On selections of general linear inclusions

By KAZIMIERZ NIKODEM (Bielsko-Biała) and DORIAN POPA (Cluj-Napoca)

Dedicated to Professor Zoltán Daróczy on his $70^{\text {th }}$ birthday

Abstract

In this paper we prove that a set-valued map with closed, convex and uniformly bounded values in a Banach space, which satisfy a general linear inclusion, admits a selection that satisfies a general linear equation.

1. Introduction

The main notions of set-valued analysis as linearity, convexity, subadditivity, superadditivity, affinity are defined by functional inclusions. An important problem in set-valued analysis is to find selections of set-valued maps satisfying some conditions as continuity, measurability, integrability, etc (see e.g. [3]).

In the theory of functional equations one of the main topics is Hyers-Ulam stability (cf. e.g. [5], [8], [2] and the references therein). A first result on this topic was given by D. H. Hyers [7] who obtained the following result for the Cauchy functional equation:

Let X be a linear normed space, Y a Banach space and $\varepsilon>0$. Then for every $f: X \rightarrow Y$ satisfying the inequality

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon, \quad x, y \in X \tag{1.1}
\end{equation*}
$$

there exists a unique additive function $g: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-g(x)\| \leq \varepsilon, \quad x \in X \tag{1.2}
\end{equation*}
$$

[^0]An interesting connection between the stability of the Cauchy equation and subadditive set-valued maps was established by W. Smajdor [14] and by R. Ger and Z. Gajda [6]. They observed that if f is a solution of (1.1), then the setvalued map $F: X \rightarrow \mathcal{P}_{0}(Y)\left(\mathcal{P}_{0}(X)\right.$ denotes the collection of all nonempty subsets of Y) defined by the relation

$$
\begin{equation*}
F(x)=f(x)+B(0, \varepsilon), \quad x \in X \tag{1.3}
\end{equation*}
$$

where $B(0, \varepsilon)$ is the closed ball of center 0 and radius ε in Y, is subadditive and the function g from (1.2) is an additive selection of F, i.e. $g(x) \in F(x)$ for every $x \in X$.

Now one may ask under what conditions a subadditive set-valued map admits an additive selection. An answer to this question is given in [6]. Furthermore this result was generalized by D. Popa [12], [13], who considered multifunctions satisfying a general linear inclusion instead a subadditive set-valued map.

The transposition of the general linear equation, considered, among others, by J. Aczél, Z. Daróczy and L. LosoncZi (cf. [1] and the references therein), for set-valued maps leads to the study of the following two linear inclusions:

$$
\begin{align*}
& F(\alpha x+\beta y+c) \subseteq \gamma F(x)+\delta F(y)+C \tag{1.4}\\
& \alpha F(x)+\beta F(y) \subseteq F(\gamma x+\delta y+c)+C \tag{1.5}
\end{align*}
$$

where $\alpha, \beta, \gamma, \delta$ are real numbers $F: X \rightarrow \mathcal{P}_{0}(Y), X, Y$ are real vector spaces, $c \in X$ and $C \in \mathcal{P}_{0}(Y)$.

Subadditive and superadditive set-valued functions, defined by particular cases of the linear inclusions (1.4) and (1.5) were studied by W. Smajdor [14], [15] and A. Smajdor [16].
D. Popa proved that a set valued map satisfying the general linear inclusion (1.4), in appropriate conditions, admits a selection f satisfying the general linear equation

$$
\begin{equation*}
f(\alpha x+\beta y+c)=\gamma f(x)+\delta f(y), \quad x, y \in X \tag{1.6}
\end{equation*}
$$

The goal of this paper is to obtain an analogous result for the general linear inclusion (1.5). This result is in connection with the results of convex analysis for set-valued maps. Indeed if in (1.5) one take $\alpha=\gamma=1-t, \beta=\delta=t$, where $t \in[0,1]$ is fixed, $c=0_{X}$, and C is a convex cone, then F is called (t, C)-convex set-valued map (if $C=\left\{0_{Y}\right\}$ then F is called t-convex set valued map) (see [9] and the references therein). If $\alpha=\gamma, \beta=\delta$ are positive fixed numbers, $c=0_{X}$, and $C=\left\{0_{Y}\right\}$ then F is a generalized convex process [3].

2. Main result

Throughout this section we denote by X a real linear space and by Y a real Banach space with the zero vectors denoted by 0_{X} and 0_{Y}, the collection of all nonempty subsets of Y is denoted by $\mathcal{P}_{0}(Y)$ and $\operatorname{ccl}(Y)$ denotes the family of all nonempty convex and closed subsets of Y. For $A, B \in \mathcal{P}_{0}(Y)$ and $\lambda, \mu \in \mathbb{R}$ we define the sets $A+B$ and λA by

$$
\begin{gather*}
A+B=\{x \mid x=a+b, a \in A, b \in B\} \\
\lambda A=\{x \mid x=\lambda a, a \in A\} \tag{2.1}
\end{gather*}
$$

The next properties will be used often in the sequel

$$
\begin{align*}
& \lambda(A+B)=\lambda A+\lambda B \\
& (\lambda+\mu) A \subseteq \lambda A+\mu A \tag{2.2}
\end{align*}
$$

If A is a convex set and $\lambda \mu \geq 0$, then we have

$$
\begin{equation*}
(\lambda+\mu) A=\lambda A+\mu A \tag{2.3}
\end{equation*}
$$

For a set $A \in \mathcal{P}_{0}(Y)$ we denote by $d(A)$ the diameter of A, i.e.

$$
\begin{equation*}
d(A)=\sup \{\|x-y\|: x, y \in A\} . \tag{2.4}
\end{equation*}
$$

A selection of a set-valued map $F: X \rightarrow \mathcal{P}_{0}(Y)$ is a single valued map $f: X \rightarrow Y$ with the property $f(x) \in F(x)$ for all $x \in X$. Given a point $z \in X, z \neq 0$, denote by L_{z} the half-line with the origin 0_{X} containing z, i.e. $L_{z}=\{t z: t \geq 0\}$.

The main result of this paper is contained in the next theorem.
Theorem 2.1. Let K be a convex cone in X containing $0_{X}, \alpha, \beta, \gamma, \delta$ be positive numbers $\alpha+\beta \neq 1$.
i) If $\alpha+\beta<1$, then for every solution $F: K \rightarrow \operatorname{ccl}(Y)$ of the linear inclusion

$$
\begin{equation*}
\alpha F(x)+\beta F(y) \subseteq F(\gamma x+\delta y), \quad x, y \in K \tag{2.5}
\end{equation*}
$$

satisfying $\sup \left\{d(F(x)): x \in L_{z}\right\}<\infty$, for every $z \in K$, there exists a unique selection $f: K \rightarrow Y$ of F satisfying the general linear equation

$$
\begin{equation*}
\alpha f(x)+\beta f(y)=f(\gamma x+\delta y), \quad x, y \in K \tag{2.6}
\end{equation*}
$$

ii) If $\alpha+\beta>1$, then every solution $F: K \rightarrow \mathcal{P}_{0}(Y)$ of the linear inclusion (2.5), satisfying $\sup \left\{d(F(x)): x \in L_{z}\right\}<\infty$, for every $z \in K$, is single-valued.

Proof. i) Existence. Suppose that $\alpha+\beta<1$ and (2.5) is satisfied. Following the method used by Gajda and Ger in [6], we put $y=x$ in (2.5) and taking account that F has convex values we get

$$
\begin{equation*}
(\alpha+\beta) F(x) \subseteq F((\gamma+\delta) x), \quad x \in K \tag{2.7}
\end{equation*}
$$

Replacing x by $\frac{x}{(\gamma+\delta)^{n+1}}$, in (2.7) and multiplying by $(\alpha+\beta)^{n}, n \in \mathbb{N}$, we get

$$
\begin{equation*}
(\alpha+\beta)^{n+1} F\left(\frac{x}{(\gamma+\delta)^{n+1}}\right) \subseteq(\alpha+\beta)^{n} F\left(\frac{x}{(\gamma+\delta)^{n}}\right) \tag{2.8}
\end{equation*}
$$

Fix $x \in K$ and denote

$$
\begin{equation*}
F_{n}(x)=(\alpha+\beta)^{n} F\left(\frac{x}{(\gamma+\delta)^{n}}\right), \quad n \geq 0 \tag{2.9}
\end{equation*}
$$

By (2.8) follows that $\left(F_{n}(x)\right)_{n \geq 0}$ is a decreasing sequence of closed subsets of the Banach space Y and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(F_{n}(x)\right)=\lim _{n \rightarrow \infty}(\alpha+\beta)^{n} d\left(F\left(\frac{x}{(\gamma+\delta)^{n}}\right)\right)=0 \tag{2.10}
\end{equation*}
$$

in view of the uniform boundedness of the values of F on the half-line L_{x}.
Hence the $\bigcap_{n \geq 0} F_{n}(x)$ is a singleton and we denote

$$
\begin{equation*}
f(x)=\bigcap_{n \geq 0} F_{n}(x), \quad x \in K \tag{2.11}
\end{equation*}
$$

Thus we have obtained a single-valued mapping $f: K \rightarrow Y$ satisfying the condition $f(x) \in F_{0}(x)=F(x)$, i.e. a selection of F.

Let $x, y \in K$ be fixed. By (2.5) and (2.9) we have

$$
\begin{aligned}
\alpha F_{n}(x)+\beta F_{n}(y)= & (\alpha+\beta)^{n}\left(\alpha F\left(\frac{x}{(\gamma+\delta)^{n}}\right)+\beta F\left(\frac{y}{(\gamma+\delta)^{n}}\right)\right) \\
& \subseteq(\alpha+\beta)^{n} F\left(\frac{\gamma x+\delta y}{(\gamma+\delta)^{n}}\right)=F_{n}(\gamma x+\delta y), n \geq 0
\end{aligned}
$$

and, taking account that $\left(F_{n}(x)\right)_{n \geq 0}$ is decreasing, it follows

$$
\begin{aligned}
\alpha f(x)+\beta f(y)= & \alpha \bigcap_{n \geq 0} F_{n}(x)+\beta \bigcap_{n \geq 0} F_{n}(y) \subseteq \bigcap_{n \geq 0}\left(\alpha F_{n}(x)+\beta F_{n}(y)\right) \\
& \subseteq \bigcap_{n \geq 0} F_{n}(\gamma x+\delta y)=f(\gamma x+\delta y)
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\alpha f(x)+\beta f(y)=f(\gamma x+\delta y), \quad x, y \in K \tag{2.12}
\end{equation*}
$$

The existence is proved.
Uniqueness. Suppose that there exist two selections $f_{1}, f_{2}: K \rightarrow Y$ of F satisfying the equation (2.6). The following relations hold

$$
\begin{equation*}
(\alpha+\beta)^{n} f_{k}(x)=f_{k}\left((\gamma+\delta)^{n} x\right), \quad k \in\{1,2\} \tag{2.13}
\end{equation*}
$$

for every positive integer n and all $x \in K$, in view of the relation (2.6). We have

$$
\begin{align*}
\frac{1}{(\alpha+\beta)^{n}}\left\|f_{1}(x)-f_{2}(x)\right\| & =\left\|f_{1}\left(\frac{x}{(\gamma+\delta)^{n}}\right)-f_{2}\left(\frac{x}{(\gamma+\delta)^{n}}\right)\right\| \\
& \leq d\left(F\left(\frac{x}{(\gamma+\delta)^{n}}\right)\right) \tag{2.14}
\end{align*}
$$

for every $x \in K$ and every $n \geq 0$. The uniform boundedness of F on the half-line L_{x} leads to $f_{1}(x)=f_{2}(x)$ for every $x \in K$. The uniqueness is proved.
ii) Suppose that $\alpha+\beta>1$ and F satisfies (2.5). Then (2.7) holds and replacing x in (2.7) by $(\gamma+\delta)^{n} x$, dividing by $(\alpha+\beta)^{n+1}, n \in \mathbb{N}$, we get

$$
\begin{equation*}
\frac{F\left((\gamma+\delta)^{n} x\right)}{(\alpha+\beta)^{n}} \subseteq \frac{F\left((\gamma+\delta)^{n+1} x\right)}{(\alpha+\beta)^{n+1}}, \quad x \in K \tag{2.15}
\end{equation*}
$$

Let $x \in K$ be fixed. Taking account of (2.15) it follows that the sequence of sets $\left(F_{n}^{\prime}(x)\right)_{n \geq 0}$ given by

$$
F_{n}^{\prime}(x)=\frac{F\left((\gamma+\delta)^{n} x\right)}{(\alpha+\beta)^{n}}, \quad n \geq 0
$$

is increasing, hence the sequence of real numbers $\left(d\left(F_{n}^{\prime}(x)\right)\right)_{n \geq 0}$ is increasing too. But

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(F_{n}^{\prime}(x)\right)=\lim _{n \rightarrow \infty} \frac{1}{(\alpha+\beta)^{n}} d\left(F\left((\gamma+\delta)_{n} x\right)=0\right. \tag{2.16}
\end{equation*}
$$

in view of the uniform boundedness of F on the half-line L_{x}.
Thus $d\left(F_{n}^{\prime}(x)\right)=0$ for every $n \in \mathbb{N}$, hence F is single valued and satisfies the equation

$$
\begin{equation*}
\alpha F(x)+\beta F(y)=F(\gamma x+\delta y), \quad x, y \in K . \tag{2.17}
\end{equation*}
$$

The theorem is proved.
The following result is a simple consequence of Theorem 2.1.

Corollary 2.1. Let K be a convex cone in X containing $0_{X}, C$ a nonempty compact and convex subset of $Y, \alpha, \beta, \gamma, \delta>0, \alpha+\beta<1, \gamma+\delta \neq 1, c \in K$ and $x_{0}=\frac{c}{1-\gamma-\delta}$. Suppose that $F: K+x_{0} \rightarrow \operatorname{cll}(Y)$ satisfies the general linear inclusion

$$
\begin{equation*}
\alpha F(x)+\beta F(y) \subseteq F(\gamma x+\delta y+c)+C, \quad x, y \in K+x_{0} \tag{2.18}
\end{equation*}
$$

and $\sup \left\{d(F(x)): \quad x \in L_{z}+x_{0}\right\}<\infty$ for every $z \in K$. Then there exists a unique single valued mapping $f: K+x_{0} \rightarrow Y$ satisfying the equation

$$
\begin{equation*}
\alpha f(x)+\beta f(y)=f(\gamma x+\delta y+c), \quad x, y \in K+x_{0} \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
f(x) \in F(x)+\frac{1}{1-\alpha-\beta} C, \quad x \in K+x_{0} \tag{2.20}
\end{equation*}
$$

Proof. Let $G: K \rightarrow \operatorname{ccl}(Y)$ be defined by the relation

$$
\begin{equation*}
G(x)=F\left(x+x_{0}\right)+\frac{1}{1-\alpha-\beta} C, \quad x \in K . \tag{2.21}
\end{equation*}
$$

The definition of G is correct since the sum of a closed set and a compact set is closed and the sum of two convex sets is a convex set. We will prove that G satisfies the following relation

$$
\begin{equation*}
\alpha G(x)+\beta G(y) \subseteq G(\gamma x+\delta y), \quad x, y \in K \tag{2.22}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
\alpha G(x)+\beta G(y)= & \alpha F\left(x+x_{0}\right)+\beta F\left(y+x_{0}\right)+\frac{\alpha+\beta}{1-\alpha-\beta} C \\
& \subseteq F\left(\gamma\left(x+x_{0}\right)+\delta\left(y+x_{0}\right)+c\right)+C+\frac{\alpha+\beta}{1-\alpha-\beta} C \\
= & F\left(\gamma x+\delta y+x_{0}\right)+\frac{1}{1-\alpha-\beta} C \\
= & G(\gamma x+\delta y), x, y \in K
\end{aligned}
$$

Taking account of Theorem 2.1 it follows that there exists a unique selection g of G satisfying

$$
\begin{equation*}
\alpha g(x)+\beta g(y)=g(\gamma x+\delta y), \quad x, y \in K \tag{2.23}
\end{equation*}
$$

Now let $f: K+x_{0} \rightarrow Y$ be defined by the relation

$$
\begin{equation*}
f(x)=g\left(x-x_{0}\right), \quad x \in K+x_{0} . \tag{2.24}
\end{equation*}
$$

Then

$$
\begin{equation*}
\alpha f(x)+\beta f(y)=f(\gamma x+\delta y+c), \quad x, y \in K+x_{0} \tag{2.25}
\end{equation*}
$$

and

$$
\begin{equation*}
f(x) \in F(x)+\frac{1}{1-\alpha-\beta} C, \quad x \in K+x_{0} . \tag{2.26}
\end{equation*}
$$

Corollary 2.1 leads to the following result on the stability of the general linear equation.

Corollary 2.2. Let K be a convex cone in X containing $0_{X}, \alpha, \beta, \gamma, \delta$, $\varepsilon>0, \alpha+\beta<1, \gamma+\delta \neq 1, c \in K, k \in Y$ and $x_{0}=\frac{c}{1-\gamma-\delta}$. Suppose that $f: K+x_{0} \rightarrow Y$ satisfies the following relation

$$
\begin{equation*}
\|f(\gamma x+\delta y+c)-\alpha f(x)-\beta f(y)-k\| \leq \varepsilon, \quad x, y \in K+x_{0} \tag{2.27}
\end{equation*}
$$

Then there exists a unique function $g: K+x_{0} \rightarrow Y$ satisfying:

$$
\begin{equation*}
g(\gamma x+\delta y+c)=\alpha g(x)+\beta g(y)+k, \quad x, y \in K+x_{0} \tag{2.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\|f(x)-g(x)\| \leq \frac{\varepsilon}{1-\alpha-\beta}, \quad x \in K+x_{0} . \tag{2.29}
\end{equation*}
$$

Proof. Define the function $h: K+x_{0} \rightarrow Y$ by the relation

$$
\begin{equation*}
h(x)=f(x)+\frac{k}{\alpha+\beta-1}, \quad x \in K+x_{0} . \tag{2.30}
\end{equation*}
$$

Then h satisfies the inequality

$$
\begin{equation*}
\|h(\gamma x+\delta y+c)-\alpha h(x)-\beta h(y)\| \leq \varepsilon, \quad x, y \in K+x_{0} . \tag{2.31}
\end{equation*}
$$

Now we consider the set-valued map $F: K+x_{0} \rightarrow c c l(Y)$ given by

$$
\begin{equation*}
F(x)=h(x)+\frac{1}{1-\alpha-\beta} B(0, \varepsilon), \quad x \in K+x_{0} \tag{2.32}
\end{equation*}
$$

We have

$$
\begin{aligned}
\alpha F(x)+\beta F(y) & =\alpha h(x)+\frac{\alpha}{1-\alpha-\beta} B(0, \varepsilon)+\beta h(y)+\frac{\beta}{1-\alpha-\beta} B(0, \varepsilon) \\
& =\alpha h(x)+\beta h(y)+\frac{\alpha+\beta}{1-\alpha-\beta} B(0, \varepsilon)
\end{aligned}
$$

$$
\begin{aligned}
& \subseteq h(\gamma x+\delta y+c)+B(0, \varepsilon)+\frac{\alpha+\beta}{1-\alpha-\beta} B(0, \varepsilon) \\
= & h(\gamma x+\delta y+c)+\frac{1}{1-\alpha-\beta} B(0, \varepsilon) \\
= & F(\gamma x+\delta y+c), \quad x, y \in K+x_{0} .
\end{aligned}
$$

Then, in view of Corollary 2.1, there exists a unique function $g_{1}: K+x_{0} \rightarrow Y$

$$
g_{1}(\gamma x+\delta y+c)=\alpha g_{1}(x)+\beta g_{1}(y), \quad x, y \in K+x_{0}
$$

with the property

$$
g_{1}(x) \in F(x)=h(x)+\frac{1}{1-\alpha-\beta} B(0, \varepsilon), \quad x \in K+x_{0} .
$$

Finally it follows that the function $g: K+x_{0} \rightarrow Y$, given by

$$
\begin{equation*}
g(x)=g_{1}(x)+\frac{k}{1-\alpha-\beta}, \quad x \in K+x_{0} \tag{2.33}
\end{equation*}
$$

satisfies the relations (2.28) and (2.29). The corollary is proved.
Remark 2.1. The result obtained in Corollary 2.2 is a particular case of a general result obtained by Z. Páles for the stability of the Cauchy functional equation on square-symmetric grupoids [11]. It also crosses with the result on stability of general linear equation on restricted domain obtained recently by J. Brzdȩk and A. Pietrzyk [4].

Finally, we consider the selection problem for set-valued maps satisfying (1.5) with $\alpha+\beta=1$. In the special case $\alpha=\beta=\gamma=\delta=1 / 2$ the next theorem gives conditions under which midconvex set-valued maps have Jensen selections. For $\alpha=\gamma$ and $\beta=\delta=1-\alpha$ we get a result on affine selections of convex setvalued maps. Under other assumptions results of this type were obtained by K. Nikodem [10] and by A. Smajdor and W. Smajdor [17].

Theorem 2.2. Let $\alpha \in(0,1), \gamma, \delta>0, C$ a nonempty compact and convex subset of Y containing 0_{Y} and K a convex cone in X containing 0_{X}. Suppose that $F: K \rightarrow c c l(Y)$ satisfies

$$
\begin{equation*}
(1-\alpha) F(x)+\alpha F(y) \subseteq F(\gamma x+\delta y)+C, \quad x, y \in K \tag{2.34}
\end{equation*}
$$

and $\sup \{d(F(x)): \quad x \in K\}<\infty$. Then there exists a function $f: K \rightarrow Y$ satisfying

$$
\begin{equation*}
(1-\alpha) f(x)+\alpha f(y)=f(\gamma x+\delta y), \quad x, y \in K \tag{2.35}
\end{equation*}
$$

and

$$
\begin{equation*}
f(x) \in F(x)+\frac{1}{\alpha} C, \quad x \in K . \tag{2.36}
\end{equation*}
$$

Proof. Take $p \in F\left(0_{X}\right)$ and consider the set-valued map $G: K \rightarrow \operatorname{cll}(Y)$ given by

$$
\begin{equation*}
G(x)=F(x)-p, \quad x \in K . \tag{2.37}
\end{equation*}
$$

Then

$$
\begin{equation*}
(1-\alpha) G(x)+\alpha G(y) \subseteq G(\gamma x+\delta y)+C, \quad x, y \in K \tag{2.38}
\end{equation*}
$$

and $0_{Y} \in G\left(0_{X}\right)$. Put $y=0_{X}$ in (2.38) to get

$$
\begin{equation*}
(1-\alpha) G(x)+\alpha G\left(0_{X}\right) \subseteq G(\gamma x)+C, \quad x \in K \tag{2.39}
\end{equation*}
$$

Replacing x by $\frac{x}{\gamma^{n+1}}$ and multiplying (2.39) by $(1-\alpha)^{n}$ it follows

$$
\begin{equation*}
(1-\alpha)^{n+1} G\left(\frac{x}{\gamma^{n+1}}\right)+\alpha(1-\alpha)^{n} G\left(0_{X}\right) \subseteq(1-\alpha)^{n} G\left(\frac{x}{\gamma^{n}}\right)+(1-\alpha)^{n} C \tag{2.40}
\end{equation*}
$$

and adding $\frac{(1-\alpha)^{n+1}}{\alpha} C$ to both sides of (2.40) one gets

$$
\begin{gather*}
(1-\alpha)^{n+1} G\left(\frac{x}{\gamma^{n+1}}\right)+\frac{(1-\alpha)^{n+1}}{\alpha} C+\alpha(1-\alpha)^{n} G\left(0_{X}\right) \\
\subseteq(1-\alpha)^{n} G\left(\frac{x}{\gamma^{n}}\right)+\frac{(1-\alpha)^{n}}{\alpha} C \tag{2.41}
\end{gather*}
$$

Since $0_{Y} \in G\left(0_{X}\right)$ the following relation holds

$$
\begin{gather*}
(1-\alpha)^{n+1} G\left(\frac{x}{\gamma^{n+1}}\right)+\frac{(1-\alpha)^{n+1}}{\alpha} C \\
\subseteq(1-\alpha)^{n+1} G\left(\frac{x}{\gamma^{n+1}}\right)+\frac{(1-\alpha)^{n+1}}{\alpha} C+\alpha(1-\alpha)^{n} G\left(0_{X}\right) . \tag{2.42}
\end{gather*}
$$

Now from (2.42) and (2.41) it follows that $\left(G_{n}(x)\right)_{n \geq 0}$ defined by

$$
\begin{equation*}
G_{n}(x)=(1-\alpha)^{n} G\left(\frac{x}{\gamma^{n}}\right)+\frac{(1-\alpha)^{n}}{\alpha} C \tag{2.43}
\end{equation*}
$$

is a decreasing sequence of closed sets with

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(G_{n}(x)\right)=0 \tag{2.44}
\end{equation*}
$$

Then $\bigcap_{n \geq 0} G_{n}(x)$ is a singleton. Put

$$
\begin{equation*}
g(x)=\bigcap_{n \geq 0} G_{n}(x), \quad x \in K \tag{2.45}
\end{equation*}
$$

Replacing x by $\frac{x}{\gamma^{n}}, y$ by $\frac{y}{\delta^{n}}$, adding $\frac{1}{\alpha} C$ to both sides of (2.38) and multiplying by $(1-\alpha)^{n}$ one gets

$$
\begin{equation*}
(1-\alpha) G_{n}(x)+\alpha G_{n}(y) \subseteq G_{n}(\gamma x+\delta y)+(1-\alpha)^{n} C \tag{2.46}
\end{equation*}
$$

Now observe that $\left((1-\alpha)^{n} C\right)_{n \geq 0}$ is a decreasing sequence of compact sets. Indeed, taking account of $0_{Y} \in C$ it follows that for every $c \in C$

$$
\begin{equation*}
(1-\alpha) c=(1-\alpha) c+\alpha \cdot 0_{Y} \in C \tag{2.47}
\end{equation*}
$$

thus $(1-\alpha) C \subseteq C$ and forward $(1-\alpha)^{n+1} C \subseteq(1-\alpha)^{n} C$ for every positive integer n. It is known that if $\left(A_{n}\right)_{n \geq 0},\left(B_{n}\right)_{n \geq 0}$ are decreasing sequences of closed sets in a topological vector space and B_{1} is compact then

$$
\begin{equation*}
\bigcap_{n \geq 0}\left(A_{n}+B_{n}\right)=\bigcap_{n \geq 0} A_{n}+\bigcap_{n \geq 0} B_{n} \tag{2.48}
\end{equation*}
$$

(see Lemma 5.3 from [9]). Using this result we get

$$
\begin{align*}
& (1-\alpha) g(x)+\alpha g(y)=(1-\alpha) \bigcap_{n \geq 0} G_{n}(x)+\alpha \bigcap_{n \geq 0} G_{n}(y) \\
& \quad \subseteq \bigcap_{n \geq 0}\left((1-\alpha) G_{n}(x)+\alpha G_{n}(y)\right) \subseteq \bigcap_{n \geq 0}\left(G_{n}(\gamma x+\delta y)+(1-\alpha)^{n} C\right) \\
& \quad=\bigcap_{n \geq 0} G_{n}(\gamma x+\delta y)+\bigcap_{n \geq 0}(1-\alpha)^{n} C=g(\gamma x+\delta y), x, y \in K \tag{2.49}
\end{align*}
$$

The function $f: K \rightarrow Y, f(x)=g(x)+p, x \in K$, satisfies the relation

$$
\begin{equation*}
(1-\alpha) f(x)+\alpha f(y)=f(\gamma x+\delta y), \quad x \in K \tag{2.50}
\end{equation*}
$$

On the other hand $g(x) \in G_{0}(x)=G(x)+\frac{1}{\alpha} C$. It follows

$$
\begin{equation*}
f(x) \in F(x)+\frac{1}{\alpha} C, \quad x \in K \tag{2.51}
\end{equation*}
$$

The theorem is proved.
Remark 2.2. The selection f from Theorem 2.2 is not uniquely determined. For instance, the set valued map $F: K \rightarrow \operatorname{ccl}(Y), F(x)=C, x \in K$, is a solution of the linear inclusion (2.34) and the function $f: K \rightarrow Y, f(x)=c$, where $c \in C$ is an arbitrary element, satisfies (2.35) and (2.36).

References

[1] J. Aczél, Lectures on Functional Equations and Their Applications, Dover Publications Inc., Mineola, New York, 2006.
[2] R. P. Agarwal, B. Xu and W. Zhang, Stability of functional equations in single variable, J. Math. Anal. Appl. 288 (2003), 852-869.
[3] J. P. Aubin and H. Frankowska, Set-Valued Analysis, Boston - Basel - Berlin, 1990.
[4] J. Brzdȩk and A. Pietrzyk, A note on stability of the general linear equation, Aequationes Math. 75 (2008), 267-270.
[5] G. L. Forti, Hyers-Ulam stability of functional equation in several variables, Aequationes Math. 50 (1995), 143-190.
[6] Z. Gajda and R. Ger, Subadditive multifunctions and Hyers-Ulam stability, Numerical Mathematics 80 (1987), 281-291.
[7] D. H. Hyers, On the stability of linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222-224.
[8] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Boston, 1998.
[9] K. Nikodem, K-convex and K-concave set-valued functions, Zeszyty Nauk. Politech. Lódz Mat. 559, Rozprawy Mat. 114, Lódz, 1989.
[10] K. Nikodem, A characterization of midconvex set-valued functions, Acta Univ. Carolin. Math. Phys. 30 (1989), 125-129.
[11] Zs. Páles, Hyers-Ulam stability of the Cauchy functional equation on square-symmetric grupoids, Publ. Math. Debrecen 58 (2001), 651-666.
[12] D. Popa, A stability result for a general linear inclusion, Nonlinear Funct. Anal. Appl. 3 (2004), 405-414.
[13] D. Popa, Functional inclusions on square symmetric grupoids and Hyers-Ulam stability, Math. Inequal. Ef Appl. 7(3) yr 2004, 419-428.
[14] W. Smajdor, Subadditive set-valued functions, Glas. Mat. 21 (1986), 343-348.
[15] W. Smajdor, Superadditive set-valued functions and Banach-Steinhauss theorem, Radovi Matematicki 3 (1987), 203-214.
[16] A. Smajdor, Additive selections of superadditive set-valued functions, Aequationes Math. 39 (1990), 121-128.
[17] A. Smajdor and W. Smajdor, Affine selections of convex set-valued functions, Aequationes Math. 51 (1996), 12-20.

KAZIMIERZ NIKODEM
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF BIELSKO-BIAEA
WILLOWA 2
43-309 BIELSKO-BIAEA
POLAND
E-mail: knikodem@ath.bielsko.pl
DORIAN POPA
DEPARTMENT OF MATHEMATICS
TECHNICAL UNIVERSITY OF CLUJ-NAPOCA
STR. C. DAICOVICIU 15
400020 CLUJ-NAPOCA
ROMANIA
E-mail: Popa.Dorian@math.utcluj.ro

[^0]: Mathematics Subject Classification: 39B62, 39B82, 54C65.
 Key words and phrases: general linear inclusion, selection.

