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D’Alembert’s functional equation on topological monoids

By THOMAS M. K. DAVISON (Hamilton)

Dedicated to Professor Zoltán Daróczy on the occasion of his 70th birthday

Abstract. We prove that if f is a continuous complex-valued function on the

topological monoid M with neutral element e satisfying the functional equation

f(xyz) + f(xzy) = 2f(x)f(yz) + 2f(y)f(zx) + 2f(z)f(xy)− 4f(x)f(y)f(z)

and f(e) = 1, then there is a continuous homomorphism h : M → Mat2(C), the

multiplicative monoid of complex 2 × 2 matrices such that f = 1
2
tr ◦ h. As a conse-

quence we prove that if f is a continuous function on the topological group G satisfying

f(xy) + f(xy−1) = 2f(x)f(y) and f(e) = 1 then there is a continuous homomorphism

h : G → SL2(C) such that f = 1
2
tr ◦ h.

1. Introduction

In our previous work [2] on d’Alembert’s equation we found that our method
of proof of the result in the abstract worked without reference to the inverse op-
eration on the group, merely the associativity of multiplication and the existence
of a neutral element. Moreover the equation (1.1) below whence all results flowed
was already clearly central in our previous paper [2, Proposition 2.1] and had
been suggested by an exercise in Thurston [9] (see Example 1.1 below).
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Thus let M be a topological monoid with neutral element e. We say that
the function f : M → C is a pre-d’Alembert function if it is continuous, f(e) = 1
and, for all x, y, z in M

f(xyz)+f(xzy) = 2f(x)f(yz)+2f(y)f(zx)+2f(z)f(xy)−4f(x)f(y)f(z). (1.1)

Clearly any continuous homomorphism from M into the monoid 〈C, ·〉 satis-
fies (1.1). A non-trivial example, relevant to our results and applications later is
given in

Example 1.1. The function X→1
2 trace(X), denoted 1

2 tr, is a pre-d’Alembert
function on the multiplicative monoid of 2 × 2 complex matrices, Mat2(C). For
1
2 tr is pre-d’Alembert if and only if, for all X, Y, Z in Mat2(C)

tr(XY Z + XZY ) = tr X tr Y Z + tr Y trXZ + trZ tr XY − trX trY trZ. (1.2)

Writing X = αE + X ′ where α = 1
2 tr X, and tr X ′ = 0 we see that (1.2) is true

if and only if

tr(X ′Y Z + X ′ZY ) = tr Y tr X ′Z + trZ trX ′Y.

Now writing Y = βE + Y ′, tr Y ′ = 0, and Z = γE + Z ′, tr Z ′ = 0 we see that
(1.2) is true if and only if

tr(X ′(Y ′Z ′ + Z ′Y ′)) = 0

for all X ′, Y ′, Z ′ with trace 0. But for 2× 2 matrices of trace 0, Y ′Z ′ + Z ′Y ′ is
a scalar matrix, so the result follows.

We see from this example that if h : M 7→ Mat2(C) is a continuous homo-
morphism then f : x 7→ 1

2 trh(x) is a pre-d’Alembert function on M . For example
h : 〈C,+〉 → Mat2(C) given by

z 7→
[
eiz 0
0 e−iz

]

yields the function cos(z). Here we see a connection with the classical d’Alembert
functional equation (see [1, Ch. 2, §4]),

f(x + y) + f(x− y) = 2f(x)f(y). (1.3)

Our main result on pre-d’Alembert functions is
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Theorem 4.12. If f is a pre-d’Alembert function on M then there is a

continuous monoid homomorphism h : M → Mat2(C) such that

f =
1
2

tr ◦h. (1.4)

We use this result to prove a structure theorem for d’Alembert functions (see
[1], [6]).

Definition 1.2. Let τ be an involution on M (a continuous anti-automorphism
such that τ(τ(x)) = x for all x in M). The function f : 〈M, τ〉 → C is a d’Alembert
function if it is continuous, f(e) = 1 and for all x, y in M

f(xy) + f(xτ(y)) = 2f(x)f(y). (1.5)

It is easy to see that

ad : Mat2(C) → Mat2(C)

[
α β

γ δ

]
→

[
δ −β

−γ α

]
(1.6)

is an involution on Mat2(C), and 1
2 tr is a d’Alembert function on 〈Mat2(C), ad〉

1
2

tr(XY ) +
1
2

tr(X adY ) = 2 · 1
2
X · 1

2
tr Y (1.7)

since Y +ad Y is a scalar matrix equal to tr Y ·E. We show in Section 5 that every
d’Alembert function is a pre-d’Alembert function (Proposition 5.2), and prove,
as a consequence of Theorem 5.4,

Corollary 5.5. If f is a d’Alembert function on 〈M, τ〉 then there is a

continuous homomorphism h : M → Mat2(C) such that

h ◦ τ = ad ◦h (1.8)
and

f =
1
2

tr ◦h. (1.9)

We give an explicit construction for the function h mentioned in Theorem 4.11
(and Corollary 5.5), so we are able in Section 6 to deduce the structure theorem
for the ‘classical’ d’Alembert functions where M is a topological group G and τ

is the group inverse. In particular
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Theorem 6.2. If f is a d’Alembert function on the topological group G, so

that

f(xy) + f(xy−1) = 2f(x)f(y) (1.10)

for all x, y in G, then there is a continuous (group) homomorphism h : G →
SL2(C) such that

f =
1
2

tr ◦h.

Corollary 6.2. If, moreover, f is bounded then h may be chosen such that

h : G → SU2(C).

2. Pre-d’Alembert spaces

We say the pair 〈M, f〉 is a pre-d’Alembert space if f is a pre-d’Alembert
function on the topological monoid M . In this section we discuss properties
common to all pre-d’Alembert spaces and introduce a classification of them. We
also introduce Wilson functions on 〈M,f〉 and derive some of their properties.

Definition 2.1. Let 〈M, f〉 be a pre-d’Alembert space. For each x in M set,

fx : y 7→ f(xy)− f(x)f(y), (2.1)

for all y in M . For all x, y in M put

∆(x, y) = fx(x)fy(y)− fx(y)2. (2.2)

Clearly fx, and ∆ are continuous functions. We now prove

Proposition 2.2. Let 〈M,f〉 be a pre-d’Alembert space. Then for all x, y,

z in M (i) f(yz) = f(zy), (2.3)

(ii) fy(z) = fz(y), (2.4)

(iii) fyz(yz) = fzy(zy), (2.5)

(iv) fx(yz)− fx(zy) = f(xyz)− f(xzy), (2.6)
and

(v) fx(yz) + fx(zy) = 2f(y)fx(z) + 2f(z)fx(y). (2.7)

Proof. (i) This says that f is central. To see this put x = e in (1.1).



D’Alembert’s functional equation on topological monoids 45

(ii), (iii) and (iv) are immediate consequences of (i).

(v) fx(yz) + fx(zy) = f(xyz) + f(xzy)− 2f(x)f(yz) (from (2.3))

= 2f(y)f(xz) + 2f(z)f(xy)− 4f(x)f(y)f(z) (from (1.1))

= 2f(y)fx(z) + 2f(z)fx(y) (from (2.1)). ¤

We observe that (2.3) and (2.7) together imply (1.1). Equation (2.7) for fx

is so powerful that we isolate and name functions with this property.

Definition 2.3. Let 〈M, f〉 be a pre-d’Alembert space. A function w : M → C
is a Wilson function if it is continuous and for all y, z in M ,

w(yz) + w(zy) = 2f(y)w(z) + 2f(z)w(y). (2.8)

If M is commutative then (2.8) is equivalent to

w(yz) = f(y)w(z) + f(z)w(y) (2.9)

and in this form was introduced and studied by Wilson [10, equation 7] in 1919.
These functions are at the heart of our study of pre-d’Alembert spaces.

An example of a Wilson function on 〈Mat2(C), 1
2 tr〉 is

w :

[
α β

γ δ

]
7→ β,

as is very easy to check.

Proposition 2.4. Let 〈M, f〉 be a pre-d’Alembert space. Let W denote the

set of all Wilson functions on 〈M, f〉. Then

(i) W is a subspace of the complex linear space of complex-valued functions

on M ,

(ii) for each x in M , fx ∈ W ,

(iii) w ∈ W is central if and only if w satisfies equation (2.9) for all y, z in M ,

(iv) w(x2) = 2f(x)w(x) (2.10)

for all x in M , and

(v) for all x, y in M , all w in W ,

w(x2y) + w(yx2)− 2w(xyx) = 4[fx(x)w(y)− fx(y)w(x)]. (2.11)
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Proof. (i), (ii), (iii) These are clear from (2.8) and (2.7).

(iv) Put y = z = x in (2.8).

(v) Let w ∈ W , and x, y ∈ M . Then, using (2.8), we have

w(x · xy) + w(xy · x) = 2f(x)w(xy) + 2f(xy)w(x),

w(x · yx) + w(yx · x) = 2f(x)w(yx) + 2f(yx)w(x).

After adding these equations and using (2.8) we deduce that

w(x2y) + 2w(xyx) + w(yx2) = 4f(x)2w(y) + 4[f(xy) + f(x)f(y)]w(x). (2.12)

Now putting A := w(x2y) − 2w(xyx) + w(yx2) and adding this to each side of
equation (2.12) we obtain (using (2.8) and (2.10))

4f(x2)w(y) + 8f(x)f(y)w(x) = A + 4f(x)2w(y) + 4[f(xy) + f(x)f(y)]w(x)

which yields the stated expression for A. Hence (2.11) is proved. ¤

Corollary 2.5. For all x, y in M

f(x2y2)− f((xy)2) = 2∆(x, y). (2.13)

Proof. Take w = fy in (2.11). From (2.6) we see that

fy(x2y)− fy(xyx) = f(x2y2)− f((xy)2)
and

fy(yx2)− fy(xyx) = f(x2y2)− f((xy)2),

and so (2.13) follows from (2.11). ¤

Definition 2.6. Let 〈M, f〉 be a pre-d’Alembert space. We say 〈M,f〉 is a
Kannappan space if for all x, y, z in M

f(xyz) = f(xzy). (2.14)

This condition on f was introduced and used to great effect by Kannappan

[4] in his seminal 1968 paper.
We now relate (2.14) to our function ∆ defined by (2.2).

Proposition 2.7. Let 〈M, f〉 be a pre-d’Alembert space. Then 〈M,f〉 is a

Kannappan space if and only if ∆ = 0.
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Proof. Assume 〈M,f〉 is a Kannappan space. It is then immediate from
(2.13) that ∆ = 0.

Assume conversely that ∆ = 0. Put

S =
{
(x, y, z) ∈ M3 : f(xyz) 6= f(xzy)

}
.

We will show that S 6= ∅ leads to a contradiction. Note for use below as a
consequence of (2.3) that (x, y, z) ∈ S implies that (y, x, z) ∈ S and (z, y, z) ∈ S.

Since for all x, y, z in M ∆(x, yz) = 0 and ∆(x, zy) = 0 using (2.5) we deduce

fx(yz)2 = fx(zy)2.

So if (x, y, z) ∈ S then (using (2.6))

fx(yz) + fx(zy) = 0, (2.15)
and so

f(y)fx(z) + f(z)fx(y) = 0. (2.16)

But fy(xz)2 = fy(zx)2 so, similarly

f(x)fy(z) + f(z)fy(x) = 0. (2.17)

From (2.16) and (2.17) we deduce that if (x, y, z) ∈ S then

f(y)fx(z) = f(x)fy(z). (2.18)

But fz(xy)2 = fz(yx)2 so

f(x)fz(y) + f(y)fx(z) = 0,

which, with (2.18) yields, for all (x, y, z) ∈ S

f(x)fy(z) = 0. (2.19)

If fy(z) = 0 then (since ∆(y, z) = 0) either fy(y) = 0 or fz(z) = 0. If fy(y) = 0
then fy(xz) = 0 for all x, z in M so 0 = fy(xz)−fy(zx) = f(xzy)−f(yzx) 6= 0; a
contradiction if (x, y, z) ∈ S. Thus (x, y, z) ∈ S implies that fx(x) 6= 0, fy(y) 6= 0
and fz(z) 6= 0, and from (2.19) f(x) = 0, and by symmetry f(y) = 0, f(z) = 0.

We have shown that if (x, y, z) ∈ S then

f(x) = 0, f(y) = 0, f(z) = 0, (2.20)

f(xy) 6= 0, f(yz) 6= 0, f(zx) 6= 0, (2.21)

f(xyz) + f(xzy) = 0. (from (1.1)) (2.22)
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Now assume that (x, y, z)∈S and consider (x, y, xyz)∈M3. If (x, y, xyz)∈S

then f(xyz) = 0 by (2.20) and so f(xzy) = 0 from (2.22). Thus (x, y, z) 6∈ S; a
contradiction. So we must have (x, y, xyz) 6∈ S, that is

f(x · y · xyz) = f(x · xyz · y). (2.23)

Now using f(z) = 0 and (2.10) for w = fz,

f(xyxyz) = fz((xy)2) = 2f(xy)f(xyz). (2.24)

Whereas using f(x) = 0 and f(y) = 0

f(x2yzy) = fyzy(x2) + f(yzy)f(x2) = 2f(x)fyzy(x) + f(x2)fz(y2)

= 0 + f(x2)2f(y)fz(y)

∴ f(x2yzy) = 0. (2.25)

Thus if (x, y, z) ∈ S then, from (2.23), (2.24) and (2.25)

f(xy)f(xyz) = 0.

But from (2.21) f(xy) 6= 0 so f(xyz) = 0. However from (2.22) we see that then
f(xzy) = 0 so (x, y, z) /∈ S; a contradiction.

Thus S = ∅ and f(xyz) = f(xzy) for all x, y, z in M . ¤

We can now introduce our classification of pre-d’Alembert spaces.

Definition 2.8. Let 〈M, f〉 be a pre-d’Alembert space. We say

(i) 〈M, f〉 is trivial if it is a Kannappan space and fx(x) = 0 for all x in M .

(ii) 〈M, f〉 is abelian if it is a Kannappan space and there is c ∈ M with fc(c) 6= 0.

(iii) 〈M, f〉 is non-Kannappan if there are a, b in M with ∆(a, b) 6= 0.

We complete this section by introducing a function that will play a key role
in the proof that dim W = 3 if 〈M, f〉 is a non-Kannappan space.

Definition 2.9. Let 〈M, f〉 be a pre-d’Alembert space. The function d : M →C
is given by

d(x) = 2f(x)2 − f(x2) (2.26)

for each x in M .

Proposition 2.10. Let 〈M, f〉 be a pre-d’Alembert space. Then d is a

continuous homomorphism from M to 〈C, ·〉.
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Proof. That d is continuous is obvious. Also d(e) = 1. So we have to show
that d(xy) = d(x)d(y) for all x, y in M . We do this by transforming the identity
below derived from (1.1) with z = xy

f(x · y · xy) + f(x · xy · y) = 2f(x)f(yxy) + 2f(y)f(xxy)

+ 2f(xy)2 − 4f(x)f(y)f(xy)

∴ f((xy)2) + fx2(y2) + f(x2)f(y2) = 2f(x)[fx(y2) + f(x)f(y2)]

+ 2f(y)[fy(x2) + f(y)f(x2)] + 2f(xy)2 − 4f(x)f(y)[fx(y) + f(x)f(y)].

Therefore

f((xy)2) + 4f(x)f(y)fx(y) + f(x2)f(y2) = 4f(x)f(y)fx(y) + 2f(x)2f(y2)

+4f(x)f(y)fx(y) + 2f(y)2f(x2) + 2f(xy)2 − 4f(x)f(y)fx(y)− 4f(x)2f(y)2,

using (2.1) and (2.10) where appropriate. Hence

f((xy)2)− 2f(xy)2 +4f(x)2f(y)2− 2f(x)2f(y2)− 2f(y)2f(x2)+ f(x2)f(y)2 = 0.

But this is the same as
−d(xy) + d(x)d(y) = 0.

The result follows. ¤

We remark that in 〈Mat2(C), 1
2 tr〉, d(X) = det(X) since tr(X2) = tr(X)2 −

2 det X from the Cayley–Hamilton theorem.
We also note the following for future reference.

Proposition 2.11. If G is a group with a continuous multiplication and

〈G, f〉 is a pre-d’Alembert space then

f(xy) + d(y)f(xy−1) = 2f(x)f(y) (2.27)
for all x, y in G.

Proof. In equation (1.1) let z = y and replace x by xy−1 to deduce that

2f(xy) = 2f(xy−1)f(y2) + 4f(y)f(xy−1y)− 4f(xy−1)f(y)2

which is equivalent to (2.27) after noting Definition (2.26). ¤
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3. Kannappan spaces

In this section we prove structure theorems for the two types of Kannappan
spaces; trivial and abelian. First we give examples of each type that play a
significant role in the sequel.

Example 3.1. 〈〈C, ·〉, id〉 is the pre-d’Alembert space where the topologi-
cal monoid is the set of complex numbers under multiplication (stressed by
writing 〈C, ·〉 for this monoid) with the usual topology, and id : α 7→α for all
α∈C is the identity function. For this example d is given by α 7→ α2. This is
clearly a Kannappan space as 〈C, ·〉 is commutative and it is clearly trivial since
idα(α) = α2 − αα = 0 for all α ∈ C. Finally the function α 7→ [

α 0
0 α

]
of C into

Mat2(C) is clearly a continuous homomorphism of 〈C, ·〉 into 〈Mat2(C), ·〉. Note
that 1

2 tr
[

α 0
0 α

]
= id(α) and det

[
α 0
0 α

]
= α2.

Example 3.2. 〈〈C2, ·〉, av〉. Here the monoid is C2 = {(α, β) : α, β ∈ C}
under multiplication (α, β)(γ, δ) = (αγ, βδ) with the usual topology. The function
av : (α, β) → α+β

2 is easily seen to be a pre-d’Alembert function. The space is
Kannappan since 〈C2, ·〉 is commutative. It is abelian since av(1,−1)(1,−1) =

1 − 0 · 0 = 1 6= 0. For this example d(α, β) = αβ as 2
(

α+β
2

)2 − (
α2+β2

2

)
= αβ.

Finally the function

(α, β) 7→
[
α 0
0 β

]
of C2 into Mat2(C)

is clearly a continuous homomorphism. Note that

1
2

tr

[
α 0
0 β

]
= av(α, β) and det

[
α 0
0 β

]
= d(α, β).

As we will see each trivial Kannappan space maps into 〈〈C, ·〉, id〉 and each
abelian Kannappan space maps into 〈〈C2, ·〉, av〉. We begin with trivial spaces.

Proposition 3.3. Let 〈M,f〉 be a pre-d’Alembert space. If fx(x) = 0 for

all x in M then f is a continuous (monoid) homomorphism of M into 〈C, ·〉.
Proof. Since f(e) = 1 we need to show that f(xy) = f(x)f(y) for all x, y

in M ; equivalently fx is the zero function for each x in M .
Now

f(x)2 = f(x)2 − fx(x) = 2f(x)2 − f(x)2 = d(x)

since fx(x) = 0. Thus, using Proposition 2.10,

f(xy)2 = d(xy) = d(x)d(y) = f(x)2f(y)2
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or, equivalently, for all x, y in M

fx(y)[fx(y) + 2f(x)f(y)] = 0. (3.1)

Let x ∈ M be fixed and put

S = {y ∈ M : fx(y) 6= 0}. (3.2)

We will show that S = ∅ and hence f(xy) = f(x)f(y) for all y ∈ M is true for
each fixed x; hence f is a homomorphism.

If y ∈ S then, from (3.1)

fx(y) + 2f(x)f(y) = 0. (3.3)

Thus f(y) 6= 0. So y2 ∈ S too since

fx(y2) = 2f(y)fx(y) 6= 0.

Hence we use (3.3) with y replaced by y2, and the fact that f(y2) − f(y)2 =
fy(y) = 0 to obtain

2f(y)fx(y) + 2f(x)f(y)2 = 0
and so, for y ∈ S,

fx(y) + f(x)f(y) = 0. (3.4)

Now (3.3) and (3.4) together yield that fx(y) = 0, so y /∈ S: a contradiction.
Thus S = ∅, and f is a homomorphism. ¤

This result leads to the following characterization of trivial spaces.

Theorem 3.4. Let f : M → C be a continuous function. Then 〈M, f〉 is a

trivial pre-d’Alembert space if and only if f is a homomorphism of M into 〈C, ·〉.
Proof. Assume that 〈M, f〉 is a trivial pre-d’Alembert space then by Defi-

nition 2.8(i) fx(x) = 0 for all x in M . From Proposition 3.3 it follows that f is a
homomorphism of M into 〈C, ·〉.

Assume conversely that f is a homomorphism of M into 〈C, ·〉. Since f(e)=1,
we need to check (1.1). But the left-hand side and right-hand side of (1.1) are
both equal to 2f(x)f(y)f(z). Thus 〈M, f〉 is a pre-d’Alembert space. Since
f(xyz) = f(x)f(y)f(z) = f(x)f(z)f(y) = f(xzy) it is a Kannappan space, and
since fx(x) = f(x2)− f(x)2 = 0 it is trivial. ¤

Corollary 3.5. If 〈M, f〉 is a trivial pre-d’Alembert space there is a contin-

uous homomorphism h : M → 〈Mat2(C), ·〉 such that f = 1
2 tr ◦h.
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Proof. Define h : M → Mat2(C) by

x 7→
[

f(x) 0
0 f(x)

]
.

Since f is a homomorphism h is one too. Clearly f = 1
2 tr ◦h. ¤

We turn now to abelian spaces. If 〈M,f〉 is abelian then fx is central for
all x in M : fx(yz) − fx(zy) = f(xyz) − f(xzy) = 0. So we investigate central
Wilson functions on abelian spaces.

Proposition 3.6. Let 〈M,f〉 be an abelian pre-d’Alembert space and c ∈ M

chosen so that fc(c) 6= 0. Let w be a central Wilson function on 〈M, f〉 then

w =
w(c)
fc(c)

fc. (3.5)

Proof. Immediate from (2.11) with x = c. ¤

Corollary 3.7. With 〈M,f〉, c as above, for all x, y in M

f(xy) = f(x)f(y) +
1

fc(c)
fc(x)fc(y). (3.6)

Proof. Apply the proposition with w = fx, to deduce that

fx(y) =
fx(c)
fc(c)

fc(y)

which is the result stated. ¤

With (3.6) in hand we can now prove

Theorem 3.8. If 〈M, f〉 is an abelian pre-d’Alembert space, then there exist

two distinct continuous homomorphisms k, ` : M → 〈C, ·〉 such that

f =
k + `

2
.

Conversely, let k, ` be distinct continuous homomorphisms of M into 〈C, ·〉
then f := k+`

2 is a pre-d’Alembert function on M and 〈M, f〉 is an abelian pre-

d’Alembert space.
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Proof. Assume 〈M,f〉 is an abelian pre-d’Alembert space. Let c ∈ M be
chosen so that fc(c) 6= 0 and choose λ ∈ C such that λ2fc(c) = 1. Now define k, `

from M to 〈C, ·〉 by

k(x) = f(x) + λfc(x), (3.7)

`(x) = f(x)− λfc(x). (3.8)

Then f = k+`
2 , k(e) = 1, `(e) = 1. We need to show that k(xy) = k(x)k(y) and

`(xy) = `(x)`(y) for all x, y in M . Now

k(xy) = f(xy) +λfc(xy) = f(x)f(y)+
1

fc(c)
fc(x)fc(y)+ λ[f(x)fc(y) + f(y)fc(x)]

= f(x)f(y) + λ2fc(x)fc(y) + λf(x)fc(y) + λfc(x)f(y) = k(x)k(y).

The proof for ` is the same merely replacing λ by −λ.
Finally k, ` are distinct since

k(c)− `(c) = 2λfc(c) 6= 0.

Assume conversely that k, ` are distinct continuous homomorphisms from
M to 〈C, ·〉. Then x 7→ (k(x), `(x)) ∈ 〈C2, ·〉 is a continuous homomorphism.
Moreover f(x) = av(k(x), `(x)). Since 〈〈C2, ·〉, av〉 is a pre-d’Alembert space so
is 〈M, f〉. Since 〈C2, av〉 is Kannappan so is 〈M,f〉 and 〈M,f〉 is abelian because
fx(x) =

(k(x)−`(x)
2

)2 is non-zero for some x as k, ` are distinct. ¤

Corollary 3.9. If 〈M, f〉 is an abelian pre-d’Alembert space then there is a

continuous homomorphism h : M → 〈Mat2(C), ·〉 such that f = 1
2 tr ◦h.

Proof. Define h : x 7→
[

k(x) 0
0 `(x)

]
where k, ` are given by (3.7) and (3.8).

Then h is a continuous homomorphism since k, ` are continuous homomorphisms
as shown above. Clearly 1

2 tr ◦h = f . ¤

We end this section with an example of a non-commutative monoid M and
pre-d’Alembert function f where 〈M, f〉 is abelian, and there exist non central
Wilson functions.

Example 3.10. Let V be a non-zero locally-convex topological vector space
over C and put

M =

{[
α x

0 β

]
: α, β ∈ C, x ∈ V

}
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where the associative operation in M is matrix multiplication (V ∗ 6= {0} by [5,
Corollary 3.4, p. 59]). Define f

[ α x
0 β

]
= α+β

2 . Then 〈M, f〉 is pre-d’Alembert.
Also it is Kannappan because

tr(X(Y Z − ZY )) = 0 for all X, Y, Z in M.

It is abelian since fC(C) = 1 where C =
[

1 0
0 −1

]
. Let ϕ : V → C be a non-zero

continuous linear functional. Then w
[ α x

0 β

]
:= ϕ(x) is easily seen to be a Wilson

function on M , that is not central.

4. Non-Kannappan pre-d’Alembert spaces

Let 〈M,f〉 be a non-Kannappan pre-d’Alembert space. So there exist ele-
ments a, b in M so that ∆(a, b) 6= 0. We fix these elements and the space 〈M,f〉
and construct Wilson functions based on them to show the existence of a contin-
uous homomorphism h : M → Mat2(C) such that f = 1

2 tr ◦h.
We show first, that, unlike the situation in Kannappan spaces the space of

Wilson functions is 3 dimensional and furthermore there are no non-zero central
Wilson functions.

Proposition 4.1. If w is a Wilson function on 〈M,f〉 such that w(a) = 0,

w(b) = 0, w(ab) = 0 then w = 0.

Proof. Let N = {x∈M : w(x) = 0}. We will show that N = M . By hy-
pothesis a, b, ab ∈ N . If x, y and xy are in N then so is yx, as w(xy)+w(yx) = 0
if x, y are in N .

Now suppose x, y ∈ N . Then for all z ∈ M ,

w(x · yz) + w(yz · x) = 2f(x)w(yz), w(y · zx) + w(zx · y) = 2f(y)w(zx)

and so adding these and simplifying we obtain

f(xy)w(z) + f(z)w(xy) + w(yzx) = f(x)w(yz) + f(y)w(zx). (4.1)

Interchanging x, y in (4.1) and adding the result gives, for all x, y in N , all z

in M ,
w(yzx) + w(xzy) = 2[2f(x)f(y)− f(xy)]w(z). (4.2)

In particular if x ∈ N , z ∈ M we have

w(xzx) = d(x)w(z), (4.3)
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since d(x) = 2f(x)2 − f(x2). Now replace z by yzy where y ∈ N and z ∈ M .
Then (4.3) yields

w(xyzyx) = d(x)d(y)w(z) = d(xy)w(z)

and interchanging x, y yet again;

w(yxzxy) = d(yx)w(z),
so for all x, y ∈ N , z ∈ M ,

w(xyzyx) + w(yxzxy) = 2d(xy)w(z). (4.4)

If xy, yx ∈ N then (4.2) yields, for all z in M ,

w(xyzyx) + w(yxzxy) = 2[2f(xy)f(yx)− f(xyyx)]w(z). (4.5)

Now
f(xyyx) = f((xy)2) + 2∆(x, y) from (2.13)

so
w(xyzyx) + w(yxzxy) = [2d(xy)− 4∆(x, y)]w(z). (4.6)

Putting (4.4) and (4.6) together, we have: if x, y, xy belong to N and z ∈ M

then
4∆(x, y)w(z) = 0. (4.7)

In particular ∆(a, b)w(z) = 0 for all z ∈ M . So w = 0 and the proof is complete.
¤

We use this result to show

Proposition 4.2. Let 〈M, f〉 be a non-Kannappan pre-d’Alembert space.

Then the zero function is the only central Wilson function on 〈M,f〉.
Proof. Suppose w is a central Wilson function on 〈M,f〉. Then

w(a2b) + w(ba2)− 2w(aba) = 0 (4.8)
and

w(b2a) + w(ab2)− 2w(bab) = 0. (4.9)

But, from Proposition 2.4 equation (2.11), we deduce that

fa(a)w(b)− fa(b)w(a) = 0, −fb(a)w(b) + fb(b)w(a) = 0.

Since
fa(a)fb(b)− fa(b)2 = ∆(a, b) 6= 0

we see that w(b) = 0 and w(a) = 0. But then

2w(ab) = w(ab) + w(ba) = 0

so by Proposition 4.1 w = 0. ¤
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Next we introduce some notation that will remain in place for the remainder
of this section.

Definition 4.3. f1, f2, f3 : M → C are give by

f1 := fa, f2 := fb, f3 =
1
2
(fab − fba) (4.10)

and α, β, γ ∈ C by

α =
1
∆

fa(a), β =
1
∆

fa(b), γ =
1
∆

fb(b) (4.11)

where ∆ := ∆(a, b).
We see immediately that

αγ − β2 =
1
∆

. (4.12)

Using these it is easy to show

Proposition 4.4. 〈f1, f2, f3〉 is a basis for W . Indeed if w ∈ W then

w = [γw(a)− βw(b)]f1 + [−βw(a) + αw(b)]f2 − 1
∆

w(ab)− w(ba)
2

f3. (4.13)

Since Corollary 3.7 was the central result in obtaining a homomorphism when
〈M, f〉 was an abelian space, we now look for similar formulae for f(xy), f1(xy),
f2(xy) and f3(xy). The first of these is easily obtained from Proposition 4.4:

Proposition 4.5. For all x, y in M

f(xy) = f(x)f(y) + γf1(x)f1(y)− β[f1(x)f2(y) + f2(x)f1y))

+ αf2(x)f2(y)− 1
∆

f3(x)f3(y). (4.14)

Proof. Apply (4.13) to the Wilson function fx. ¤

The others follow from

Theorem 4.6. For all x, y, z in M

f(xyz)− f(xzy)
2

=
1
∆

∣∣∣∣∣∣∣

f1(x) f1(y) f1(z)
f2(x) f2(y) f2(z)
f3(x) f3(y) f3(z)

∣∣∣∣∣∣∣
. (4.15)
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Proof. We note that if two of x, y, z are equal then each side of (4.15) is 0.
We also note that as a function of z the left-hand side is the Wilson function
1
2fxy(z)− 1

2fyx(z), and the right-hand side is a linear combination of f1, f2 and
f3 and hence a Wilson function of z too. But the same argument applies to x,
y also. So both sides agree if and only if they agree when {x, y, z} = {a, b, ab}.
Thus we need only verify that (4.15) is true when x = a, y = b and z = ab.

Now
f(ab · ab)− f(a · ab · a)

2
= −∆(a, b) = −∆

by (2.13) whereas

1
∆

∣∣∣∣∣∣∣

f1(a) f1(b) f1(ab)
f2(a) f2(b) f2(ab)
f3(a) f3(b) f3(ab)

∣∣∣∣∣∣∣
=

1
∆

∣∣∣∣∣∣∣

f1(a) f1(b) f1(ab)
f2(a) f2(b) f2(ab)

0 0 −∆

∣∣∣∣∣∣∣
= −∆

∆

∣∣∣∣∣
f1(a) f1(b)
f2(a) f2(b)

∣∣∣∣∣ = −∆.

This completes the proof of (4.15). ¤

Corollary 4.7. For all x, y in M

1
2
[f1(xy)s− f1(yx)] = α[f2(x)f3(y)− f3(x)f2(y)]

+ β[f3(x)f1(y)− f1(x)f3(y)] (4.16)

1
2
[f2(xy)− f2(yx)] = β[f2(x)f3(y)− f3(x)f2(y)]

+ γ[f3(x)f1(y)− f1(x)f3(y)] (4.17)

1
2
[f3(xy)− f3(yx)] = −[f1(x)f2(y)− f2(x)f1(y)]. (4.18)

Proof. For (4.16) put z = a in (4.15) and for (4.17) put z = b. For (4.18)
first put z = ab in (4.15) to obtain

1
2
[fab(xy)− fab(yx)] =

1
∆

∣∣∣∣∣∣∣

f1(x) f1(y) f1(ab)
f2(x) f2(y) f2(ab)
f3(x) f3(y) −∆

∣∣∣∣∣∣∣
(4.19)

and then put z = ba to obtain

1
2
[fba(xy)− fba(yx)] =

1
∆

∣∣∣∣∣∣∣

f1(x) f1(y) f1(ba)
f2(x) f2(y) f2(ba)
f3(x) f3(y) ∆

∣∣∣∣∣∣∣
. (4.20)
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Since f1(ab) = f1(ba) and f2(ab) = f2(ba) subtracting (4.20) from (4.19) yields

f3(xy)− f3(yx) =
1
∆

∣∣∣∣∣∣∣

cccf1(x) f1(y) 0
f2(x) f2(y) 0
f3(x) f3(y) −2∆

∣∣∣∣∣∣∣

from which (4.18) follows. ¤

Since for any Wilson function

w(xy) =
1
2
[w(xy) + w(yx)] +

1
2
[w(xy)− w(yx)],

w(xy) = f(x)w(y) + f(y)w(x) +
1
2
[w(xy)− w(yx)], (4.21)

fj(xy) = f(x)fj(y) + fj(x)f(y) +
1
2
[fj(xy)− fj(yx)], (4.22)

for j = 1, 2, 3.
We proceed to define our function h : M → Mat2(C) that we will show is a

homomorphism with f = 1
2 tr ◦h.

Lemma 4.8. There are complex numbers λ, µ, ν, ρ, σ such that

(i) λ2 = − 1
∆

, (ii) µρ = γ, (iii) νσ = α

(iv) µσ = −β − λ, (v) νρ = −β + λ. (4.23)

Proof. Choose λ 6= β such that λ2 = − 1
∆ (= β2 − αγ). Then take ρ = 1,

µ = γ, ν = −β + λ, σ = α
λ−β . ¤

We use these numbers now.

Definition 4.9. h : M → Mat2(C) is given by, for each x in M ,

h(x) =

[
f(x) + λf3(x), µf1(x) + νf2(x)

ρf1(x) + σf2(x), f(x)− λf3(x)

]
(4.24)

where λ, µ, ν, ρ, σ are given by (4.23).

Theorem 4.10. Let 〈M,f〉 be a non-Kannappan pre-d’Alembert space.

Then h is a continuous homomorphism of M into 〈Mat2(C), ·〉 satisfying f =
1
2 tr ◦h.
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Proof. Clearly h, defined by (4.24) is continuous and tr h(x) = 2f(x) for
all x ∈ M . Thus f = 1

2 tr ◦h as claimed.
Since h(e) = E = [ 1 0

0 1 ] we need to show that h(xy) = h(x)h(y) for all x, y

in M . Since Mat2(C) is a (non-commutative) ring we can write

h(x) = f(x)E + f3(x)L + f1(x)M + f2(x)N (4.25)

where

L =

[
λ 0
0 −λ

]
, M =

[
0 µ

ρ 0

]
, N =

[
0 ν

σ 0

]
. (4.26)

Then from (4.23)

L2 = − 1
∆

E, M2 = γE, N2 = αE (4.27)

and

LM +ML = 0, LN +NL = 0, MN = −βE−L, NM = −βE +L. (4.28)

So using (4.27) and (4.28) and (4.14), we see that

h(x)h(y) = f(xy)E − [f1(x)f2(y)− f2(x)f1(y)]L + [f(x)f3(y) + f3(x)f(y)]L

+ [f(x)f1(y) + f1(x)f(y)]M + [f(x)f2(y) + f2(x)f(y)]N

+ [f3(x)f1(y)− f1(x)f3(y)]LM + [f2(x)f3(y)− f3(x)f2(y)]NL. (4.29)

On the other hand using (4.22) we find

h(xy) = f(xy)E + f3(xy)L + f1(xy)M + f2(xy)N = f(xy)E + f3(xy)L

+ [f(x)f1(y) + f1(x)f(y)]M +
1
2
[f1(xy)− f1(yx)]M

+ [f(x)f2(y) + f2(x)f(y)]N +
1
2
[f2(xy)− f2(yx)]N. (4.30)

So h(xy) = h(x)h(y) if

1
2
[f1(xy)− f1(yx)]M +

1
2
[f2(xy)− f2(yx)]N

= [f3(x)f1(y)− f1(x)f3(y)]LM + [f2(x)f3(y)− f3(x)f2(y)]NL.

In view of (4.16), (4.17), and (4.18) this means that it suffices to show that

NL = αM + βN, LM = βM + γN. (4.31)

However this follows from (iv), (v), (ii), (iii) of (4.23). Thus h is multiplicative. ¤
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We complete this section with our main result about general pre-d’Alembert
spaces.

Theorem 4.11. Let 〈M, f〉 be a pre-d’Alembert space. Then there is a

continuous homomorphism h : M → 〈Mat2(C), ·〉 such that f = 1
2 tr ◦h. Moreover

the function d from Definition 2.9 satisfies d = det ◦h.

Proof. We consider three cases

(i) If 〈M, f〉 is trivial then Corollary 3.5 gives our result.

(ii) If 〈M, f〉 is abelian Corollary 3.9 applies, and

(iii) if 〈M, f〉 is non-Kannappan then Theorem 4.10 gives h.

That d = det ◦h is immediate from the formula tr(X2) = (tr X)2 − 2 det X.
¤

Theorem 4.12. If f is a pre-d’Alembert function on M then there is a

continuous monoid homomorphism h : M → Mat2(C) such that

f =
1
2

tr ◦h. (4.32)

5. D’Alembert spaces I

In this section we define d’Alembert spaces and show that they are necessarily
pre-d’Alembert spaces. So using the results of Sections 3 and 4, we will provide
structure theorems for d’Alembert spaces.

First we define d’Alembert spaces and obtain some of their properties.

Definition 5.1. 〈M, τ, m, f〉 is a d’Alembert space if M is a topological monoid
(with neutral element e), τ : M → M is a continuous involution (hence τ(xy) =
τ(y)τ(x) and τ(τ(x)) = x), m : M → 〈C, ·〉 is a continuous monoid homomor-
phism satisfying, for all x in M ,

m(xτ(x)) = 1 (5.1)

and f : M → C is a continuous function with f(e) = 1 satisfying

f(xy) + m(y)f(xτ(y)) = 2f(x)f(y) (5.2)
for all x, y in M .

It is easy to check that for every continuous monoid homomorphism satisfying
(5.1) 〈M, τ, m, 1+m

2 〉 is a d’Alembert space. We also see from § 2, Equation
(2.27) that if G is a topological group, and 〈G, f〉 is a pre-d’Alembert space
then 〈G, inv, d, f〉 is a d’Alembert space. Here inv : G → G is the group inverse
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x 7→ x−1. For work on d’Alembert’s equation for groups with involutions other
than inv see Stetkær [7, 8].

Here is our first main result.

Proposition 5.2. Let 〈M, τ,m, f〉 be a d’Alembert space. Then 〈M, f〉 is a

pre-d’Alembert space and

m(y) fx(τ(y)) = −fx(y) (5.3)
for all x, y in M .

Proof. Let x, y, z be in M . Then, from (5.2)

f(xyz) + m(z)f(xyτ(z)) = 2f(xy)f(z) (5.4)
and

f(xzy) + m(y)f(xzτ(y)) = 2f(xz)f(y). (5.5)

Now τ(yτ(z)) = zτ(y) so from (5.2)

f(xyτ(z)) + m(yτ(z))f(xzτ(y)) = 2f(x)f(yτ(z)). (5.6)

Multiplying (5.6) by m(z) using the fact that m is a homomorphism that satisfies
(5.1) we deduce that

m(z)f(xyτ(z)) + m(y)f(xzτ(y)) = 2f(x)m(z)f(yτ(z))

and so using (5.2) on m(z)f(yτ(z)) we see that

m(z)f(xyτ(z)) + m(y)f(xzτ(y)) = 4f(x)f(y)f(z)− 2f(x)f(yz). (5.7)

Hence adding equations (5.4) and (5.5) and using equation (5.7) we see that f

satisfies equation (1.1). Since f(e) = 1 and f is continuous, 〈M, f〉 is a pre-
d’Alembert space.

We now prove (5.3). Let x, y ∈ M . Then

m(y)fx(τ(y)) = m(y)f(xτ(y))− f(x)m(y)f(τ(y))

= [2f(x)f(y)− f(xy)]− f(x)f(y) = −fx(y)

from (5.2) and the definition (2.1) of fx. ¤

We now import our tripartite classification of pre-d’Alembert spaces to
d’Alembert spaces as follows:

Definition 5.3. The d’Alembert space 〈M, τ, m, f〉 is



62 Thomas M. K. Davison

(i) trivial if 〈M,f〉 is trivial

(ii) abelian if 〈M, f〉 is abelian

(iii) non-Kannappan if 〈M, f〉 is non-Kannappan.

Here then are the structure results

Theorem 5.4. Let M be a topological monoid (with neutral element e),

τ : M → M a continuous involution m a continuous monoid homomorphism

to 〈C, ·〉 satisfying equation (5.1) and f : M → C a continuous function with

f(e) = 1. Then

(i) 〈M, τ,m, f〉 is a trivial d’Alembert space if and only if f is a monoid homo-

morphism and, for all x in M ,

m(x)f(τ(x)) = f(x), (5.8)

(ii) 〈M, τ,m, f〉 is abelian d’Alembert space if and only if there is a continuous

homomorphism k : M → 〈C, ·〉 not satisfying equation (5.8) such that

f(x) =
k(x) + m(x)k(τ(x))

2
(5.9)

for all x in M ,

(iii) 〈M, τ,m, f〉 is a non-Kannappan d’Alembert space if and only if

(a) there are elements a, b in M with f(abab) 6= f(aabb)

(b) there is a continuous homomorphism h : M → 〈Mat2(C), ·〉 such that

m(x)h(τ(x)) = ad h(x) and (x) =
1
2

trace h(x)
for all x in M .

Proof. (i) Assume that f is a monoid homomorphism satisfying (5.8). Then

f(xy) + m(y)f(xτ(y)) = f(x)f(y) + f(x)m(y)f(τ(y)) = 2f(x)f(y),

and so 〈M, τ, m, f〉 is a d’Alembert space. Moreover it is trivial since 〈M, f〉 is
trivial (Theorem 3.4).

Assume conversely that 〈M, τ, m, f〉 is a trivial d’Alembert space. Then
〈M, f〉 is a trivial pre-d’Alembert space, so by Theorem 3.4 f is a homomorphism.
Putting x = e in equation (5.2) we see that f satisfies equation (5.8).

(ii) Assume that the continuous homomorphism k has the stated properties.
Then, using the fact that m satisfies equation (5.1) it is easy to verify that, setting

f(x) =
k(x) + m(x)k(τ(x))

2
,



D’Alembert’s functional equation on topological monoids 63

〈M, τ,m, f〉 is a d’Alembert space. It is abelian since k and m · k ◦ τ are distinct
homomorphisms (Theorem 3.8).

Assume, conversely, that 〈M, τ, m, f〉 is an abelian d’Alembert space. Then
there is c ∈ M such that fc(c) 6= 0. Choose λ ∈ C satisfying λ2fc(c) = 1.
Following the proof of Theorem 3.8 we put

k(x) := f(x) + λfc(x).

Then, as shown here, k is a continuous homomorphism from M to 〈C, ·〉. Fur-
thermore, using equation (5.2) we see that

m(x)k(τ(x)) = f(x)− λfc(x),

and so k(x) + m(x)k(τ(x)) = 2f(x) for all x in M , as claimed.

(iii) Assume h is a continuous homomorphism from M to 〈Mat2(C), ·〉 satis-
fying

m(x)h(τ(x)) = ad h(x)

for all x in M . Put f(x) = 1
2 trh(x). Then, for all x, y in M

f(xy) + m(y)f(xτ(y)) =
1
2

tr[h(xy) + m(y)h(xτ(y))]

=
1
2

tr[h(x){h(y) + ad h(y)}] =
1
2

tr h(x) tr h(y) = 2f(x)f(y).

So 〈M, τ, m, f〉 is a d’Alembert space. It is non-Kannappan since (a) is assumed
true.

Assume conversely that 〈M, τ, m, f〉 is a non-Kannappan d’Alembert space.
Then there are a, b ∈ M with f(a2b2) 6= f((ab)2). So we can define h as in
equation (4.24). We see immediately from equation (5.2) that m(x)h(τ(x)) =
adh(x). Moreover h is a continuous homomorphism from M to 〈Mat2(C), ·〉 by
Theorem 4.10. Finally f = 1

2 tr ◦h as claimed. ¤

Corollary 5.5. If f is a d’Alembert function on 〈M, τ〉 there is a continuous

homomorphism h : M → Mat2(C) such that

h ◦ τ = ad ◦h (5.10)
and

f =
1
2

tr ◦h. (5.11)

We close this section with a discussion of Wilson functions in the context of
d’Alembert spaces. This subject too has a long history: see Aczel [1, Ch. 3, §2]
and Stetkær [6] for references.
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Proposition 5.6. Let 〈M, τ, m, f〉 be a d’Alembert space. If g : M → C is

a continuous function satisfying

g(xy) + m(y)g(xτy) = 2g(x)f(y), (5.12)

for all x, y in M then there is λ ∈ C and w ∈ W (the space of Wilson functions

on 〈M,f〉, such that

g = λf + w. (5.13)

Conversely,

(i) if 〈M, τ, m, f〉 is a non-Kannappan d’Alembert space then every w in W is a

solution of (5.12). So the space of solutions to (5.12) is 4 dimensional.

(ii) if 〈M, τ, m, f〉 is an abelian d’Alembert space then every central Wilson func-

tion on 〈M,f〉 satisfies equation (5.12). Consequently the space of central

solutions to (5.12) is 2 dimensional.

Proof. Suppose g satisfies (5.12). Then, since f also satisfies (5.12)

w := g − g(e)f (5.14)

also satisfies (5.12). Moreover w(e) = 0 and

m(x)w(τ(x)) = −w(x). (5.15)

To show that w is a Wilson function let x, y ∈ M . Then

w(xy) + m(y)w(xτ(y)) = 2w(x)f(y), belowdisplayskip = 0pt (5.16)

and
w(yx) + m(x)w(yτ(x)) = 2w(y)f(x). (5.17)

So using (5.15) we see that

m(y)w(xτ(y)) + m(x)w(yτ(x)) = m(y)w(xτ(y)) + m(x)m(yτ(y))w(yτ(x))

= m(y)[w(xτ(y)) + m(xτ(y))w(τ(xτ(y)))] = m(y) · 0 = 0.

Thus adding equations (5.16) and (5.17) yields

w(xy) + w(yx) = 2w(x)f(y) + 2w(y)f(x) (2.8)

which is the determining relation for Wilson functions.
For the converse part (i), note that fz satisfies(5.12) for all z ∈ M :

fz(xy) + m(y)fz(xτ(y)) = f(zxy)− f(z)f(xy) + m(y)f(zxτ(y))

−m(y)f(z)f(xτ(y)) = 2fz(x)f(y).

Hence every Wilson function on 〈M, f〉 satisfies (5.12). Thus by Proposition 4.4,
W is 4 dimensional. Part (ii) of the converse is obvious since fc satisfies (5.12) and
Proposition 3.6 tells us if w ∈ W is central then it is a scalar multiple of fc. ¤
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6. D’Alembert spaces II

In this section we specialize to the situation where our monoid M is actually
a topological group.

Theorem 6.1. Let G be a topological group. If 〈G, inv, f〉 is a d’Alembert

space, that is to say

f(xy) + f(xy−1) = 2f(x)f(y) (1.10)

for all x, y in G then 〈G, f〉 is a pre-d’Alembert space with d = 1.

Conversely, if 〈G, f〉 is a pre-d’Alembert space with d = 1 then 〈G, inv, 1, f〉
is a d’Alembert space.

Proof. Assume 〈G, inv, 1,f〉 is a d’Alembert space. They by Proposition 5.2,
〈G, f〉 is a pre-d’Alembert space. Moreover

d(x) = 2f(x)2 − f(x2) = f(xx) + f(xx−1)− f(x2) = 1

for all x in G. Hence d = 1.
Assume conversely that 〈G, f〉 is a pre-d’Alembert space with d = 1. Then

from Proposition 2.11 we see that

f(xy) + f(xy−1) = 2f(x)f(y)

for all x, y in G. Since x 7→ x−1 is continuous, 〈G, inv, 1, f〉 is a d’Alembert
space. ¤

Next, we prove a result conjectured in [2].

Theorem 6.2. Let G be a topological group and f : G → C a continuous

function with f(e) = 1 satisfying

f(xy) + f(xy−1) = 2f(x)f(y) (1.10)

for all x, y in G. Then there is a continuous homomorphism h : G → SL2(C) such

that

f =
1
2

tr ◦h.

Proof. By Theorem 6.1 〈G, f〉 is a pre-d’Alembert space with d = 1. By The-
orem 4.14 there is a continuous homomorphism h : G → Mat2(C) such that
f = 1

2 tr ◦h. Moreover by Proposition 4.11 det h(x) = d(x) = 1 for all x ∈ G, so
h : G → SL2(C) as claimed. ¤
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Corollary 6.3. If furthermore f is assumed to be bounded then h may be

taken to have codomain SU2(C).

Proof. Assume f is bounded. We see from the construction of h (equations
(3.7), (3.8) and (4.24)) that h is then bounded.

As a result of Weil (see Hewitt and Ross [3, p. 353, 22.23(c1)]) says that
there is a T ∈ GL2(C) such that Th(x)T−1 ∈ U2(C) for all x in G. Since
1
2 tr(Th(x)T−1) = f(x) and Th(x)T−1 ∈ U2(C) ∩ SL2(C) = SU2(C) we see that
we may choose ThT−1 as our continuous homomorphism into SU2(C). ¤

Corollary 6.3 was proved in the special case when G is assumed to be compact
in [2], and for connected compact groups in [11].
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