On a functional equation with a symmetric component

By JUDITA DASCĂL (Debrecen)

Dedicated to Professor Zoltán Daróczy on the occasion of his seventieth birthday

Abstract

Let $I \subset \mathbb{R}$ be a nonvoid open interval and $r \neq 0,1, q \in(0,1)$, such that $r \neq q, r \neq \frac{1}{2}$ and $q \neq \frac{1}{2}$. In this paper we give all the functions $f, g: I \rightarrow \mathbb{R}_{+}$such that $$
f\left(\frac{x+y}{2}\right)[r(1-q) g(y)-(1-r) q g(x)]=\frac{r-q}{1-2 q}[(1-q) f(x) g(y)-q f(y) g(x)]
$$

for all $x, y \in I$.

1. Introduction

Let $J \subset \mathbb{R}$ be a nonvoid open interval and denote the class of continuous and strictly monotone real valued functions defined on the interval J by $\mathcal{C} \mathcal{M}(J)$. A function $M: J^{2} \rightarrow J$ is called a weighted quasi-arithmetic mean on J if there exist $0<p<1$ and $\varphi \in \mathcal{C} \mathcal{M}(J)$ such that

$$
M(x, y)=\varphi^{-1}(p \varphi(x)+(1-p) \varphi(y))=: A_{\varphi}(x, y ; p)
$$

for all $x, y \in J$. The number p is said to be the weight and the function φ is called the generating function of the weighted quasi-arithmetic mean M.

[^0]Now we can formulate the general problem as follows: determine all M, N : $J^{2} \rightarrow J$ weighted quasi-arithmetic means and the constants $\mu \neq 0,1$ and $r \neq 0,1$, such that

$$
\mu M(u, v)+(1-\mu) N(u, v)=r u+(1-r) v
$$

holds for all $u, v \in J$. In detail this equation means the following: determine all the functions $\varphi, \psi \in \mathcal{C} \mathcal{M}(J)$ and the constants $r \neq 0,1,(p, q) \in(0,1)^{2}, \mu \neq 0,1$ such that

$$
\mu \varphi^{-1}(p \varphi(u)+(1-p) \varphi(v))+(1-\mu) \psi^{-1}(q \psi(u)+(1-q) \psi(v))=r u+(1-r) v
$$

holds for all $u, v \in J$.
If we suppose that $\varphi, \psi \in \mathcal{C} \mathcal{M}(J)$ are differentiable on J and $\varphi^{\prime}(u)>0$, $\psi^{\prime}(u)>0$ for all $u \in J$, then with the notations $f:=\varphi^{\prime} \circ \varphi^{-1}, g:=\psi^{\prime} \circ \varphi^{-1}$, $I:=\varphi(J)$ for the unknown functions $f, g: I \rightarrow \mathbb{R}_{+}$and $\varphi(u)=x$ and $\varphi(v)=y$ $(x, y \in I)$, from the above equation we have

$$
\begin{align*}
f(p x+(1-p) y)[r(1-q) g(y)- & (1-r) q g(x)] \\
& =\mu[p(1-q) f(x) g(y)-(1-p) q f(y) g(x)] \tag{1}
\end{align*}
$$

for all $x, y \in I$. The functional equation (1) depends on the parameters $r \neq 0,1$, $(p, q) \in(0,1)^{2}$ and $\mu \neq 0,1$ for which, if $x=y$ in (1), by $f(x)>0, g(x)>0$ we have

$$
\begin{equation*}
\mu(p-q)=r-q \tag{2}
\end{equation*}
$$

The functional equation (1) was studied in the following special cases:
(i) $p=q=r=\mu=1 / 2$, by J. MATKOWSKi [11], then by Z. Daróczy and Zs. PÁLes [5] under much weaker conditions.
(ii) $p=q,(p, q, r) \in(0,1)^{3}$ (then by $\left.(2) r=q\right)$ by Z. DARÓcZY and Zs. PÁLES in [6], [5].
(iii) $\mu=r,(p, q, r) \in(0,1)^{3}$ J. Jarczyk and J. Matkowski in [8], and J. Jarczyk [7], P. Burai [1].
(iv) $\mu=r$ and $p=1 / 2, q \neq 1 / 2,(q, r) \in(0,1)^{2}$ by Z. DARÓcZY in [3] without any conditions.
(v) $p=1 / 2, q \neq 1 / 2$ and $q, r \in(0,1)^{2}, r \neq q, r \neq 1 / 2$ and $\mu=\frac{2(r-q)}{1-2 q}$ by Z. Daróczy and J. Dascăl in [4].

In this paper we study the functional equation (1) in the case $p=1 / 2$ and $p \neq q$. Hence, by (2) we have $r \neq q$ and $r \neq \frac{1}{2}$ and

$$
\mu=\frac{r-q}{\frac{1}{2}-q}=2 \cdot \frac{r-q}{1-2 q} .
$$

This means we have to determine all the functions $f, g: I \rightarrow \mathbb{R}_{+}(I \subset \mathbb{R}$ nonvoid open interval) and the constants $r \neq 0,1, q \in(0,1)$, such that

$$
\begin{align*}
f\left(\frac{x+y}{2}\right)[r(1-q) g(y)-(1 & -r) q g(x)] \\
& =\frac{r-q}{1-2 q}[(1-q) f(x) g(y)-q f(y) g(x)] \tag{3}
\end{align*}
$$

holds for all $x, y \in I$.

2. Main result

Theorem 1. Let $I \subset \mathbb{R}$ be a nonvoid open interval and $r \neq 0,1, q \in(0,1)$, such that $r \neq q, r \neq \frac{1}{2}$ and $q \neq \frac{1}{2}$. If the functions $f, g: I \rightarrow \mathbb{R}_{+}$are solutions of the functional equation (3) then the following cases are possible:
(1) If $r \neq \frac{q^{2}}{q^{2}+(1-q)^{2}}$ and $r \neq \frac{q}{2 q-1}$ then there exist constants $a, b \in \mathbb{R}_{+}$such that

$$
f(x)=a \quad \text { and } \quad g(x)=b \quad \text { for all } x \in I
$$

(2) If $r=\frac{q^{2}}{q^{2}+(1-q)^{2}}$ then there exists an additive function $A: \mathbb{R} \rightarrow \mathbb{R}$ and positive real numbers c_{1}, c_{2} such that

$$
g(x)=c_{1} e^{A(x)} \quad \text { and } \quad f(x)=c_{2} e^{2 A(x)} \quad \text { for all } x \in I
$$

(3) If $r=\frac{q}{2 q-1}$ then there exist real numbers d_{1}, d_{2}, d_{3} such that

$$
g(x)=\frac{1}{d_{1} x+d_{2}}>0 \quad \text { and } \quad f(x)=d_{3} \frac{1}{d_{1} x+d_{2}}>0 \quad \text { for all } x, y \in I
$$

Conversely, the functions given in the above cases are solutions of equation (3).
To prove Theorem 1 we need the following lemmas.
Lemma 1. Let $I \subset \mathbb{R}$ be a nonvoid open interval and $r \neq 0,1,0<q<1$, $r \neq q, r, q \neq 1 / 2$. If the functions $f, g: I \rightarrow \mathbb{R}_{+}$satisfy the functional equation (3) then

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right)[g(x)+g(y)]=[f(x) g(y)+f(y) g(x)] \tag{4}
\end{equation*}
$$

holds for all $x, y \in I$.

Lemma 2. Let $I \subset \mathbb{R}$ be a nonvoid open interval and $r \neq 0,1,0<q<1$, $r \neq q, r, q \neq 1 / 2$. If the functions $f, g: I \rightarrow \mathbb{R}_{+}$satisfy the functional equation (3) then

$$
\begin{align*}
f(x) g(y) & \left\{q(1-q)(1-2 r) g(y)-\left[r(1-2 q)-q^{2}(1-2 r)\right] g(x)\right\} \\
& =f(y) g(x)\left\{q(1-q)(1-2 r) g(x)-\left[r(1-2 q)-q^{2}(1-2 r)\right] g(y)\right\} \tag{5}
\end{align*}
$$

holds for all $x, y \in I$.
These lemmas are proved in [4].
Proof of Theorem 1:
The proof of cases (1) and (2) is the same as the proof of Theorem 1 from [4].
In case (3), when $r=\frac{q}{2 q-1}$, by Lemma 2 the equation (5) becomes

$$
f(x) g(y) \frac{q(1-q)}{1-2 q}[g(x)+g(y)]=f(y) g(x) \frac{q(1-q)}{1-2 q}[g(x)+g(y)]
$$

for all $x, y \in I$. Hence $f(x) g(y)=f(y) g(x)$, thus

$$
\begin{equation*}
f(x)=d_{3} g(x) \quad \text { for some } d_{3}>0 \quad \text { and for all } x \in I \tag{6}
\end{equation*}
$$

Replacing this form of f in (4) we have

$$
g\left(\frac{x+y}{2}\right)=\frac{2}{\frac{1}{g(x)}+\frac{1}{g(y)}}
$$

consequently, by [9], [10] there exist an additive function $B: \mathbb{R} \rightarrow \mathbb{R}$ and a real number d_{2} such that $\frac{1}{g(x)}=B(x)+d_{2}>0$, thus $g(x)=\frac{1}{B(x)+d_{2}}>0$ for all $x \in I$, that is, there exists $d_{1} \in \mathbb{R}$ such that $B(x)=d_{1} x$ for all $x \in I$, thus $g(x)=\frac{1}{d_{1} x+d_{2}}$ for all $x \in I$. Finally, (6) completes the proof of case (3).

3. Application

Returning to the generalized problem we need the following definitions.
Definition 1. Let $\varphi, \psi \in \mathcal{C \mathcal { M }}(J)$. If there exist $a \neq 0$ and b such that

$$
\psi(x)=a \varphi(x)+b \quad \text { if } x \in J
$$

then we say that φ is equivalent to ψ on J and denote it by $\varphi(x) \sim \psi(x)$ if $x \in J$ or in short $\varphi \sim \psi$ on J.

It is well-known that if $0<p<1$ and $\varphi, \psi \in \mathcal{C M}(J)$, then $A_{\varphi}(x, y ; p)=$ $A_{\psi}(x, y ; p)$ for all $x, y \in J$ if and only if $\varphi \sim \psi$ on J.

We define the following sets:

$$
\begin{aligned}
& T_{+}(J):=\left\{t \in \mathbb{R} \mid J+t \subset \mathbb{R}_{+}\right\} \\
& T_{-}(J):=\left\{t \in \mathbb{R} \mid-J+t \subset \mathbb{R}_{+}\right\} .
\end{aligned}
$$

With the help of these notations, set

$$
\begin{array}{lll}
\gamma_{t}^{+}(x):=\sqrt{x+t} & \text { if } t \in T_{+}(J) & (x \in J) \\
\gamma_{t}^{-}(x):=\sqrt{-x+t} & \text { if } t \in T_{-}(J) & (x \in J) .
\end{array}
$$

The general problem is as follows: determine all the functions $\varphi, \psi \in \mathcal{C M}(J)$ and the constants $r \neq 0,1,(p, q) \in(0,1)^{2}, \mu \neq 0,1$ such that

$$
\mu \varphi^{-1}(p \varphi(u)+(1-p) \varphi(v))+(1-\mu) \psi^{-1}(q \psi(u)+(1-q) \psi(v))=r u+(1-r) v
$$

holds for all $u, v \in J$. If either p or q equals $1 / 2$, the following theorem gives the solutions of this equation. If (φ, ψ) is the solution of the above functional equation with $p=1 / 2, q \neq 1 / 2$, then (ψ, φ) is the solution of the equation with $p \neq 1 / 2, q=1 / 2$. So it is enough to state our theorem for the case $p=1 / 2$, $q \neq 1 / 2$. In [4] the above equation (with $p=1 / 2$) is solved for $0<r<1$, but here we take $r \neq 0,1$ and we get further solutions, which solutions are also found by Z. DarócZY in [2] without the assumption of differentiability of the functions φ and ψ.

Theorem 2. Let $J \subset \mathbb{R}$ be a nonvoid open interval and $r \neq 0,1,0<q<1$, $r, q \neq \frac{1}{2}, r \neq q$. If $\varphi, \psi \in \mathcal{C M}(J)$ are solutions of the functional equation

$$
\begin{array}{r}
\frac{2(r-q)}{1-2 q} \varphi^{-1}\left(\frac{\varphi(u)+\varphi(v)}{2}\right)+\left(1-\frac{2(r-q)}{1-2 q}\right) \psi^{-1}(q \psi(u)+(1-q) \psi(v)) \\
=r u+(1-r) v \tag{7}
\end{array}
$$

for all $u, v \in J$ and φ, ψ are differentiable on J and $\varphi^{\prime}(u)>0, \psi^{\prime}(u)>0$ for all $u \in J$ then $\varphi \sim \mathrm{id}$ and $\psi \sim \mathrm{id}$ on J, furthermore in the case $r=\frac{q^{2}}{q^{2}+(1-q)^{2}}$ the following cases are also possible:

$$
\varphi \sim \log \gamma_{t}^{+}, \psi \sim \gamma_{t}^{+} \quad \text { if } t \in T_{+}(J) \quad \text { or } \quad \varphi \sim \log \gamma_{t}^{-}, \psi \sim \gamma_{t}^{-} \quad \text { if } t \in T_{-}(J)
$$

and in the case $r=\frac{q}{2 q-1}$ the following cases are also possible:

$$
\varphi \sim \gamma_{t}^{+}, \psi \sim \gamma_{t}^{+} \quad \text { if } t \in T_{+}(J) \quad \text { or } \quad \varphi \sim \gamma_{t}^{-}, \psi \sim \gamma_{t}^{-} \quad \text { if } t \in T_{-}(J) .
$$

Proof. It is enough to solve the functional equation (7) up to the equivalence of the functions φ and ψ. With the notations $f:=\varphi^{\prime} \circ \varphi^{-1}, g:=\psi^{\prime} \circ \varphi^{-1}$, $I:=\varphi(J)$ we get that equation (3) holds. Due to the definition of f, we obtain the differential equation for the function φ :

$$
\begin{equation*}
\varphi^{\prime}(x)=f(\varphi(x)) \quad x \in J \tag{8}
\end{equation*}
$$

By Theorem 1, the case $r \neq \frac{q^{2}}{q^{2}+(1-q)^{2}}, r \neq \frac{q}{2 q-1}$ gives the constant solutions, which implies that $\varphi \sim \mathrm{id}, \psi \sim \mathrm{id}$.

If $r=\frac{q^{2}}{q^{2}+(1-q)^{2}}$ the proof is found in [4].
If $r=\frac{q}{2 q-1}$ then

$$
\begin{equation*}
f(x)=d_{3} \frac{1}{d_{1} x+d_{2}} \text { and } g(x)=\frac{1}{d_{1} x+d_{2}} \quad \text { for all } x \in I \tag{9}
\end{equation*}
$$

where $d_{1}, d_{2}, d_{3} \in \mathbb{R}, d_{3}>0$.
In the case $d_{1}=0, \varphi \sim \mathrm{id}$ and $\psi \sim \mathrm{id}$.
In the case $d_{1} \neq 0$ from (8) we have

$$
\varphi^{\prime}(u)=d_{3} \frac{1}{d_{1} \varphi(u)+d_{2}}>0 \quad \text { for all } u \in J
$$

which implies that $\varphi(u) \sim \sqrt{C_{2} u+C_{3}}$, from which we deduce that either there exists $t \in T_{+}(J)$ such that $\varphi \sim \gamma_{t}^{+}$on J or there exists $t \in T_{-}(J)$ such that $\varphi \sim \gamma_{t}^{-}$on J.

Due to the definition of g, by (9) we obtain that

$$
\psi^{\prime}(u)=\frac{1}{d_{1} \varphi(u)+d_{2}}>0 \quad \text { for all } u \in J
$$

which implies that either there exists $t \in T_{+}(J)$ such that $\psi \sim \gamma_{t}^{+}$on J or there exists $t \in T_{-}(J)$ such that $\psi \sim \gamma_{t}^{-}$on J.

References

[1] P. Burai, A Matkowski-Sutô type equation, Publ. Math. Debrecen 70 (2007), 233-247.
[2] Z. Daróczy, Mean values and functional equations, Differential Equations \&̧ Dynamical Systems - An International Journal for Theory, Applications and Computer Simulations, accepted.
[3] Z. Daróczy, On a class of means of two variables, Publ. Math. Debrecen 55 (1999), 177-197.
[4] Z. Daróczy and J. Dascăl, On the general solution of a family of functional equations with two parameters and its application, Math. Pannonica 20(1) (2009), 27-36.
[5] Z. Daróczy and Zs. PÁLes, Gauss-composition of means and the solution of the Matkowski-Sutô problem, Publ. Math. Debrecen 61 (2002), 157-218.
[6] Z. Daróczy and Zs. Páles, On functional equations involving means, Publ. Math. Debrecen 62 (2003), 363-377.
[7] J. Jarczyk, Invariance of weighted quasi-arithmetic means with continuous generators, Publ. Math. Debrecen 71 (2007), 279-294.
[8] J. Jarczyk and J. Matkowski, Invariance in the class of weighted quasi-arithmetic means, Ann. Polon. Math. 88(1) (2006), 39-51. .
[9] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Vol. 489, Prace Naukowe Uniwersytetu Śla̧skiego w Katowicach, Państwowe Wydawnictwo Naukowe - Uniwersytet Ślagski, Warszawa - Kraków - Katowice, 1985.
[10] K. LaJKó, Applications of extensions of additive functions, Aequationes Math. 11 (1974), 68-76.
[11] J. Matkowski, Invariant and complementary quasi-arithmetic means, Aequationes Math. 57 (1999), 87-107.

JUDITA DASCĂL
INSTITUTE OF MATHEMATICS
UNIVERSITY OF DEBRECEN
H-4010 DEBRECEN, P.O. BOX 12
HUNGARY
E-mail: jdascal@math.klte.hu
(Received September 26, 2008; revised March 13, 2009)

[^0]: Mathematics Subject Classification: 39B22.
 Key words and phrases: mean, functional equation, quasi-arithmetic mean.
 This research has been supported by the Hungarian Scientific Research Fund (OTKA) Grant NK 68040.

