := \{ t \in \mathbb{R} \mid J + t \subset \mathbb{R}_{+} \}$$

$$T_{-}(J) := \{ t \in \mathbb{R} \mid -J + t \subset \mathbb{R}_{+} \}.$$

With the help of these notations, set

$$\gamma_t^+(x) := \sqrt{x+t} \quad \text{if} \quad t \in T_+(J) \quad (x \in J)$$
$$\gamma_t^-(x) := \sqrt{-x+t} \quad \text{if} \quad t \in T_-(J) \quad (x \in J).$$

The general problem is as follows: determine all the functions $\varphi, \psi \in \mathcal{CM}(J)$ and the constants $r \neq 0, 1, (p, q) \in (0, 1)^2, \mu \neq 0, 1$ such that

$$\mu \varphi^{-1}(p\varphi(u) + (1-p)\varphi(v)) + (1-\mu)\psi^{-1}(q\psi(u) + (1-q)\psi(v)) = ru + (1-r)v$$

holds for all $u,v \in J$. If either p or q equals 1/2, the following theorem gives the solutions of this equation. If (φ,ψ) is the solution of the above functional equation with $p=1/2, q \neq 1/2$, then (ψ,φ) is the solution of the equation with $p \neq 1/2, q = 1/2$. So it is enough to state our theorem for the case $p=1/2, q \neq 1/2$. In [4] the above equation (with p=1/2) is solved for 0 < r < 1, but here we take $r \neq 0, 1$ and we get further solutions, which solutions are also found by Z. Daróczy in [2] without the assumption of differentiability of the functions φ and ψ .

Theorem 2. Let $J \subset \mathbb{R}$ be a nonvoid open interval and $r \neq 0, 1, \ 0 < q < 1, r, q \neq \frac{1}{2}, \ r \neq q$. If $\varphi, \psi \in \mathcal{CM}(J)$ are solutions of the functional equation

$$\frac{2(r-q)}{1-2q}\varphi^{-1}\left(\frac{\varphi(u)+\varphi(v)}{2}\right) + \left(1 - \frac{2(r-q)}{1-2q}\right)\psi^{-1}(q\psi(u) + (1-q)\psi(v)) \\
= ru + (1-r)v \quad (7)$$

for all $u, v \in J$ and φ, ψ are differentiable on J and $\varphi'(u) > 0$, $\psi'(u) > 0$ for all $u \in J$ then $\varphi \sim \operatorname{id}$ and $\psi \sim \operatorname{id}$ on J, furthermore in the case $r = \frac{q^2}{q^2 + (1-q)^2}$ the following cases are also possible:

$$\varphi \sim \log \gamma_t^+, \ \psi \sim \gamma_t^+ \quad \text{if } t \in T_+(J) \qquad \text{or} \qquad \varphi \sim \log \gamma_t^-, \ \psi \sim \gamma_t^- \quad \text{if } t \in T_-(J)$$

and in the case $r = \frac{q}{2q-1}$ the following cases are also possible:

$$\varphi \sim \gamma_t^+, \ \psi \sim \gamma_t^+ \quad \text{if } t \in T_+(J) \qquad \text{or} \qquad \varphi \sim \gamma_t^-, \ \psi \sim \gamma_t^- \quad \text{if } t \in T_-(J).$$

PROOF. It is enough to solve the functional equation (7) up to the equivalence of the functions φ and ψ . With the notations $f := \varphi' \circ \varphi^{-1}$, $g := \psi' \circ \varphi^{-1}$, $I := \varphi(J)$ we get that equation (3) holds. Due to the definition of f, we obtain the differential equation for the function φ :

$$\varphi'(x) = f(\varphi(x)) \quad x \in J. \tag{8}$$

By Theorem 1, the case $r \neq \frac{q^2}{q^2 + (1-q)^2}$, $r \neq \frac{q}{2q-1}$ gives the constant solutions, which implies that $\varphi \sim \operatorname{id}$, $\psi \sim \operatorname{id}$.

If $r = \frac{q^2}{q^2 + (1-q)^2}$ the proof is found in [4].

If $r = \frac{q}{2q-1}$ then

$$f(x) = d_3 \frac{1}{d_1 x + d_2}$$
 and $g(x) = \frac{1}{d_1 x + d_2}$ for all $x \in I$, (9)

where $d_1, d_2, d_3 \in \mathbb{R}, d_3 > 0$.

In the case $d_1 = 0$, $\varphi \sim \text{id}$ and $\psi \sim \text{id}$.

In the case $d_1 \neq 0$ from (8) we have

$$\varphi'(u) = d_3 \frac{1}{d_1 \varphi(u) + d_2} > 0$$
 for all $u \in J$,

which implies that $\varphi(u) \sim \sqrt{C_2 u + C_3}$, from which we deduce that either there exists $t \in T_+(J)$ such that $\varphi \sim \gamma_t^+$ on J or there exists $t \in T_-(J)$ such that $\varphi \sim \gamma_t^-$ on J.

Due to the definition of g, by (9) we obtain that

$$\psi'(u) = \frac{1}{d_1 \varphi(u) + d_2} > 0 \quad \text{for all } u \in J,$$

which implies that either there exists $t \in T_+(J)$ such that $\psi \sim \gamma_t^+$ on J or there exists $t \in T_{-}(J)$ such that $\psi \sim \gamma_{t}^{-}$ on J.

References

- [1] P. Burai, A Matkowski-Sutô type equation, Publ. Math. Debrecen 70 (2007), 233-247.
- [2] Z. DARÓCZY, Mean values and functional equations, Differential Equations & Dynamical Systems - An International Journal for Theory, Applications and Computer Simulations, accepted.
- [3] Z. DARÓCZY, On a class of means of two variables, Publ. Math. Debrecen 55 (1999), 177 - 197.

- [4] Z. DARÓCZY and J. DASCĂL, On the general solution of a family of functional equations with two parameters and its application, *Math. Pannonica* **20**(1) (2009), 27–36.
- [5] Z. DARÓCZY and Zs. PÁLES, Gauss-composition of means and the solution of the Matkowski–Sutô problem, Publ. Math. Debrecen 61 (2002), 157–218.
- [6] Z. DARÓCZY and Zs. PÁLES, On functional equations involving means, Publ. Math. Debrecen 62 (2003), 363–377.
- [7] J. JARCZYK, Invariance of weighted quasi-arithmetic means with continuous generators, Publ. Math. Debrecen 71 (2007), 279-294.
- [8] J. JARCZYK and J. MATKOWSKI, Invariance in the class of weighted quasi-arithmetic means, Ann. Polon. Math. 88(1) (2006), 39–51.
- [9] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Vol. 489, Prace Naukowe Uniwersytetu Śląskiego w Katowicach, Państwowe Wydawnictwo Naukowe – Uniwersytet Śląski, Warszawa – Kraków – Katowice, 1985.
- [10] K. Lajkó, Applications of extensions of additive functions, Aequationes Math. 11 (1974), 68–76
- [11] J. Matkowski, Invariant and complementary quasi-arithmetic means, Aequationes Math. 57 (1999), 87–107.

JUDITA DASCĂL INSTITUTE OF MATHEMATICS UNIVERSITY OF DEBRECEN H-4010 DEBRECEN, P.O. BOX 12 HUNGARY

E-mail: jdascal@math.klte.hu

(Received September 26, 2008; revised March 13, 2009)