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Multiple fractional integrals through Gamma-mixed
Ornstein–Uhlenbeck process

By CONSTANTIN TUDOR (Bucharest) and MARIA TUDOR (Bucharest)

Abstract. We prove the mean square convergence of multiple Riemann–Stieltjes

integrals based on the integral process defined by the Gamma-mixed Ornstein–Uhlenbeck

process to multiple fractional Stratonovich integrals. The integrands belong to the sub-

class of the Schwartz space S(Rn) of rapidly decreasing functions whose fractional in-

tegrals remain rapidly decreasing. In particular the result applies for integrands in the

Lizorkin space, i.e., the subspace of S(Rn) which is orthogonal to all polynomials.

1. Introduction

Processes with properties like self-similarity and long-range dependence have
attracted much attention both for their applications and their intrinsic mathe-
matical interest ([6], [24]).

A well known example of a process which enjoys such properties (long-range
dependence for Hurst parameter greater than 1

2 ) is the fractional Brownian motion
(fBm for short), which is a suitable generalization of the standard Brownian
motion (Bm for short). This process was first introduced by Kolmogorov (1940)
and later studied by Mandelbrot and Van Ness (1968).

In fact fBm is the most important example of Gaussian process which is
self-similar and has stationary increments.

It is known that functionals of Bm or fBm have orthogonal decomposition
in terms of corresponding multiple integrals. Then, the approximation of such
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functionals in strong or weak sense could be obtained by approximating the cor-
responding multiple integrals from their orthogonal decomposition. We mention
also that multiple integrals appear in problems like asymptotic statistics and non-
linear filtering are given in [1], [2].

In the present paper we consider such multiple integrals for fBm. Let us
mention that the case of multiple integrals with respect to Bm was first considered
in [11] (see also [18] for basic properties).

Multiple Stratonovich integrals with respect to Bm are introduced in [7] and
later studied in [13], [23], [26].

The case of fBm is considered in [4], [5] for the case of finite time interval, by
using the reproducing kernel Hilbert space theory and in [19] by using a transfer
idea from multiple integrals with respect to Bm.

Strong convergence results have been obtained in [3], [8], [12] for the case of
multiple Stratonovich integrals with respect to the Bm and recently [25] for the
case multiple Stratonovich integrals with respect to fractional Bm.

Mainly the above mentioned results are obtained for Wong–Zakai or mollifier
approximations.

In the present paper we introduce another strong approximation based on
the Gamma-mixed Ornstein–Uhlenbeck process (ΓMOU) (such a process was in-
troduced in [10]). The ΓMOU process has various interesting properties and it is
a possible candidate for the modelling in the presence of stationarity and long-
range dependence properties, and also for a construction of the stochastic calculus
with respect to fBm.

The main result (Theorem 3.1) shows the mean square convergence of mul-
tiple improper Riemann–Stieltjes integrals driven by the integral process associ-
ated to ΓMOU to the multiple improper Stratonovich fractional integral. The
deterministic integrands are rapidly decreasing functions (Schwartz space) whose
fractional integrals remain rapidly decreasing. In particular the result applies for
integrands in the Lizorkin space, i.e., the subspace of the Schwartz space which
is orthogonal to all polynomials.

2. Preliminaries

Let h ∈ (
0, 1

2

)
, λ > 0 and let (Wt)t∈R be a real Bm defined on a probability

space (Ω,F , P ).
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Recall that a fBm is a continuous centered Gaussian process (B(h)
t )t∈R, start-

ing from 0, with covariance

C(h)(s, t) =
1
2

[ |s|2h+1 + |t|2h+1 − |t− s|2h+1
]
, s, t ∈ R.

The constant H = h + 1
2 is called the Hurst parameter.

Recall that for h ∈ (
0, 1

2

)
the fBm has long-range dependence.

Following Mandelbrot and Van Ness [17] (see also Samorodnitsky and
Taqqu [22]) B(h) has the following representation as a Wiener integral

B
(h)
t =

∫

R

r(h)(t, s)dWs, t ∈ R,

r(h)(t, s) =
1

c1(h)
[
(t− s)h

+ − (−s)h
+

]
, s, t ∈ R,

c2
1(h) =

∫ ∞

0

[
(1 + s)h − sh

]2
ds +

1
2h + 1

. (2.1)

Recall that the Riemann–Liouville fractional integral is defined by

Ih,p
− f(t1, . . . , tp) =

1
Γp(h)

∫

Rp

f(s1, . . . , sp)
p∏

j=1

(sj − tj)h−1
+ ds1 . . . dsp,

(for the theory of fractional integrals and derivatives see [21]).

Remark 2.1 (Hardy–Litlewood). The operator Ih,p
− : L

2
2h+1 (Rp) −→ L2(Rp)

is continuous (see [21, Theorem 24.1]).

The kernel (2.1) represents a particular value of the following continuous
operator

Λ(h)
p : L

2
2h+1 (Rp) −→ L2 (Rp) ,

(
Λ(h)

p f
)

(t1, . . . , tp) =
Γp(h + 1)
[c1(h)]p

Ih,p
− f(t1, . . . , tp),

in fact (Λ(h)
1 1(0,t))(s) = r(h)(t, s).

We assume that the reader is familiar with elementary facts about multiple
Wiener–Itô integrals with respect to the Bm (see for example [11], [18]).

We shall denote by I0
p(fp) the multiple Wiener–Itô integral of fp ∈ L2

s(Rp)
(i.e., f is symmetric and square integrable) with respect to W .

Now we introduce the multiple Wiener–Itô fractional integrals by using a
transfer idea (see [19]).
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Definition 2.2. We define the multiple Wiener–Itô fractional integral of fp

with respect to B(h) by
Ih
p (fp) = I0

p(Λ(h)
p fp).

Remark 2.3. The multiple Wiener–Itô fractional integral is well defined if
Λ(h)

p fp ∈ L2
s(R

p).
In particular if fp ∈ L

2
2h+1 (Rp) we have Λ(h)

p fp ∈ L2
s(R

p) (Remark 2.1) and
therefore the multiple fractional integral Ih

p (fp) is well defined.
Moreover it can be shown ( [19], [20]) that if

∫

R2p

|fp(u)||fp(v)|
p∏

i=1

|ui − vi|2h−1dudv < ∞, (2.2)

then

‖Λ(h)
p fp)‖2L2(Rp) = h(2h + 1)

∫

R2p

fp(u)fp(v)
p∏

i=1

|ui − vi|2h−1dudv,

and thus if (2.2) holds, then Λ(h)
p fp ∈ L2

s(R
p) and consequently the multiple

Wiener–Itô fractional integral Ih
p (fp) is meaningful.

Next, we address the case of multiple Stratonovich fractional integrals. Since
we consider an infinite time interval (R in our case) it is convenient to adopt a
Hilbertian approach for multiple Stratonovich integrals with respect to the Bm
and again a transfer idea (the same is possible for multiple Wiener–Itô fractional
integrals) to pass to the case of multiple fractional integrals.

Let (ei)i∈N ⊂L2(R) be a CONS (complete orthonormal system), fp∈L2
s(Rp)

with the decomposition

fe
p (t1, . . . , tp) =

∞∑

i1,...,ip=1

ai1,i2,...,ipei1(t1) . . . eip(tp),

ai1,i2,...,ip =
〈
fp, ei1 ⊗ · · · ⊗ eip

〉
L2(Rp)

.

Denote

fN,e
p (t1, . . . , tp) =

N∑

i1,...,ip=1

ai1,i2,...,ipei1(t1) . . . eip(tp).

Definition 2.4. (a) We define the multiple Stratonovich integral of fN,e
p with

respect to the Bm W by

I0
p ◦

(
fN,e

p

)
=

N∑

i1,...,ip=1

ai1,i2,...,ipI0
1 (ei1) . . . I0

1 (eip)
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(b) If for every CONS (ei)i∈N , the sequence I0
p ◦(fN,e

p ) converges in L2(Ω,F , P ) as
N →∞ to the same limit I0

p ◦ (fp), then we say that fp is Stratonovich integrable
and the limit I0

p ◦(fp) is called the multiple Stratonovich integral of fp with respect
to W .

In order to obtain criteria for the existence of multiple Stratonovich integrals
and to connect them with multiple Wiener–Itô integrals the concept of trace of a
several variables deterministic function is useful.

We take the approach from [13], [14] (for a different approach see [23]).
For 1 ≤ j ≤ [

p
2

]
we introduce the j-trace of fN,e

p by

Trj fN,e
p (s1, . . . , sp−2j) =

N∑

i1,...,ip=1

ai1,i1,i2,i2,...ij ,ij ,i2j+1,...,ipei2j+1(s1) . . . eip(sp−2j).

If for every CONS (ei)i∈N , the sequence Trj fN,e
p converges in L2(Rp−2j) as

N →∞ to the same limit Trj fp, then we call the limit the j-trace of fp.

Next, S(Rp) denotes the Schwartz space of rapidly decreasing functions, i.e.,

S(Rp)=

{
ϕ ∈ C∞(Rp) : sup

t∈Rp

(1+ ‖t‖2)α
2

∣∣∣∣∣
∂β1+···+βp

∂tβ1
1 . . . ∂t

βp
p

ϕ(t)

∣∣∣∣∣ <∞, ∀α, βi ∈Z+

}
.

Consider the Hermite polynomials

hj(t) =
(−1)j

√
j!

(
1√
2π

e−
t2
2

)−1
dn

dtn

(
1√
2π

e−
t2
2

)
, j ≥ 0.

Recall that the operator − d2

dt2 + t2

4 + 1, with dense domain in L2(R), has the
normalized Hermite functions

ϕj(t) =
(

1√
2π

e−
t2
2

) 1
2

hj−1(t), j ≥ 1,

as its eigenfunctions, λj = j+ 1
2 as the corresponding eigenvalues and the sequence

(ϕj)j≥1 ⊂ S(R) is a CONS in L2(R).

The following criterion on the existence of traces is useful.

Theorem 2.5 ([13, Theorems 9.3 and 10.1], [14, Theorem 3.12]). Let fp ∈
S(Rp) be symmetric with the orthogonal decomposition

fp(t1, . . . , tp) =
∞∑

i1,...,ip=1

ai1,i2,...,ipϕi1(t1) . . . ϕip(tp). (2.3)
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Then every Trj fp exists and it is given by the relation

Trj fp(s1, . . . , sp−2j)

=
∞∑

i2j+1,...,ip=1

( ∞∑

i1,...,ij=1

ai1,i1,i2,i2,...ij ,ij ,i2j+1,...,ip

)
ϕi2j+1(s1) . . . ϕip(sp−2j).

The following important result holds (see [13], [14], [26]).

Theorem 2.6 (Hu–Meyer formula). Let fp ∈ L2
s(R

p). Then I0
p ◦ (fp) exists

if and only if fp admits all Trj fp, 1 ≤ j ≤ [
p
2

]
, and the the following Hu–Meyer

formula holds

I0
p ◦ (fp) = I0

p(fp) +

[
p
2

]
∑

j=1

p!
2jh!(p− 2j)!

I0
p−2j(Trj fp).

As in [19] we introduce the following definition.

Definition 2.7. We define the multiple Stratonovich fractional integral of fp

with respect to B(h) by

Ih
p ◦ (fp) = I0

p ◦ (Λ(h)
p fp),

provided that I0
p ◦ (Λ(h)

p fp) exists.

Finally we recall another process with long-range dependence introduced
in [10].

Definition 2.8. The Gamma-mixed Ornstein–Uhlenbeck process (Y λ,h
t )t∈R

(ΓMOU for short) is defined as the Wiener integral

Y λ,h
t =

∫ t

−∞

(
λ

λ + t− s

)1−h

dWs.

Remark 2.9 (see [10]). The ΓMOU is a centered continuous Gaussian process
which is stationary and has long-range dependence.

Moreover ΓMOU is asymptotically self-similar, it is a semimartingale and its
scaled integral process converges as λ → 0, a.s. and uniformly on compact time
intervals, to the fBm and Y λ,h

t − Y λ,h
0 converges as λ → ∞, in L2(Ω,F , P ) and

uniformly on compact time intervals, to the Bm.
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3. Main result

Consider the scaled integral process associated to Y λ,h

Zλ,h
t =

hλh−1

c1(h)

∫ t

0

Y λ,h
s ds, t ∈ R,

and for appropriate functions fp : Rp −→ R consider the multiple improper
Riemann–Stieltjes integral

Jλ,h
p (fp) =

∫

Rp

fp(t1, . . . , tp)dZ
λ,h
t1 . . . dZλ,h

tp

=
hpλp(h−1)

[c1(h)]p

∫

Rp

fp(t1, . . . , tp)Y
λ,h
t1 . . . Y λ,h

tp
dt1 . . . dtp.

Theorem 3.1. Let fp ∈ S(Rp) be symmetric such that Ih,p
− fp ∈ S(Rp).

Then Jλ,h
p (fp) converges as λ → 0 to Ih

p ◦ (fp) in L2(Ω,F , P ).

Proof. First, we prove that for g ∈ S(Rp) every Trj g is given by the
relation

Trj g(s1, . . . , sp−2j) =
∫

Rj

g (t1, t1, . . . , tj , tj , s1, . . . , sp−2j) dt1 . . . dtj . (3.1)

Recall the following characterization of S(Rp) (see [15], [16])

S(Rp) =
{

fp ∈ L2(Rp) :
∞∑

i1,...,ip=1

(λi1 . . . λip)2ra2
i1,i2,...,ip

< ∞, ∀r = 0, 1, . . .
}

,

ai1,i2,...,i;p =
〈
fp, ϕi1 ⊗ · · · ⊗ ϕip

〉
L2(Rp)

. (3.2)

For r > 2 we have from (3.2)

|ai1,i2,...,ip | ≤
cr,p

(λi1 . . . λip)r
, ∀i1, . . . , ip, (3.3)

for some constant cr. ¤

From (3.3) and the inequality |ϕk| ≤ c(2k+1), we obtain for every 0≤ l≤[
p
2

]
,

∞∑

i1,...,ip=1

∣∣ai1,i2,...,ipϕi2l+1 ⊗ · · · ⊗ ϕip

∣∣

≤ dr,p

∞∑

i1,...,ip=1

1
(2i1 + 1)r−1 . . . (2ip + 1)r−1

< ∞, (3.4)
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and consequently (choosing l = 0), the series (2.3) converges also uniformly to fp.
From (3.4) with l = j and using orthonormality of (ϕk)k and Fubini’s theo-

rem, we have

∞∑

i1,...,ip=1

∫

Rj

∣∣ai1,i2,...,i;pϕi1(t1)ϕi2(t1) . . . ϕi2j−1(tj)ϕi2j
(tj)

× ϕi2j+1(s1) . . . ϕip
(sp−2j)

∣∣dt1 . . . dtj ≤ dr,p

∞∑

i1,...,ip=1

1
(2i1 +1)r−1 . . . (2ip +1)r−1

×
∫

Rj

∣∣ϕi1(t1)ϕi2(t1) . . . ϕi2j−1(tj)ϕi2j
(tj)

∣∣dt1 . . . dtj

≤ dr,p

∞∑

i1,...,ip=1

1
(2i1 + 1)r−1 . . . (2ip + 1)r−1

∫

R

∣∣ϕi1(t1)ϕi2(t1)
∣∣dt1 . . .

. . .

∫

R

∣∣ϕi2j−1(tj)ϕi2j (tj)
∣∣dt1j ≤ dr,p

∞∑

i1,...,ip=1

1
(2i1 + 1)r−1 . . . (2ip + 1)r−1

×
(∫

R

∣∣ϕi1(t1)
∣∣2dt1

) 1
2

(∫

R

∣∣ϕi2(t1)
∣∣2dt2

) 1
2

. . .

. . .

(∫

R

∣∣ϕi2j−1(tj)
∣∣2dtj

) 1
2

(∫

R

∣∣ϕi2j (tj)
∣∣2dtj

) 1
2

≤ dr,p

∞∑

i1,...,ip=1

1
(2i1 + 1)r−1 . . . (2ip + 1)r−1

< ∞.

Then, by the dominated convergence theorem, Fubini’s theorem, orthonormality
of (ϕk)k and Theorem 2.5, we can write
∫

Rj

g(t1, t1, . . . , tj , tj , s1, . . . , sp−2j)dt1 . . . dtj

=
∫

Rj

[ ∞∑

i1,...,ip=1

〈g, ϕi1 ⊗ · · · ⊗ ϕip〉L2(Rp)ϕi1(t1)ϕi2(t1) . . . ϕi2j−1(tj)ϕi2j (tj)

× ϕi2j+1(s1) . . . ϕip(sp−2j)

]
dt1 . . . dtj =

∞∑

i1,...,ip=1

〈g, ϕi1 ⊗ · · · ⊗ ϕip〉L2(Rp)

×
(∫

Rj

ϕi1(t1)ϕi2(t1) . . . ϕi2j−1(tj)ϕi2j (tj)dt1 . . . dtjϕi2j+1(s1) . . . ϕip(sp−2j)
)

=
∞∑

i1,...,ip=1

〈g, ϕi1⊗ · · · ⊗ ϕip〉L2(Rp)〈ϕi1 , ϕi2〉 . . . 〈ϕi2j−1 , ϕi2j 〉ϕi2j+1(s1) . . . ϕip(sp−2j)
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=
∞∑

k1,...,kj ,i2j+1,...,ip=1

〈g, ϕk1 ⊗ ϕk1 · · · ⊗ ϕkj
⊗ ϕkj

⊗ ϕi2j+1 ⊗ · · · ⊗ ϕip
〉L2(Rp)

× ϕi2j+1(s1) . . . ϕip(sp−2j)

=
∞∑

i2j+1,...,ip=1

( ∞∑

k1,...,kj=0

〈g, ϕk1⊗ϕk1 · · · ⊗ ϕkj
⊗ ϕkj

⊗ ϕi2j+1⊗ · · · ⊗ ϕip
〉L2(Rp)

)

× ϕi2j+1(s1) . . . ϕip(sp−2j) = Trj g(s1, . . . , sp−2j),

and thus (3.1) is satisfied.
By Theorem 2.6 and (3.1) the fractional Stratonovich integral Ih

p ◦ (fp) exists
and is given by the Hu–Meyer formula

Ih
p ◦ (fp) = I0

p(Λ(h)
p fp)

+

[
p
2

]
∑

j=1

p!
2jh!(p− 2j)!

I0
p−2j

(∫

Rj

(Λh
pfp)(t1, t1, . . . , tj , tj , .)dt1 . . . dtj

)
.

Define

(Λλ,h
p fp)(t1, . . . , tp)

=
hp

[c1(h)]p

∫ ∞

t1

. . .

∫ ∞

tp

fp(s1, . . . , sp)
p∏

j=1

(λ + sj − tj)h−1ds1 . . . dsp.

It is easily seen that Λλ,h
p fp ∈ S(Rp) and consequently from (3.1)

Trj(Λλ,h
p fp)(s1, . . . , sp−2j)

=
∫

Rj

(Λλ,h
p fp)(t1, t1 . . . , tj , tj , s1, . . . , sp−2j)dt1 . . . dtj . (3.5)

Now, we show the relations

Jλ,h
p (fp) = I0

p ◦ (Λλ,h
p fp) = I0

p(Λλ,h
p fp)

+

[
p
2

]
∑

j=1

p!
2jh!(p− 2j)!

I0
p−2j

(∫

Rj

(Λλ,h
p fp)(t1, t1, . . . , tj , tj , .)dt1 . . . dtj

)
. (3.6)

First assume that fp = f⊗p, f ∈ S(R). By Fubini’s theorem (deterministic and
stochastic) we have

Jλ,h
p (fp) =

hpλp(h−1)

[c1(h)]p

[∫

R

f(t)Y λ,h
t dt

]p
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=

[
I0
1

(
h

c1(h)

∫ ∞

s

f(t)(λ + t− s)h−1dt

) ]p

=

[
I0
1 ◦

(
h

c1(h)

∫ ∞

s

f(t)(λ + t− s)h−1dt

) ]p

= I0
p ◦

(
hp

[c1(h)]p

∫ ∞

s1

. . .

∫ ∞

sp

f⊗p(t1, . . . , tp)
p∏

j=1

(λ + tj − sj)h−1dt1 . . . dp

)

= I0
p ◦ (Λλ,h

p f⊗p).

The second equality in (3.6) is a consequence of the Hu–Meyer’s formula and (3.5).
The general case follows by a density argument by taking into account the

continuity of the operators

Λλ,h
p : S(Rp) −→ L2(Rp),

Trj Λλ,h
p . : S(Rp) −→ L2(Rp−2j).

By Remark 2.1 and the dominated convergence theorem we obtain that

Λλ,h
p fp

L2(Rp)−−−−−→
λ→0

Λ(h)
p fp,

∫

Rj

(Λλ,h
p fp)(t1, t1, . . . , tj , tj , .)dt1 . . . dtj

L2(Rp−2j)−−−−−−−→
λ→0

∫

Rj

(Λ(h)
p fp)(t1, t1, . . . , tj , tj , .)dt1 . . . dtj ,

and therefore, passing to the limit in (3.6), we obtain the convergence

Jλ,h
p (fp)

L2(Ω,F,P )−−−−−−−→
λ→0

Ih
p ◦ (fp).

Remark 3.2. The existence of traces for a deterministic function fp(t1, . . . ., tp)
requires smoothness properties of fp. The space S(Rp) is a an important example
of a space of functions for which there exist traces (see Theorem 2.5).

On the other hand, multiple fractional integrals are defined via a transfer
principle from multiple Wiener–Itô integrals. The transfer operator is defined in
terms of deterministic fractional integrals Ih,p

− and it is known that even the well
known spaces S(Rp) and C∞0 (Rp) are poorly adapted to Ih,p

− .
These are some reasons why a rather restrictive condition on fp is required

in Theorem 3.1.
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Remark 3.3. Recall that the Lizorkin space Φ is defined by

Φ =
{

fp ∈ S(Rp) :
∂|α|

∂tα
f̂p(0) = 0, ∀α = (α1, . . . , αp), αi ≥ 0

}
,

i.e., Φ is the subspace of S(Rp) orthogonal to all polynomials (the hat accent
denotes the Fourier transform).

It is not difficult to see that Ih,p
− Φ ⊂ Φ, and consequently the above theorem

applies for fp ∈ Φ.

Acknowledgment. The authors thank the referees for careful reading and
constructive suggestions.
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