Solution of a bisymmetry equation on a restricted domain

By IMRE KOCSIS (Debrecen)

This paper is dedicated to the 70th birthday of Professor Zoltán Daróczy

Abstract

Let $X \subset \mathbb{R}$ be an open interval and define the set Δ by $\Delta=\{(x, y) \in$ $X \times X \mid x \leq y\}$. In this note we give the solution of the equation $F(G(x, y), G(u, v))=$ $G(F(x, u), F(y, v))$, which holds for all $(x, y) \in \Delta,(x, u) \in \Delta,(y, v) \in \Delta$, and $(u, v) \in \Delta$, where the functions $F: \Delta \rightarrow X$ and $G: \Delta \rightarrow X$ are continuous and strictly increasing in each variable, and we suppose that $F(x, x)=x$ and $G(x, x)=x$ for all $x \in X$. The problem has been posed and investigated by M. V. Sokolov in [6].

1. Introduction

In the following we denote the set of real numbers and the set positive integers by \mathbb{R} and \mathbb{N}, respectively. By an interval we mean a subinterval of positive length of \mathbb{R} (possibly unbounded) and by a rectangle we mean the Cartesian product of two intervals. A real-valued continuous function defined on an interval or on a rectangle is called CM function if it is strictly monotonic in each variable and called CI function if it is strictly increasing in each variable.

Let I and J be intervals, and let R be a rectangle such that $I \times J \subset R$. A function $Q: R \rightarrow \mathbb{R}$ is a quasi-sum on $I \times J$ if there exist CM functions $\alpha: I \rightarrow \mathbb{R}$, $\beta: J \rightarrow \mathbb{R}$ and $\gamma: \alpha(I)+\beta(J) \rightarrow \mathbb{R}$ such that $Q(x, y)=\gamma(\alpha(x)+\beta(y))$ for all $(x, y) \in I \times J$. The triple (α, β, γ) is called a generator of Q (functions α, β, and

[^0]Key words and phrases: bisymmetry, restricted domain.
This research was supported by the Hungarian Scientific Research Fund (OTKA), grant No. NK 68040.
γ are generator functions of Q). A function $Q: R \rightarrow \mathbb{R}$ is a local quasi-sum on $I \times J$ if for all $(i, j) \in I \times J$ there exist an open rectangle R_{0} such that $(i, j) \in R_{0}$ and Q is a quasi-sum on $(I \times J) \cap R_{0}$.

The equation of generalized bisymmetry

$$
\begin{equation*}
F\left(G_{1}(x, y), G_{2}(u, v)\right)=G\left(F_{1}(x, u), F_{2}(y, v)\right), \tag{B}
\end{equation*}
$$

where the functions are defined on rectangles was investigated by several authors (see e.g. AczÉl [1] and Maksa [2]). The CM solutions of equation (B) are given by the following

Theorem 1.1 (MAKSA [2]). Let X_{11}, X_{12}, X_{21}, and X_{22} be intervals and let $F_{1}: X_{11} \times X_{12} \rightarrow \mathbb{R}, F_{2}: X_{21} \times X_{22} \rightarrow \mathbb{R}, G_{1}: X_{11} \times X_{21} \rightarrow \mathbb{R}, G_{2}: X_{12} \times X_{22} \rightarrow \mathbb{R}$, $F: G_{1}\left(X_{11}, X_{21}\right) \times G_{2}\left(X_{12}, X_{22}\right) \rightarrow \mathbb{R}, G: F_{1}\left(X_{11}, X_{12}\right) \times F_{2}\left(X_{21}, X_{22}\right) \rightarrow \mathbb{R}$ be $C M$ functions. Equation (B) holds for all $(x, y, u, v) \in X_{11} \times X_{21} \times X_{12} \times X_{22}$ if, and only if, there exists an interval I and there exist $C M$ functions $\varphi: I \rightarrow \mathbb{R}$, $\alpha_{1}: G_{1}\left(X_{11}, X_{21}\right) \rightarrow \mathbb{R}, \alpha_{2}: G_{2}\left(X_{12}, X_{22}\right) \rightarrow \mathbb{R}, \gamma_{1}: F_{1}\left(X_{11}, X_{12}\right) \rightarrow \mathbb{R}, \gamma_{2}:$ $F_{2}\left(X_{21}, X_{22}\right) \rightarrow \mathbb{R}, \beta_{11}: X_{11} \rightarrow \mathbb{R}, \beta_{12}: X_{12} \rightarrow \mathbb{R}, \beta_{21}: X_{21} \rightarrow \mathbb{R}$, and $\beta_{22}:$ $X_{22} \rightarrow \mathbb{R}$ such that

$$
\begin{array}{rlrl}
F(x, y) & =\varphi^{-1}\left(\alpha_{1}(x)+\alpha_{2}(y)\right), & & (x, y) \in G_{1}\left(X_{11}, X_{21}\right) \times G_{2}\left(X_{12}, X_{22}\right) \\
F_{1}(x, y) & =\gamma_{1}^{-1}\left(\beta_{11}(x)+\beta_{12}(y)\right), & (x, y) \in X_{11} \times X_{12} \\
F_{2}(x, y) & =\gamma_{2}^{-1}\left(\beta_{21}(x)+\beta_{22}(y)\right), & (x, y) \in X_{21} \times X_{22} \\
G(x, y) & =\varphi^{-1}\left(\gamma_{1}(x)+\gamma_{2}(y)\right), & & (x, y) \in F_{1}\left(X_{11}, X_{12}\right) \times F_{2}\left(X_{21}, X_{22}\right) \\
G_{1}(x, y) & =\alpha_{1}^{-1}\left(\beta_{11}(x)+\beta_{21}(y)\right), & (x, y) \in X_{11} \times X_{21} \\
G_{2}(x, y) & =\alpha_{2}^{-1}\left(\beta_{12}(x)+\beta_{22}(y)\right), & (x, y) \in X_{12} \times X_{22}
\end{array}
$$

The following theorem also plays an important role in our investigations.
Theorem 1.2 (Maksa [4]). Let X and Y be intervals of positive length and suppose that $Q: X \times Y \rightarrow \mathbb{R}$ is a local quasi-sum on $X \times Y$. Then Q is a quasi-sum on $X \times Y$.

2. The solution of equation (B) on a restricted domain

Let $X=] a, b\left[\right.$ and introduce the following notations: $\Delta=\left\{(x, y) \in X^{2} \mid x \leq y\right\}$, $\Delta_{c}=\left\{(x, y) \in X^{2} \mid x \leq y \leq c\right\}$, if $a<c<b$, and $H^{*}=\{(x, y) \in H \mid x \leq y\}$, if $H \subset \mathbb{R}^{2}$.

Finding the solutions of equation

$$
F(G(x, y), G(u, v))=G(F(x, u), F(y, v))
$$

where $(\mathrm{B} \Delta)$ holds for all $(x, y) \in \Delta,(x, u) \in \Delta,(y, v) \in \Delta$, and $(u, v) \in \Delta$, $F: \Delta \rightarrow X$ and $G: \Delta \rightarrow X$ are CI functions furthermore $F(x, x)=x$ and $G(x, x)=x$ for all $x \in X$ was posed in [6] by M. V. Sokolov in connection with an axiomatization of so-called rank-dependent utility (see Theorem 6 and equation (44) in [6]). The following theorem gives the solutions.

Theorem 2.1. Let X be an open interval. Suppose that $F: \Delta \rightarrow X$ and $G: \Delta \rightarrow X$ are CI functions. Then equation ($\mathrm{B} \Delta$) holds for all $(x, y) \in \Delta$, $(x, u) \in \Delta,(y, v) \in \Delta$ and $(u, v) \in \Delta$ if, and only if, there exist CI functions $\varphi: F(X, X) \rightarrow \mathbb{R}$ and $\psi: G(X, X) \rightarrow \mathbb{R}$ and there exist $\lambda \in] 0,1[$ and $\mu \in] 0,1[$ such that

$$
\begin{array}{ll}
F(x, y)=\varphi^{-1}(\lambda \varphi(x)+(1-\lambda) \varphi(y)), & (x, y) \in \Delta \\
G(x, y)=\psi^{-1}(\mu \psi(x)+(1-\mu) \psi(y)), & (x, y) \in \Delta \tag{2.2}
\end{array}
$$

To prove this theorem we need the following
Lemma 2.2. Let $\left.a<c<b, z_{1} \in\right] 0,1\left[, z_{2} \in\right] 0,1\left[\right.$, let $\left.\left.\delta_{1}:\right] a, c\right] \rightarrow \mathbb{R}$ and $\left.\left.\delta_{2}:\right] a, c\right] \rightarrow \mathbb{R}$ be CI functions. Equation

$$
\begin{equation*}
\delta_{1}^{-1}\left(z_{1} \delta_{1}(x)+\left(1-z_{1}\right) \delta_{1}(y)\right)=\delta_{2}^{-1}\left(z_{2} \delta_{2}(x)+\left(1-z_{2}\right) \delta_{2}(y)\right) \tag{2.3}
\end{equation*}
$$

holds for all $(x, y) \in \Delta_{c}$ if, and only if, $z_{1}=z_{2}$ and there exist $0<\xi \in \mathbb{R}$ and $\eta \in \mathbb{R}$ such that

$$
\begin{equation*}
\left.\left.\delta_{2}(x)=\xi \delta_{1}(x)+\eta, \quad x \in\right] a, c\right] . \tag{2.4}
\end{equation*}
$$

Proof. If $\left.\left.\delta_{2}(x)=\xi \delta_{1}(x)+\eta, x \in\right] a, c\right]$ for some $0<\xi \in \mathbb{R}$ and $\eta \in \mathbb{R}$, then an easy calculation gives (2.3).

Now suppose that (2.3) holds for all $(x, y) \in \Delta_{c}$. Then for the function $\varepsilon=\delta_{2} \circ \delta_{1}^{-1}$ with the notations $p=\delta_{1}(x)$, and $q=\delta_{2}(y)$ we have a Jensen equation

$$
\left.\left.\varepsilon\left(z_{1} p+\left(1-z_{1}\right) q\right)=z_{2} \varepsilon(p)+\left(1-z_{2}\right) \varepsilon(q), \quad(p, q) \in\right] \delta_{1}(a), \delta_{1}(c)\right]^{2 *}
$$

Applying the method used by Maksa in the proof of the Lemma in [3] we get that there exist $0<k \in \mathbb{R}$ and $m \in \mathbb{R}$ such that $\varepsilon(r)=\delta_{2} \circ \delta_{1}^{-1}(r)=k r+m$, $\left.r \in] \delta_{1}(a), \delta_{1}(c)\right]$ which implies (2.4) and

$$
\delta_{1}^{-1}\left(z_{1} \delta_{1}(x)+\left(1-z_{1}\right) \delta_{1}(y)\right)=\delta_{1}^{-1}\left(z_{2} \delta_{1}(x)+\left(1-z_{2}\right) \delta_{1}(y)\right)
$$

whence $z_{1}=z_{2}$ follows.

Now we are ready to prove Theorem 2.1.
Proof of Theorem 2.1. It is easy to check that the functions F and G have the form (2.1) and (2.2) satisfy ($\mathrm{B} \Delta$). We have to prove our statement only in the other direction.

Let $a<c<b$ and define the subsets $\left.\left.X_{1}=\right] a, c\right], X_{2}=[c, b[$ of X and the subsets $\left.\left.X_{11}=\right] a, c\right]^{2 *}, X_{22}=\left[c, b\left[^{2 *}\right.\right.$, and $\left.\left.X_{12}=\right] a, c\right] \times[c, b[$ of Δ.

First we show that F and G are quasi-sums on X_{12}. Let $a<d<e<b$. Then $(\mathrm{B} \Delta)$ holds for all $(x, y) \in] a, d] \times[d, e]$ and $(u, v) \in[d, e] \times[e, b[$. Thus, by Theorem 1.1, F is a quasi-sum on $] a, d] \times[d, e]$ and G is a quasi-sum on $[d, e] \times[e, b[$ for arbitrary $a<d<e<b$. It is easy to see that functions F and G are local quasi-sums on X_{12}, furthermore, by Theorem $1.2, F$ and G are quasi-sums on X_{12}.

The generator functions of a CI function are monotonic in the same sense. So, without loss of generality, we may suppose that the generator functions of F and G are CI functions, that is, there exist CI functions $\alpha_{1}: X_{1} \rightarrow \mathbb{R}$, $\beta_{1}: X_{2} \rightarrow \mathbb{R}, \gamma_{1}^{-1}: \alpha_{1}\left(X_{1}\right)+\beta_{1}\left(X_{2}\right) \rightarrow \mathbb{R}, \alpha_{2}: X_{1} \rightarrow \mathbb{R}, \beta_{2}: X_{2} \rightarrow \mathbb{R}$, $\gamma_{2}^{-1}: \alpha_{2}\left(X_{1}\right)+\beta_{2}\left(X_{2}\right) \rightarrow \mathbb{R}$, such that

$$
\begin{array}{ll}
F(x, y)=\gamma_{1}^{-1}\left(\alpha_{1}(x)+\beta_{1}(y)\right), & (x, y) \in X_{12} \\
G(x, y)=\gamma_{2}^{-1}\left(\alpha_{2}(x)+\beta_{2}(y),\right. & (x, y) \in X_{12} \tag{2.6}
\end{array}
$$

Equation $(\mathrm{B} \Delta)$ holds for all $(x, u) \in X_{11}$ and $(y, v) \in X_{22}$. It follows from the properties of F that $F\left(X_{11}\right) \subset X_{1}$ and $F\left(X_{22}\right) \subset X_{2}$, so $(x, u) \in X_{11}$, $(y, v) \in X_{22}$ imply that $(x, y) \in X_{12},(u, v) \in X_{12}$, and $(F(x, y), F(u, v)) \in X_{12}$. Thus, by (2.6), (B Δ) can be written in the form

$$
\begin{equation*}
\gamma_{2} \circ F\left(\gamma_{2}^{-1}\left(\alpha_{2}(x)+\beta_{2}(y)\right), \gamma_{2}^{-1}\left(\alpha_{2}(u)+\beta_{2}(v)\right)\right)=\alpha_{2} \circ F(x, u)+\beta_{2} \circ F(y, v) \tag{2.7}
\end{equation*}
$$

$(x, u) \in X_{11},(y, v) \in X_{22}$. With the functions H, K, and L defined by

$$
\begin{aligned}
& H\left(t_{1}, t_{2}\right)=\alpha_{2} \circ F\left(\alpha_{2}^{-1}\left(t_{1}\right), \alpha_{2}^{-1}\left(t_{2}\right)\right), \\
& K\left(t_{1}, t_{2}\right) \in \alpha_{2}\left(X_{1}\right)^{2 *}, \\
& K\left(s_{2}\right)=\beta_{2} \circ F\left(\beta_{2}^{-1}\left(s_{1}\right), \beta_{2}^{-1}\left(s_{2}\right)\right), \\
&\left(s_{1}, s_{2}\right) \in \beta_{2}\left(X_{2}\right)^{2 *} \\
& L \gamma_{2} \circ F\left(\gamma_{2}^{-1}\left(r_{1}\right), \gamma_{2}^{-1}\left(r_{2}\right)\right), \\
&\left(r_{1}, r_{2}\right) \in\left(\alpha_{2}\left(X_{1}\right)+\beta_{2}\left(X_{2}\right)\right)^{2 *}
\end{aligned}
$$

(2.7) goes over into the form

$$
L\left(t_{1}+s_{1}, t_{2}+s_{2}\right)=H\left(t_{1}, t_{2}\right)+K\left(s_{1}, s_{2}\right),
$$

$\left(t_{1}, t_{2}\right) \in \alpha_{2}\left(X_{1}\right)^{2 *},\left(s_{1}, s_{2}\right) \in \beta_{2}\left(X_{2}\right)^{2 *}$.

Thus, by Theorem 1 in Radó-Baker [5], we have that

$$
\begin{array}{rlrl}
H\left(t_{1}, t_{2}\right) & =k_{1} t_{1}+k_{2} t_{2}+m_{1}, & & \left(t_{1}, t_{2}\right) \in \alpha_{2}\left(X_{1}\right)^{2 *} \\
K\left(s_{1}, s_{2}\right) & =k_{1} s_{1}+k_{2} s_{2}+m_{2}, & & \left(s_{1}, s_{2}\right) \in \beta_{2}\left(X_{2}\right)^{2 *} \\
L\left(r_{1}, r_{2}\right)=k_{1} r_{1}+k_{2} r_{1}+m_{1}+m_{2}, & & \left(r_{1}, r_{1}\right) \in\left(\alpha_{2}\left(X_{1}\right)+\beta_{2}\left(X_{2}\right)\right)^{2 *}
\end{array}
$$

where $0<k_{1} \in \mathbb{R}, 0<k_{2} \in \mathbb{R}, m_{1} \in \mathbb{R}, m_{2} \in \mathbb{R}$. Because of the property $F(x, x)=x, x \in X$ we have that $H(x, x)=x, x \in \alpha_{2}\left(X_{1}\right)$ and $K(x, x)=x$, $x \in \beta_{2}\left(X_{1}\right)$, so, after some calculation, we get that $k_{1}+k_{2}=1$ and $m_{1}=m_{2}=0$. That is, there exists $\left.w_{2} \in\right] 0,1[$ such that

$$
\begin{equation*}
H\left(t_{1}, t_{2}\right)=w_{2} t_{1}+\left(1-w_{2}\right) t_{2}, \quad\left(t_{1}, t_{2}\right) \in \alpha_{2}\left(X_{1}\right)^{2 *} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
K\left(s_{1}, s_{2}\right)=w_{2} s_{1}+\left(1-w_{2}\right) s_{2}, \quad\left(s_{1}, s_{2}\right) \in \beta_{2}\left(X_{2}\right)^{2 *} \tag{2.9}
\end{equation*}
$$

Equations (2.8) and (2.9), with the definition of H and K, imply that

$$
\begin{gather*}
F(x, y)=\alpha_{2}^{-1} \circ G\left(\alpha_{2}(x), \alpha_{2}(y)\right)=\alpha_{2}^{-1}\left(w_{2} \alpha_{2}(x)+\left(1-w_{2}\right) \alpha_{2}(y)\right) \\
(x, y) \in X_{11} \tag{2.10}
\end{gather*}
$$

and
$F(x, y)=\beta_{2}^{-1} \circ K\left(\beta_{2}(x), \beta_{2}(y)\right)=\beta_{2}^{-1}\left(w_{2} \beta_{2}(x)+\left(1-w_{2}\right) \beta_{2}(y)\right), \quad(x, y) \in X_{22}$,
respectively. Let $\left(c_{n}\right): \mathbb{N} \rightarrow X$ be a strictly increasing sequence with limit b. Because of (2.10), we have that for every $n \in \mathbb{N}$ there exist CI functions $\alpha_{c_{n}}$: $\left.] a, c_{n}\right] \rightarrow \mathbb{R}$ and $\left.w_{c_{n}} \in\right] 0,1[$ such that

$$
\begin{equation*}
F(x, y)=\alpha_{c_{n}}^{-1}\left(w_{c_{n}} \alpha_{c_{n}}(x)+\left(1-w_{c_{n}}\right) \alpha_{c_{n}}(y)\right), \quad(x, y) \in \Delta_{c_{n}} \tag{2.11}
\end{equation*}
$$

By induction we construct a sequence of CI functions $\left.\left.\varphi_{n}:\right] a, c_{n}\right] \rightarrow \mathbb{R}$ $(n \in \mathbb{N})$ with the properties

$$
\begin{equation*}
\varphi_{n} \subset \varphi_{n+1} \quad(n \in \mathbb{N}) \tag{2.12}
\end{equation*}
$$

that is, φ_{n} is a restriction of $\varphi_{n+1}(n \in \mathbb{N})$ and

$$
\begin{equation*}
F(x, y)=\varphi_{n}^{-1}\left(\lambda \varphi_{n}(x)+(1-\lambda) \varphi_{n}(y)\right), \quad(x, y) \in \Delta_{c_{n}}, \quad(n \in \mathbb{N}) \tag{2.13}
\end{equation*}
$$

where $\lambda \in] 0,1\left[\right.$. Let $\varphi_{1}=\alpha_{c_{1}}$ and $\lambda=w_{c_{1}}$. Then
$\varphi_{1}^{-1}\left(\lambda \varphi_{1}(x)+(1-\lambda) \varphi_{1}(y)\right)=\alpha_{c_{2}}^{-1}\left(w_{c_{2}} \alpha_{c_{2}}(x)+\left(1-w_{c_{2}}\right) \alpha_{c_{2}}(y)\right), \quad(x, y) \in \Delta_{c_{1}}$.

By our Lemma, there exist $0<\xi_{c_{1}} \in \mathbb{R}$ and $\eta_{c_{1}} \in \mathbb{R}$ such that $\varphi_{1}(x)=\xi_{c_{1}} \alpha_{c_{2}}(x)+$ $\left.\left.\eta_{c_{1}}, x \in\right] a, c_{1}\right]$. Let

$$
\left.\left.\varphi_{2}(x)=\xi_{c_{1}} \alpha_{c_{2}}(x)+\eta_{c_{1}}, \quad x \in\right] a, c_{2}\right] .
$$

Then $\varphi_{1} \subset \varphi_{2}$ and $F(x, y)=\varphi_{2}^{-1}\left(\lambda \varphi_{2}(x)+(1-\lambda) \varphi_{2}(y)\right),(x, y) \in \Delta_{c_{2}}$.
Continue this procedure. Because of the connection between the functions $\left.\left.\varphi_{n}:\right] a, c_{n}\right] \rightarrow \mathbb{R}$ and $\left.\left.\alpha_{c_{n+1}}:\right] a, c_{n+1}\right] \rightarrow \mathbb{R}$ given by our Lemma, we can construct the function φ_{n+1} on $\left.] a, c_{n+1}\right](n \in \mathbb{N})$ such that the sequence $\left(\varphi_{n}\right)$ satisfies (2.12) and (2.13).

Finally define the function $\varphi: X \rightarrow \mathbb{R}$ by $\varphi=\bigcup_{n=1}^{\infty} \varphi_{n}$, that is, for arbitrary $x \in X \varphi(x)=\varphi_{n}(x)$ for some $n \in \mathbb{N}$. By (2.12), this definition is correct and an easy calculation shows that (2.1) holds.

Because of the symmetry of $(\mathrm{B} \Delta)$ in F and G, a similar calculation shows that the function G has the form (2.2).

References

[1] J. Aczél, Lectures on Functional Equations and their Applications, Academic Press, New York - London, 1966.
[2] Gy. Maksa, Solution of generalized bisymmetry type equations without surjectivity assumptions, Aequationes Math. 57 (1999), 50-74.
[3] Gy. Maksa, Jensen's equation and bisymmetry, Publ. Math. Debrecen 61 (2002), no. 3-4, 663-669.
[4] Gy. Maksa, Quasisums and generalized associativity, Aequationes Math. 69 (2005), 6-27.
[5] F. Radó and J. A. Baker, Pexider's equation and aggregation of allocations, Aequationes Math. 32 (1987), 227-239.
[6] M. V. Sokolov, On axiomatization of rank-dependent utility, Theory and Decision, (under review, http://www.springer.com/economics/economic+theory/journal/11238, manuscript number: THEO461).

IMRE KOCSIS
FACULTY OF ENGINEERING
UNIVERSITY OF DEBRECEN
H-4028 DEBRECEN
ÓTEMETŐ U. 2-4.
HUNGARY
E-mail: kocsisi@mfk.unideb.hu

[^0]: Mathematics Subject Classification: 39B22.

