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Directed fibrations and covering projections

By IOAN POP (Iasi)

Abstract. In this note a notion of Hurewicz fibration in the category dTop of

directed spaces in the sense of M. Grandis ([8], [9]) is defined. The directed homotopy

lifting property is characterized by means of lifting pairs. The unique lifting property

for directed paths and loops is studied. Relations with the fundamental category and

the fundamental monoid are established. In the context a notion of a directed covering

projection is also studied and some relations of this notion with the dicovering spaces

of L. Fajstrup ([2], [3]) are established.

1. Introduction

Directed Algebraic Topology is a recent subject which arose from the study
of some phenomena in the analysis of concurrency, traffic networks, space-time
models, etc. ([1], [4], [5], [7]). It was systematically developed by Marco Gran-

dis ([8], [9]). The directed spaces have privileged directions and directed paths
therein do not need to be reversible. M. Grandis introduced and studied its ’non-
reversible’ homotopical tools corresponding to ordinary homotopies, fundamental
group and fundamental n-groupoids: directed homotopies, fundamental monoids
and fundamental n-categories. Also some directed homotopy constructions were
considered: pushouts and pullbacks, mapping cones and homotopy fibres, suspen-
sions and loops, cofibre and fibre sequences. As for directed fibrations, M. Grandis
refers to these (more precisely to the so-called lower and upper d-fibrations) only
in relation with the directed h-pullbacks.
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Key words and phrases: directed homotopy lifting property, lifting pair, unique directed path

(loop) lifting, fundamental category (monoid), directed covering projection, directed cellular

complexes, dicovering spaces.
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Therefore we have considered the study of lifting properties of directed ho-
motopies (simple, double and 2-homotopy) to be of interest. With this aim we
introduce the notion of a directed Hurewicz fibration (called bilateral d-fibration
in [9]) for which some unique lifting properties are studied. It is interesting that
for a directed map the properties of unique path lifting and unique loop lifting are
distinct, while in the usual case they coincide. This is related to the fact that a di-
rected space can have non-constant directed paths but all its loops are trivial (see
the ordered circle ↑O1 ⊂ R× ↑R, [8]). Moreover the lifting property for directed
homotopies (paths) itself imposes two types of lifts corresponding to both faces
of the direct interval ↑ [0, 1], since it is necessary to preserve some results from
the usual case, such as the homotopical invariance of the lifting property. Other
interesting properties appear in relation with the fundamental category and the
fundamental monoid functors (↑ Π1, ↑ π1) applied to a direct Hurewicz fibration.

Directed covering projections constitute important examples of directed maps
with the directed (unique) homotopy lifting property. These permit to get inter-
pretations of some d-structures (such as the symmetric d-structure for the sphere
(Sn)∼ as covering d-structure of directed projective space, [8]) and to find new
interesting d-structures (such as the directed n-fold covering of the ordered cir-
cle ↑O1).

The basics of Directed Algebraic Topology which we will use are taken from
the 2003 paper of Grandis [8]:

A directed space, or a d-space, is a topological space X equipped with a set
dX of continuous maps a : I = [0, 1] −→ X, called directed paths, or d-paths,
satisfying the following three axioms:

(i) (constant paths) every constant map I −→ X is a directed path,

(ii) (reparametrisation) dX is closed under composition with (weakly) increasing
maps I −→ I,

(iii) (concatenation) dX is closed under concatenation (the product of consecutive
paths, which will be denoted by ∗ or by +).

We use the notations X or ↑X if X is the underlying topological space; if X (or
↑X) is given, then the set of directed paths is denoted by dX (resp. d ↑X) and
the underlying space by |X|) (resp. | ↑X|).

The standard d-interval with the directed paths given by increasing (weakly)
maps I −→ I is denoted by ↑I =↑ [0, 1].

A directed map, or d-map f : X −→ Y , is a continuous mapping between
d-spaces which preserves the directed paths: if a ∈ dX then f ◦ a ∈ dY . The
category of directed spaces and directed maps is denoted by dTop (or ↑Top). A
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directed path a ∈ dX defines a directed map a : ↑ I −→ X which is also a path
of X.

For two points x, x′ ∈ X we write x ¹ x′ if there exists a directed path
from x to x′. The equivalence relation ' spanned by ¹ yields the partition of a
d-space X in its directed path components and a functor ↑Π0 : dTop −→ Set,
↑Π0(X) = |X|/ '. A non-empty d-space X is directed path connected if ↑Π0(X)
contains only one element.

The directed cylinder of a d-space X is the d-space ↑ (X × I), denoted by
X× ↑ I or ↑ IX, for which a path I −→ |X| × I is directed if and only if its
components I −→ |X|, I −→ I are directed. The directed maps ∂α : X −→X ×↑ I,
α = 0, 1, defined by ∂α(x) = (x, α), are called the faces of the cylinder.

If f, g : X −→ Y are directed maps, a directed homotopy ϕ from f to g,
denoted by ϕ : f −→ g, or ϕ : f ¹ g, is a d-map ϕ : X× ↑ I −→ Y such that
∂0 ◦ ϕ = f and ∂1 ◦ ϕ = g. The equivalence relation defined by the d-homotopy
preorder ¹ is denoted by f ' g. This means that there exists a finite sequence
f ¹ f1 º f2 ¹ f3 º . . . g.

2. The directed homotopy lifting property

Definition 2.1. Let p : E −→ B, f : X −→ B be directed maps. A d-map
f ′ : X −→ E is called a directed lift of f with respect to p if p ◦ f ′ = f .

Definition 2.2. A directed map p : E −→ B is said to have the directed
homotopy lifting property with respect to a d-space X if, given d-maps f ′ :X −→E

and ϕ : X× ↑I −→ B, and α ∈ {0, 1}, such that ϕ◦∂α = p◦f ′, there is a directed
lift of ϕ, ϕ′ : X× ↑I −→ E, with respect to p, p ◦ ϕ′ = ϕ, such that ϕ′ ◦ ∂α = f ′.

E
p // B

X

f ′

OO

∂α
// X× ↑I

ϕ′

ggOOOOOOOOOOOOO
ϕ

OO

Theorem 2.3. If p : E −→ B has the directed homotopy lifting property

with respect to X and f0, f1 : X −→ B are directed homotopic, f0 ' f1, then f0

has a directed lift with respect to p if and only if f1 has this property.

Proof. Let f ′0 : X −→ E be a directed lifting of f0, p ◦ f ′0 = f0. If ϕf0 ¹ f1

or ϕf1 ¹ f0, let ϕ ◦ ∂α = f0, α ∈ {0, 1}. Then, if ϕ′ is a lifting of ϕ, p ◦ ϕ′ = ϕ,
we define f ′1 = ϕ′ ◦ ∂1−α. For this we have p ◦ f ′1 = p ◦ϕ′ ◦ ∂1−α = ϕ ◦ ∂1−α = f1.
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In the general case, f0 ¹ g1 º g2 ¹ g3 º . . . f1, we recurrently apply the
consequences of the individual d-homotopies. ¤

Definition 2.4. A directed map p : E −→ B is called a directed (Hurewicz)
fibration if p has the directed homotopy lifting property with respect to every
directed space (dHLP).

Remark 2.5. In [9] the notions of lower d-fibration and upper d-fibration
corresponding to the unilateral lifting properties by taking α = 1 and α = 0
respectively, are given. A directed fibration is thus both a lower and an upper
d-fibration.

Corollary 2.6. Let p : E −→ B be a directed fibration and a : ↑ I −→ B a

directed path in B with a(α) = p(eα), for a point eα ∈ |E| and α ∈ {0, 1}. Then

there exists a directed path aα : ↑I −→ B which is a lift of a, p ◦ aα = a, with the

α-endpoint eα, aα(α) = eα. We will refer to such a path aα as lα(a) in eα.

Example 2.7. Let F be any directed space and let p : B × F −→ B be the
projection on the first factor. Then p is a directed fibration.

Example 2.8. Let p : E −→ B be a Hurewicz fibration and B a d-structure for
B. For E we consider the maximal d-structure compatible with p, i.e. a ∈ d(↑E) if
and only if p◦a ∈ dB. Then ↑p : ↑E −→ B is a directed fibration. If f ′ : X −→↑E

and F : X× ↑I −→ B, α ∈ {0, 1} are given such that F ◦ ∂α = p ◦ f ′, then there
exists a homotopy F ′ : |X| × I −→ |E| with F ′ ◦ ∂α = f ′ and p ◦ F ′ = F . Under
the given hypothesis on ↑ E, F ′ is a d-map. Indeed, if u◦ ∈ d(X× ↑ I), then
p ◦ (F ′ ◦ u) = F ◦ u ∈ dB, which implies F ′ ◦ u ∈ d(↑E). A concrete example:
↑exp : ↑R −→↑S1, defined by exp(t) = e2πit.

Remark 2.9. Obviously, the conditions from the example above are not nec-
essary conditions for a directed fibration. At first, trivially, any directed map from
an arbitrary d-space into a d-discrete space (only constant d-paths) is a directed
fibration, even if the underlying map is not a Hurewicz fibration. Secondly, even
if p : E −→ B is a directed fibration with a Hurewicz fibration for the underlying
map, we can have a nondirected path in E which is projected onto a directed
path in B. Such an example is a trivial directed projection p : B × F −→ B.

Example 2.10. The following example shows that there exist d-maps such
that the underlying maps are Hurewicz fibrations and lower d-fibrations without
being directed fibrations. Consider in ↑ R2 the subspace B =↑ [0, 1] × {0} and
the full triangle E with the vertices in the points (1, 0), (0, 1) and (1, 1). Let
p : E −→ B denote the vertical projection, p(x, y) = x, which is a d-map. Then it
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is immediate that p verifies the desired conditions. But we can see that it is not
an upper d-fibration. Indeed, if we consider the map a : ↑ I −→ B, a(t) = (t, 0),
and the point e1 = (1, 0) ∈ p−1(a(1)), then there is no directed lift of an ending
at e1.

Example 2.11. If p : E −→ B is a directed fibration and if for a d-space X,
Xop denotes the opposite d-space ([8]), (a ∈ d(Xop) ⇔ aop = a ◦ r ∈ dX, where
r(t) = 1− t ), then p : Eop −→ Bop is also a directed fibration.

Example 2.12. The composite and the product of directed fibrations are
directed fibrations.

3. The characterisation of a directed fibration
by a directed lifting pair

Given a d-map p : E −→ B and α ∈ 0, 1, we consider the following d-subspace
of the product E ×B↑I

Bα = {(e, ω) ∈ E ×B↑I | ω(α) = p(e)}. (3.1)

(The d-structure of B↑I is given by the exponential law, dTop(↑I, dTop(↑I, B)) ≈
dTop(↑I× ↑I, B), [8]).

Definition 3.1. A directed lifting pair for a directed map p : E −→ B is a
pair of d-maps

λα : Bα −→ E↑I, α = 0, 1, (3.2)

satisfying the following conditions:

λα(e, ω)(α) = e, (3.3)

p ◦ λα(e, ω) = ω, (3.4)

for each (e, ω) ∈ Bα.

Theorem 3.2. A directed map p : E −→ B is a directed fibration if and

only if there exists a directed lifting pair for p.

Proof. If p is a directed fibration and α ∈ 0, 1, let f ′α : Bα −→ E and
Fα : Bα× ↑ I −→ B be the maps defined by f ′α(e, ω) = e and Fα((e, ω), t) = ω(t).
It is obvious that f ′α is continuous and a directed map as a projection. Regarding
Fα, this is continuous since if D is an open set in B, then F−1

α (D) = {((e, ω), t) ∈
Bα× ↑I | ω(t) ∈ D}, which is an open subset of Bα× ↑I. Then if c : ↑I −→ Bα× ↑
I is a directed path, write c(t′) = ((e(t′), ω(t′), t(t′)), with some directed paths e :
↑I −→ E, ω : ↑I −→ B↑I, and t : ↑I −→↑I. By the exponential d-structure of B↑I
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([8], p. 291), the map ω̃ : ↑I× ↑I −→ B defined by ω̃(t′, t′′) = ω(t′)(t′′) is directed.
This implies that (Fα ◦ c)(t′) = ω(t′)(t(t′)) = ω̃(t′, t(t′)) is directed. Hence Fα is
directed. Then by the equality Fα((e, ω), α) = ω(α) = p(e) = (p ◦ f ′α)(e, ω) and
by the dHLP for p, there exists F ′α : Bα× ↑ I −→ E such that F ′α((e, ω), α)) =
f ′α)(e, ω) = e and p ◦ F ′α = Fα. Hence we can define λα : Bα −→ E↑I by
λα(e, ω)(t) = Fα((e, ω), t), which is directed since F̃α : Bα −→ E↑I, given by
F̃α((e, ω), t) = F ′α((e, ω), t)), is directed. We have thus obtained a directed lifting
pair for p, (λα)α=0,1.

Conversely, if the pair (λα)α=0,1 is given, α ∈ {0, 1}, let f ′ : X −→ E,
and F : X× ↑ I −→ B be such that F ◦ ∂α = p ◦ f ′. Consider the directed
map g : X −→ B↑I, defined by g(x)(t) = F (x, t). This permits to define F ′ :
X× ↑ I −→ E, by F ′(x, t) = λα(f ′(x), g(x))(t). This is a directed lift of F , and
F ′ ◦ ∂α = f ′. Thus p has the dHLP. ¤

Example 3.3. Let p : E −→ B be a directed fibration and f : B′ −→ B a
directed map. Consider E′ = {(b′, e) ∈ B′×E | f(b′) = p(e)}, and the projection
p′ : E′ −→ B′. We can verify that p′ is also a directed fibration. For this we
define a directed lifting pair starting from a pair (λα)α=0,1 for p. With the above
convention of notation, we have B′

α = {((b′, e), ω′) ∈ E′ × B′↑I | ω′(α) = b′}.
Define λ′α : B′

α −→ E′↑I by λ′α((b′, e), ω′))(t) = (ω′(t), λα(e, f ◦ ω′)(t)), α = 0, 1.
These are d-maps and λ′α((b′, e), ω′))(α) = (ω′(α), λα(e, f ◦ ω′)(α)) = (b′, e) and
(p′ ◦ λ′α((b′, e), ω′)) = ω′. Thus (λ′α)α = 0, 1 is a directed lifting pair for p′.

Example 3.4. In ↑ R× ↑ Rop consider the subspaces B =↑ [0, 1] and E =
↑ ([MN ] ∪ [MP ]), for M(0, 1), N(1, 1), P (1, 0), and let p : E −→ B be the
vertical projection p((x, y)) = x. Then it is immediate that p does not have a lower
lifting function, but an upper lifting function λ1 :B1−→E↑I. If (e, ω)∈B1, with
ω(t) = (ω(t), 0), then λ1(e, ω) = εM , if ω is the constant path ε(0,0); λ1(e, ω)(t) =
(ω(t), 1), if e ∈ [MN ] ∩ p−1(ω(1)), and λ1(e, ω)(t) = (ω(t), 1 − ω(t)), if e ∈
[MP ] ∩ p−1(ω(1)).

Example 3.5. Let p : ↑I↑I →↑ I be the map defined by p(ω) = ω(1). This
is a directed map. Indeed, if c ∈ d(↑I↑I) then the map ĉ : ↑ I× ↑ I →↑ I, with
ĉ(t, t′) = c(t)(t′), is directed. Then we have (p ◦ c)(t) = c(t)(1) = ĉ(t, 1), i.e.
p ◦ c = ĉ(−, 1), which is a directed path. Moreover, we can prove that p is a
directed fibration. With the notations from Definition 3.1, we have (↑ I)α =
{(ω, θ) ∈↑I↑I× ↑I↑I | ω(1) = θ(α)}, α ∈ {0, 1}.

For α = 0 we define the map λ0 : (↑ I)0 → (↑I↑I)↑I, by taking λ0(ω, θ) =
(ω ∗ θ)

( t′(t+1)
2

)
. The proof of the continuity of this map is the usual one (see for
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example [10], Chapter II, §7, p. 159). The property to be directed is also easily
verified by the method applied above for p.

Finally, for λ0 we have: λ0(ω, θ)(0)(t′)=(ω∗θ)( t′
2 )=ω(t′) i.e., λ0((ω, θ))(0)=ω,

and λ0(ω, θ)(t)(1) = (ω ∗ θ)( t+1
2 ) = θ(t), i.e. p ◦ λ0(ω, θ) = θ. So, we have a lower

lifting function for p.
For α = 1, we can define λ1 : (↑ I)1 → (↑I↑I)↑I by λ1(ω, θ)(t)(t′) = ω(t′)·θ(t)

ω(1) ,
if ω(1) = θ(1) 6= 0 and λ1(ω, θ)(t)(t′) = 0 if ω(1) = θ(1) = 0. This is a well
defined map since ω(1) = θ(1) = 0 implies that ω and θ are constant paths.

Then we can immediately see that λ1 is continuous and directed.
Finally, λ1(ω, θ)(1)(t′) = ω(t′), i.e. λ1(ω, θ)(1) = ω and λ1(ω, θ)(t)(1) = θ(t),

i.e. p ◦ λ1(ω, θ) = θ. So, λ1 is an upper lifting function for p.
By Theorem 3.2 we conclude that p is a directed fibration.

Remark 3.6. In the theory of undirected fibrations, a series of very important
examples are obtained starting from path spaces. Such fibrations are: p : Y I →
Y × Y , p(ω) = (ω(0), ω(1)), pα : Y I → Y , pα(ω) = ω(α), α ∈ {0, 1}, py0 :
P (Y, y0) := {ω ∈ Y I | ω(0) = y0} → Y , py0(ω) = ω(1), and pf : Ef := {(e, β) ∈
E × BI | f(e) = β(0)}, pf ((e, β)) = β(1), for f : E → B an arbitrary map
(see [12], Chapter 2, Section 8).

In the directed case, these examples have no counterpart.
Generalizing Example 3.5, consider the directed map p : Y ↑I → Y , p(ω) =

ω(1), for an arbitrary space Y .
With the notations from Definition 3.1, we have Y α = {(ω, θ) ∈ Y ↑I × Y ↑I |

ω(1) = θ(α)}, α ∈ {0, 1}.
For α = 0 we can define a directed map λ0 : Y 0 → (Y ↑I)↑I, by taking

λ0(ω, θ) = (ω ∗θ)
( t′(t+1)

2

)
. For this we have: λ0(ω, θ)(0)(t′) = (ω ∗θ)( t′

2 )ω(t′) i.e.,
λ0((ω, θ))(0) = ω, and λ0(ω, θ)(t)(1) = (ω ∗ θ)

(
t+1
2

)
= θ(t) i.e., p ◦ λ0(ω, θ) = θ.

So, we have a lower lifting function for p.
The obvious candidate, in the general case, for an upper lifting function is

the map λ1 : Y 1 → (Y ↑I)↑I, defined by λ1(ω, θ)(t)(t′) = (ω ∗ θ−1)
( t′(2−t)

2

)
. For

this map we have λ1(ω, θ)(1)(t′) = (ω ∗ θ−1)( t′
2 ) = ω(t′) i.e., λ1(ω, θ)(1) = ω, and

λ1(ω, θ)(t)(1) = (ω ∗ θ−1)( 2−t
2 ) = θ(t) i.e., p ◦ λ1(ω, θ) = θ. But this map is not

directed. It seems unlikely that the map p is a directed fibration for a general
d-space Y . If Y is symmetric or only reflexive (see[8], p. 285) then p is a directed
fibration. Similar remarks hold for the other maps from the beginning of this
remark.

Remark 3.7. In the general case, for an arbitrary d-map p : E −→ B, the
d-spaces B0 and B1 are distinct. But if B is symmetric then these d-spaces are
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d-homeomorphic. In this case we can define F : B0 −→ B1 and G : B1 −→ B0,
by F (e, ω)) = (e, ωop) and G((e′, ω′)) = (e′, ω′op). We verify that F is a directed
map. First it is continuous: if U is an open set in |E| and B(K, D) is an element
of the subbase of the compact-open topology in B↑I, then F−1((U ×B(K,D)) ∩
|B1|) = (U × B(1 − K,D)) ∩ |B0|. Then, if u : ↑ I −→ B0 is a directed path,
let u(t) = (e(t), ω(t)), with directed paths e : ↑ I −→ E and ω : ↑ I −→ B↑I,
(satisfying p(e(t)) = ω(t)(0) ), the path (F ◦u)(t) = (e(t), ω(t)op) is directed since
B↑I is symmetric. Now it is clear that F is an d-homeomorphism with inverse G.

But even in this case the functions λ0 and λ1 are both necessary. However if E

is also symmetric, we can define λ1((e′, ω′))=(λ0(e′, ω′op))op, for any (e′, ω′)∈B1.

Theorem 3.8. If p : E −→ B is a directed fibration, then the d-spaces B0

and B1 are d-homotopy equivalent.

Proof. Consider a directed lifting pair (λα)α=0,1 for p. Then we can define
the maps f : B0 −→ B1 and g : B1 −→ B0, by f((e, ω)) = (λ0(e, ω)(1), ω)
and g((e′, ω′)) = (λ1(e′, ω′)(0), ω′). We will prove that these define a directed
homotopy equivalence. At first we we can see that these maps are continuous and
directed since the maps λα and ∂α, α = 0, 1, have these properties.

Now (g ◦ f)(e, ω) = (λ1(λ0(e, ω)(1), ω)(0), ω). Define H : B0× ↑I −→ B0 by
H((e, ω), t) = (λ1(λ0(e, ω)(t), ωt)(0), ω), where ωt(t′) = ω(tt′). By the same sim-
ple arguments as above we deduce that H is a continuous directed map. Moreover,
this map satisfies the relation H : H0 ¹ g◦f , where H0((e, ω)) = (λ1(e, ω0)(0), ω).
Then, for K : B0× ↑I −→ B0, defined by K((e, ω), t) = (λ1(e, ω0)(t), ω), we have
K : H0 ¹ idB0

. Therefore we obtain g ◦ f 'd idB0
. Similarly one verifies the

relation f ◦ g 'd idB1
. ¤

4. The unique directed lifting properties

Definition 4.1. We say that a directed map p : E −→ B has unique directed
path lifting if, given α ∈ {0, 1} and directed paths ω, ω′ : ↑ I −→ E, such that
ω ◦ ∂α = ω′ ◦ ∂α and p ◦ ω = p ◦ ω′, it follows that ω = ω′.

Definition 4.2. We say that a directed map p : E −→ B has unique directed
loop lifting if, given directed loops θ, θ′ : ↑I −→ E, with the same endpoints and
p ◦ θ = p ◦ θ′, it follows that θ = θ′.

Remark 4.3. In the usual case (natural d-structures) these unique lifting
properties coincide.
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Remark 4.4. It is obvious that the property of unique directed path lifting
implies the property of unique directed loop lifting.

Example 4.5. If ↑ p : ↑ E −→↑B is a direct map such that p : E −→ B is
a Hurewicz fibration with unique path lifting then ↑ p has unique directed path
lifting.

Example 4.6. Any d-map p : ↑O1 −→ B has unique directed loop lifting since
the ordered circle ↑O1 does not have non-constant loops.

Example 4.7. Consider in the complex plane C the standard directed circle
↑ S1 and the ordered circle ↑ O1 as a directed subspace of ↑ Rop × R, and let
p : ↑O1 −→↑S1 be the map defined by

p(z) =





z2, if 0 ≤ arg z ≤ π,

z̄2, if π ≤ arg z ≤ 2π.

Then p is a d-map with unique directed loop lifting (as in the precedent
example). But the distinct paths ω, ω′ : ↑ I −→↑O1 defined by ω(t) = eπit/4 and
ω′(t) = e−πit/4, have the same origin (in 1) and the same projection. Hence p

does not have unique directed path lifting.

Theorem 4.8. Let p : E −→ B be a directed fibration with unique directed

path lifting. Then if Y is a directed path connected d-space and f, g : Y −→ E

are d-maps such that p◦f = p◦g and f(y0) = g(y0), for some y0 ∈ Y , then f = g.

Proof. Let y ∈ Y be an arbitrary point. If ω : y0 ¹ y or ω : y ¹ y0, then
we consider the directed paths f ◦ ω, g ◦ ω, with p ◦ (f ◦ ω) = p ◦ (g ◦ ω) and
f ◦ω ◦∂α = g ◦ω ◦∂α, for α = 0 or α = 1. This implies f ◦ω = g ◦ω. Particularly,
f ◦ ω ◦ ∂1−α = g ◦ ω ◦ ∂1−α, which implies f(y) = g(y).

In the general case, y0 ¹ y1 º y2 ¹ . . . y, we recurrently apply the conse-
quences of the immediate d-connection relations. ¤

Theorem 4.9. If a directed fibration p : E −→ B has unique directed path

(loop) lifting, then every fiber of p has no nonconstant directed paths (loops).

Proof. Let ω : ↑ I −→↑ p−1(b) be an arbitrary directed path (loop) in the
fiber p−1(b), b ∈ B, with the d-structure of d-subspace of E. Then if ω′ is the
constant path ω′(t) = ω(0),∀t ∈ [0, 1], we have p ◦ ω = p ◦ ω′ and this implies
ω = ω′. ¤

Remark 4.10. It is known that for usual fibrations the converse of 4.9 is also
true ([12], Theorem 5, p. 68). But for the directed case we have obtained only
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a particular result: If p : E −→ B is a directed fibration with the total space E

a symmetric d-space, then p has unique directed path lifting if and only if every
fiber has no nonconstant directed paths. The proof is the same as in the usual
case and we omit it.

Theorem 4.11. A directed fibration with unique directed path lifting has

the directed 2-homotopy lifting property.

Proof. Let p : E −→ B be a directed fibration with unique directed path
lifting. Suppose that α ∈ {0, 1}, ϕ : X× ↑ I −→ E is a directed homotopy, and
Φ : X× ↑I2 −→ B is a 2-homotopy with Φ(x, t, α) = (p◦ϕ)(x, t), ∀(x, t) ∈ X× ↑I,
and for β ∈ {0, 1}, Φ(x, β, t′) = Φ(x, β, α) = (p ◦ ϕ)(x, β) (see[8], p. 297). By the
dHLP there exists a double homotopy Φ′ : X× ↑ I2 −→ B, with Φ′(x, t, α) =
ϕ(x, t) and p ◦Φ′ = Φ. We verify that under the condition of the unique directed
path lifting property for p, Φ′ is a 2-homotopy. For x ∈ X consider the directed
paths Φ′x, ϕx : ↑I −→ E, defined by Φ′x(t′) = Φ′(x, β, t′) and ϕx(t′) = ϕ(x, β). For
these paths we have p ◦ Φ′x = p ◦ ϕx and Φ′x(α) = Φ′(x, β, α) = ϕ(x, β) = ϕx(α).
It follows that Φ′x = ϕx and therefore Φ′(x, β, t′) = ϕ(x, β), ∀t′ ∈ [0, 1]. ¤

Theorem 4.12. If p : E −→ B is a directed fibration with unique directed

path lifting, the spaces B0 and B1 are d-isomorphic.

Proof. We use the notations from the proof of Theorem 3.8. By the unique
directed path lifting property we have that λ1(λ0(e, ω)(1), ω) = λ0(e, ω) since
λ1(λ0(e, ω)(1), ω)(1) = λ0(e, ω)(1) and p ◦ λ1(λ0(e, ω)(1), ω) = ω = p ◦ λ0. It
follows that (g ◦ f)((e, ω)) = λ1(λ0(e, ω)(1), ω)(0), ω) = (λ0(e, ω)(0), ω) = (e, ω).
Hence g ◦ f = idB0

. Similarly we have f ◦ g = idB1
. ¤

Remark 4.13. In the general case, for a directed fibration there might exist
more directed lifting pairs. But if the fibration has unique directed path lifting
there exists only one.

5. Relations with the fundamental category
and the fundamental monoid

For a d-space X denote by ↑ Π1(X) the fundamental category([8], p. 301).
This has the points of |X| as objects and [a] : x → x′ the 2-homotopy classes of
paths from x to x′ as arrows. More precisely, two directed paths a, a′ : ↑ I → X

from x to x′ are in relation a ¹2 a′ if there is a 2-path A : ↑ I2 → X with
A ◦ ∂0

2 = a,A ◦ ∂1
2 = a′ and with the faces ∂α

1 degenerate. This means: A(t, 0) =
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a(t), A(t, 1) = a′(t), A(α, t′) = A(α, 0) = a(α) = A(α, 1) = a′(α), α ∈ {0, 1}.
The equivalence relation spanned by the preorder ¹2 is denoted by '2 and [a]
is the equivalence class of the directed path a with respect to this relation. The
composition of arrows, written additively, is induced by the concatenation of
consecutive paths, [a] + [b] = [a + b], and the identities derive from degenerate
paths, 0x = [e(x)] = [0x].

In a natural way, a covariant functor ↑ Π1 : dTop −→ Cat (small cate-
gories) is defined by correspondences X ⇒↑ Π1(X), (f : X → Y ) ⇒↑ Π1(f) :
↑ Π1(X) −→↑ Π1(Y ), with ↑ Π1(f)(x) = f(x) and ↑ Π1(f)([a]) = [f ◦ a]. This
functor also preserves d-homotopy, d-homotopy equivalences and deformation re-
tracts. But for a d-homotopy equivalence f : X −→ Y , the induced functor
↑Π1(f) does not have to be full nor faithful.
For a pointed d-space (X,x) the fundamental monoid ↑π1(X,x) =↑Π1(X)(x, x)
is defined. Its elements are the 2-homotopy classes of loops at x. It gives a func-
tor from the category dTop∗ of pointed d-spaces, to the category of monoids,
↑ π1 : dTop∗ −→ Mon, (X,x) ⇒↑ π1(X,x), (f : X → Y ) ⇒ f∗1 : ↑ π1(X,x) →
↑π1(Y , y), f∗1([a]) = [f ◦ a]).

Theorem 5.1. If p : E −→ B is a directed fibration with unique directed

path lifting then the functor ↑Π1(p) : ↑Π1(E) −→↑Π1(B) is faithful.

Proof. Let e, e′ ∈ E and [a], [a′] ∈↑ Π1(e, e′) be such that p∗1([a]) =
p∗1([a′]), i.e., p ◦ a '2 p ◦ a′. We need to prove that a '2 a′. First we sup-
pose that p ◦ a ¹2 p ◦ a′ or p ◦ a′ ¹2 a by a 2-homotopy A : ↑ I2 → B. By
the dHLP there exists A′ : ↑ I2 → B with p ◦ A′ = A and A′(t, α) = a(t).
Then since p(A′(0, t′)) = A(0, t′) = A(0, 0) = p(a(0) = p(e) and p(A′(1, t′)) =
A(1, t′) = A(1, 0) = p(a(1)) = p(e′), we have that A′(0, t′) ∈ p−1(p(e)) and
A′(1, t′) ∈ p−1(p(e′)), ∀t′ ∈ [0, 1], and by Theorem 4.9 it follows that these paths
are constant. Hence A′(0, t′) = A′(0, 0) = e, and A′(1, t′) = e′. Moreover,
p(A′(t, 1 − α)) = A(t, 1 − α) = p(a′(t)) and A′(0, 1 − α) = e = a′(0), which by
the unique directed path lifting implies A′(t, 1 − α) = a′(t) . Thus we have ver-
ified that A” : a ¹2 a′ or A′ : a′ ¹2 a. The general case can be reduced to the
situation p ◦ a ¹2 b1 º2 p ◦ a′. Let H : p ◦ a ¹2 b1. Then if H ′ is the lift of H

such that H ′(t, 0) = a(t), we define a1(t) = H ′(t, 1). As above we deduce that
a1(0) = e, a1(1) = e′ and H ′ : a ¹2 a1. Then by p ◦ a1 = b1 and b1 º2 p ◦ a′ we
have also the relation a1 º2 a′. Now the general implication p◦a '2 a′ ⇒ a '2 a′

is clear and this finishes the proof. ¤

Remark 5.2. By Theorem 5.1 we can deduce that if p : E −→ B is a di-
rected fibration with unique directed path lifting then ↑ π1(p) : ↑ π1(E, e) −→
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↑ π1(B, p(e)), e ∈ E has a trivial kernel. But we will prove below that this
conclusion holds under the weaker condition of the unique directed loop lifting.

Theorem 5.3. Let p : E −→ B be a directed fibration, with B symmetric.

Let ↑F =↑p−1(b) be the fiber over b with the d-structure of d-subspace of E and

e ∈ F . Let i : (↑F, e) → (E, e) be the d-inclusion. Then the following sequence

in the the category of monoids

↑π1(↑F, e)
↑π1(i) // ↑π1(E, e)

↑π1(p) // ↑π1(B, b)
is exact.

Proof. (According to [13], p. 242). Denote ↑π1(p) = p∗1 and ↑π1(i) = i∗1.
The inclusion Im i∗1 ⊆ ker p∗1 is immediate since p ◦ i is a constant map.

Now suppose that [a] ∈ ker p∗1, i.e., p ◦ a '2 0b. We need to prove that
[a] ∈ Im i∗1. It is sufficient to suppose that A : p◦a ¹2 0b or A : 0b ¹2 p◦a is given.
Let A◦∂α

2 = p◦a. If ↑S1 is the standard directed circle, we can define the directed
maps f : ↑S1 −→ B and Φ : ↑S1× ↑ I −→ B by f(e2πit = a(t) and Φ(e2πit, τ) =
A(t, τ). Then we have Φ ◦ ∂α

2 = p ◦ f . Then there is a directed homotopy Φ′ :
↑S1× ↑I −→ E, with p ◦Φ′ = Φ and Φ ◦ ∂α

2 = f . This defines A′ : ↑I× ↑I −→ E,
by A′(t, τ) = Φ′(e2πit, τ). For this we have A′ ◦ ∂α

2 = a,A′(0, τ) = A′(1, τ) = e

and p ◦ A′ = A. By the last relation it follows p ◦ A′ ◦ ∂1−α
2 = A ◦ ∂1−α

2 = 0b, so
that A′ ◦ ∂1−α

2 defines an element of ↑π1(↑F, e) 2-homotopy equivalent in (E, e)
to a. Hence we have [a] = [A′ ◦ ∂1−α

2 ] = i∗1[A′ ◦ ∂1−α
2 ]. thus we have proved the

inclusion ker p∗1 ⊆ Im i∗1 and this finishes the proof. ¤

Now by this theorem and by Theorem 4.9 we obtain:

Corollary 5.4. If p : E −→ B is a directed fibration with unique directed

loop lifting and B symmetric, then ↑π1(p) : ↑π1(E, e) −→↑π1(B, p(e)), e ∈ E has

a trivial kernel.

Remark 5.5. We make the remark the fact that the condition of trivial kernel
for a morphism in the category of monoids is only necessary but not sufficient for
the monomorphism property in this category.

6. Directed covering projections

Definition 6.1. A directed map p : X̃ −→ X is called a directed covering
projection if there exists an open cover U = {U} of the underlying space |X|
satisfying the following conditions:
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(i) For any subset U ∈ U , p−1(U) is the disjoint union of open subsets of |X̃|
each of which is mapped homeomorphically onto U by p.

(ii) If U ∈ U and p−1(U) = ∪Ũ is as in (i), then considering U and Ũ with the
directed structures ↑ U and ↑ Ũ of subspaces of X and X̃ respectively, the
homeomorphism p/Ũ : Ũ → U becomes a directed isomorphism (homeomor-
phism) p/Ũ : ↑ Ũ →↑ U . We will say (after [12], p. 62) that U consists of
open subsets directed evenly covered by p.

If a direct covering projection p : X̃ −→ X exists, then we say that X̃ is a
directed covering space of X.

Remark 6.2. If p : X̃ −→ X is a directed covering projection then the un-
derlying map p : |X̃| −→ |X| is a covering projection.

Remark 6.3. As in the classical case, in order to obtain some special prop-
erties of directed covering projections, it is necessary to impose some conditions
on the base space, such as directed path connectedness, locally directed path-
connectedness etc. These conditions are not especially mentioned in this paper,
but they are implied by the corresponding classical results.

Theorem 6.4. A directed covering projection is a directed fibration with

unique directed path lifting.

Proof. We reproduce the more important steps from the proof in the usual
case ([12], p. 67–68), emphasizing only the directed aspects.

Let p : X̃ −→ X be a directed covering projection and let f ′ : Y −→ X̃ and
F : Y× ↑ I −→ X be directed maps such that F ◦ ∂α = p ◦ f ′, α ∈ {0, 1}. First
we suppose α = 0. For a point y ∈ Y there is an open neighborhood Ny of y and
a sequence 0 = t0 < t1 < · · · < tm = 1 of points of I such that for i = 1, . . . ,m,
F (Ny × [ti−1, ti] is contained in some open subset of |X| directed evenly covered
by p. Then there is a directed map F ′y : ↑Ny× ↑ I −→ X̃, where vertical arrows
indicate the directed subspace structures, such that F ′y ◦ ∂0 = f ′/ ↑ Ny and
p ◦ F ′y = F/ ↑ Ny× ↑ I. We prove this. Assume that F (Ny × [t0, t1]) ⊂ U ,
where U is an open set directed evenly covered by p, with p−1(U) = ∪Ũj and
p maps ↑ Ũj isomorphically directed onto ↑ U for each j. Let Vj = f ′−1(Ũj).
Then Vj is a collection of disjoint open sets covering Ny, and we define G1 :
Ny×[t0, t1] −→ |X̃| such that for each j, G1/Vj×[t0, t1] = (p/Uj)−1◦F/Vj×[t0, t1].
Since G1/Vj × [t0, t1] is a directed map, as a composition of directed maps, and
↑ Ny× ↑ [t0, t1] coincide with the sum Σj ↑ Vj× ↑ [t0, t1], we deduce a directed
map G1 : ↑Ny× ↑ [t0, t1] −→ |X̃|. This verifies G1 ◦ ∂0 = f ′/Ny and p ◦ G1 =
F/ ↑Ny× ↑ [t0, t1]. Then, by induction on i, one can define directed maps Gi ↑
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Ny× ↑ [ti−1, ti] −→ X̃, i = 2, . . . ,m| such that p ◦ Gi = F/ ↑Ny× ↑ [ti−1, ti] and
Gi−1/Ny×ti−1 = Gi/Ny×ti−1. Assume Gi−1 defined for 1 < i 6 m. Let U ′ be an
open subset of |X| directed evenly covered by p such that F (Ny× [ti−1, ti])) ⊂ U ′.

Let {Ũ ′
k} be a collection of disjoint open subsets of |X̃| such that p−1(U ′) =

∪Ũ ′
k and p maps ↑ Ũ ′

k directed isomorphically onto U ′ for each k. Let V ′
k = {y′ ∈

Ny | Gi−1(y′, ti−1) ∈ Ũ ′
k}. Then {V ′

k} is a collection of disjoint open sets covering
Ny, and define Gi such that Gi/V ′

k × [ti−1, ti] = (p/ ↑ Ũ ′
k)−1 ◦ F/V ′

k × [ti−1, ti].
This is a directed map and verifies the desired properties.

Now we can define F ′y by F ′y/Ny × [ti−1, ti] = Gi. This is well defined and
verifies the desired properties. In order to see that it is also a directed map,
let a : ↑ I →↑ Ny× ↑ I be a directed path written as a(t) = (n(t), u(t). Define
ai : ↑ I →↑Ny× ↑ [ti−1, ti], i = 1, . . . , m by ai(t) = (n(t), u(ti−1 + t(ti − ti−1)).
Then Gi ◦ ai are consecutive directed paths and F ′y ◦ a is the concatenation G1 ◦
a1 + G2 ◦ a2 + · · ·+ Gm ◦ am. Thus F ′y is a directed map.

It is proved in ([12], p. 67) that these neighborhoods Ny and the (directed)
maps F ′y verify F ′y | (Ny ∩ Ny′) × I = F ′y′ | (Ny ∩ Ny′) × I such that there is a
continuous map F ′ : |Y | × I −→ |X̃| such that F ′ | Ny × I = F ′y, and F ′ is a lift
of F such that F ′ ◦ ∂0 = f ′. Moreover, if a is a directed path in Y× ↑I, then this
can be written as a finite concatenation of directed paths in some ↑Ny× ↑I and
this implies that F ′ ◦ a is a finite concatenation of directed pats, hence is itself a
directed path in |X̃|. By this we have proved that p has the lower dHLP.

In the case F ◦ ∂1 = p ◦ f ′, one defines the collection of directed maps
{Gi}i=1,...,m starting from Gm : ↑Ny× ↑ [tm−1, tm] −→ X̃ and we proceed as in
the case α = 0.

The unique directed path lifting property followed by the fact that p : |X̃| −→
|X| is a covering projection. ¤

Theorem 6.5. Let p : E −→ B be a directed map with the underlying

map p : |E| −→ |B| a covering projection. Then the following conditions are

equivalent:

(i) p is a directed covering projection.

(ii) p is a directed fibration with unique directed path lifting.

(iii) A path in |E| is a directed path of E if and only if its projection is a directed

path of B.

Proof. (i) =⇒ (ii) is from Theorem 6.4.
(ii) =⇒ (iii). Let a′ : I −→ |E| be a path with p ◦ a′ =: a ∈ dB. By the

dHLP there exists a directed path ã ∈ dE with p ◦ ã = a and ã(0) = a′(0) (or
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with ã(1) = a′(1) ). Then the unique path lifting (for all paths) property implies
a′ = ã.

(iii) ⇐⇒ (i). Consider {U} a cover of |B| consisting of open sets evenly
covered by p. If Ũ is a connected component of p−1(U), it is sufficient to prove
that p/ ↑ Ũ : ↑ Ũ →↑U is a directed isomorphism. This means that (p/Ũ)−1 is
a d-map. But if a ∈ d ↑U , then a ∈ dB and this implies (p/Ũ)−1(a) ∈ dE and
since Im a ⊂ Ũ we conclude that a ∈ d ↑ Ũ . ¤

Corollary 6.6. If p : X̃ −→ X is a directed covering projection then the

lifting of an reversible directed path of X is an reversible directed path of X̃.

Example 6.7. Any isomorphism in the category dTop is a directed covering
projection.

Example 6.8. If X̃ is the product in dTop of a directed pace X with a discrete
space, then the product projection X̃ −→ X is a directed covering projection.

Example 6.9. The map exp : ↑ R −→↑ S1, defined by exp(t) = e2πit, is a
directed covering projection.

Example 6.10. For any positive integer n, the map p : ↑ S1 −→↑ S1, defined
by p(z) = zn, is a directed covering projection.

Example 6.11. The standard circle S1 is not a directed covering space of the
standard directed circle ↑S1, nor of the ordered circle ↑O1, since a directed map
S1 −→↑S1 or S1 −→↑O1 is necessarily constant.

Example 6.12. Neither of the directed spaces S1 and ↑S1 is a directed covering
space of the standard circle S1. (see also Example 6.16 below).

Example 6.13. The ordered circle ↑ O1 is not a directed covering space of
the standard directed circle ↑ S1 since it is known that a covering projection
p : S1 −→ S1 is of the form p(z) = zn, for a positive integer n,which is not a
directed map ↑O1 −→↑S1.

Example 6.14. Consider the standard n-sphere Sn, n > 1, d-isomorphic with
(↑ In)/(∂In), ([8], p. 286) and the corresponding directed projective space Pn,
obtained as a quotient of Sn by identifying the antipodal points. Then the quotient
map π : Sn −→ Pn is not a directed covering projection since the condition
(iii) from Theorem 6.5 is not satisfied. If a ∈ dSn then the antipodal path
(−a)(t) = −a(t) is not a directed path, while its projection π ◦ (−a) = π ◦ a is
directed.

But if we replace Sn by (S)∼, i.e. the join of Sn and (Sn)op ([8], p. 287),
then π becomes a directed covering projection.
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Example 6.15. If p : X̃ −→ X is a directed covering projection then R(p) =
p : X̃

op −→ Xop has the same property.

Example 6.16. If ↑X has the natural d-structure of all paths of X, then any
directed covering space of ↑X has the natural d-structure.

Example 6.17. If in Example 3.3,p : E −→ B is a directed covering projection,
then for any d-map f : B′→B the pullback projection p′ : E′−→B′, p′((b′, e))= b′,
is a directed covering projection (see [6], p. 113).

Particularly, if |B′| = |B| and f = idB , then p′ is a ’restriction’ of p.

Example 6.18. If ↑X is a d-space and p : X̃ −→ X is a covering projection,
then for X̃ there exists a unique d-structure ↑ X̃ such that p becomes a directed
covering projection p : ↑X̃ −→↑X. Define a ∈ d(↑X̃) if and only if p ◦ a ∈ d(↑X)
and it is immediate that this is a d-structure and we can apply Theorem 6.5.

For example, if we consider p : S1 −→↑O1, defined by p(z) = zn, n > 1, we
obtain a d-structure for S1 generalizing that of ↑O1. Thus, if we consider ↑O1 as
a subspace of ↑Rop×R then the 2-folding covering projection has the d-structure
that of directed subspace of (↑(−∞, 0]∪ ↑ [0,∞)op)× R.

The map exp : R −→↑O1 becomes a directed projection if we consider for R
the following d-structure: dR := ∪n∈Z(↑ [n, n + 1

2 ]∪ ↑ [n− 1
2 , n]op).

7. Some properties of directed covering spaces

In this section we present some results which are nontrivial generalizations
of the usual case.

First we generalize the situation from Example 6.14.

Theorem 7.1. Let G be a properly discontinuous group of d-isomorphisms

of a d-space Y . Then the projection of Y onto the directed orbit space Y /G is a

directed covering projection.

Proof. Let p : Y −→ Y /G be the orbit projection. From the quotient d-
structure ([8], p. 285) we have that p is a directed map. Then since G is properly
discontinuous, there is a cover {U} of |Y | with open sets U , such that if g, g′ ∈ G

and gU meets g′U , then g = g′. In [12](Theorem 7,Chapter 2, Section 6) it
is proved that p(U) is evenly covered by p, namely, p−1(p(U)) = ∪g∈GgU , and
p/gU : gU → p(U) is a homeomorphism. We can show that in fact this is even a
d-isomorphism p/gU : ↑gU →↑p(U), for the subspace d-structures. For this it is
necessary and sufficient to prove that in p(U) a path is directed if and only if it is



Directed fibrations and covering projections 355

a projection of a directed path in gU . Let a : I → gU be a path such that p ◦ a is
a directed path in ↑p(U). First if we have the simple situation p ◦ a = p ◦ a′, for
a directed path a′ of ↑U , then g ◦ a′ ∈ d(g ↑U) = d(↑gU) and p ◦ a = p ◦ (g ◦ a′),
which implies a = g ◦ a′. This shows that a ∈ d(↑gU). If p ◦ a = p ◦ a1 + p ◦ a2,
with a1, a2 ∈ d(↑ U), let g′ ∈ G be such that g′(a1(1)) = a2(0). Then we have
a2(0) ∈ U ∩ g′U which implies g′ = e, such that p ◦ a = p ◦ (a1 + a2), and by
the ’simple situation’ we have a = g ◦ (a1 + a2) ∈ d(↑ gU). The general case,
p ◦ a = p ◦ a1 + . . . . + p ◦ an, inductively implies that a1, . . . , an are consecutive
paths in d(↑ U) and then a = g ◦ (a1 + · · · + an) ∈ d(↑ U). This finishes the
proof. ¤

Remark 7.2. In Example 6.14, where G = Z2, the antipodal map −1 is not
a d-isomorphism for Sn but it is for (S)∼.

From Theorem 6.5, Theorem 5.1, Remark 5.2, we have the following result:

Theorem 7.3. For a directed covering projection, p : X̃ −→ X, the functor

↑Π1(p) : ↑Π1(X̃) −→↑Π1(X) (7.1)

is faithful and, for a point x̃ ∈ X̃, the monoid morphism

↑π1(p) : ↑π1(X̃, x̃) −→↑π1(X, p(x̃)) (7.2)

has trivial kernel.

Lemma 7.4. If p : X̃ −→ X is a directed covering projection then any lift

of a directed map f : Y −→ X with respect to the underlying map p : |X̃| −→ |X|
is a directed map.

Proof. Let f̃ : |Y | −→ |X̃| be a continuous map such that p ◦ f̃ = f . If
a ∈ dY , then p ◦ (f̃ ◦a) = f ◦ a ∈ dX. By Theorem 6.5 it follows that f̃ ◦ a ∈ dX̃,
which proves that f̃ is a directed map. ¤

Proposition 7.5 (see [12], p. 79). Let a commutative triangle in the category

dTop be given.

X̃1

f //

p1

ÂÂ@
@@

@@
@@

X̃2

p2
ÄÄ~~

~~
~~

~

X

with |X̃1|, |X̃2| connected spaces, |X| a locally path-connected space, and p1, p1

directed covering projections. Then f is a directed covering projection.
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Corollary 7.6. Two directed covering projections pi : X̃i −→ X, i = 1, 2,

are equivalent if and only if the underlying maps pi : X̃i −→ X, i = 1, 2, are

equivalent covering projections.

Corollary 7.7. A directed covering projection is a universal directed cover-

ing projection if and only if its underlying map is a universal covering projection.

Corollary 7.8. For a directed covering projection the group of directed

covering transformations is isomorphic to the group of covering transformations

of the underlying covering projection.

Theorem 7.9. A directed covering projection exhibits its base as a directed

quotient space of its directed covering space.

Proof. Let p : X̃ −→ X be a directed fibration. On the directed space X̃

consider the equivalence relation x̃1 ∼ x̃2 ⇔ p(x̃1) = p(x̃2), and let p̃ : X̃/∼ −→ X

be the induced map, p̃([x̃]) = p(x̃), for [x̃] ∈ X̃/∼. Then the underlying map of p̃

is a homeomorphism (cf. [12], p. 63). Therefore it is sufficient to verify that via
this map the two structures coincide.

Consider a directed path of the directed quotient X̃/∼. This is of the form
$ := π ◦ ω̃1 + · · · + π ◦ ω̃n, for π : X̃ → X̃/∼, the quotient projection and
ω̃1, . . . , ω̃n directed paths of X̃ (see [8], p. 285). Since p̃ ◦ π = p, we deduce
p̃ ◦ $ = p̃ ◦ π ◦ ω̃1 + · · · + p̃ ◦ π ◦ ω̃n = p ◦ ω̃1 + · · · + p ◦ ω̃n and because p is a
d-map, we conclude that p̃ ◦$ ∈ dX.

Conversely, suppose that θ is a path of |X̃|/∼ such that p ◦ θ is a directed
path of X. Consider a point x̃0 ∈ π−1(θ(0)). Then, since p is a directed covering
projection, there exists a directed path ω̃ ∈ dX̃ such that p ∈ ω̃ = p̃ ◦ θ (and
ω̃(0) = x̃0 ). It follows that p̃ ◦π ◦ ω̃ = p̃ ◦ θ, and since p̃ is a homeomorphism, we
obtain ϑ = π ∈ ω̃ ∈ dX̃/∼. ¤

Definition 7.10. We will say that a directed covering projection p : X̃ −→ X

is directed regular if, given any directed loop ω in X, either every lifting of ω is
closed or none is closed.

Formally following the proof of Theorem 11 from [12], p. 74, we can state:

Theorem 7.11. A directed covering projection p : X̃ −→ X is directed

regular if and only if p∗1(↑π1(X̃, x̃0) = p∗1(↑π1(X̃, x̃1) whenever p(x̃0) = p(x̃1).

Theorem 7.12. A directed covering spaces of a directed topological group is

a directed topological group with the corresponding covering projection a directed

homomorphism.
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Proof. Let G be a directed topological group and p : X̃ −→ G a directed
covering projection. Then |X̃| is a topological group and p is a homomorphism
(see [6], p. 155). It is sufficient to verify that the group operations are directed
maps: µ : X̃ × X̃ → X̃, ι : X̃ −→ X̃. But this is implied by Lemma 7.4 applied
for the following commutative diagrams:

X̃ × X̃

µ

²²

p×p // G×G

µ

²²
X̃ p

// G

X̃

ι

²²

p // G

ι

²²
X̃ p

// G

(7.3)

¤

Now we want to give a result on directed covering spaces of cellular complexes.
It is known that any covering space of a cellular complex has a cellular structure
such that the covering projection becomes a cellular map (see for example [6],
p. 153). Here we consider the definition of cellular complexes and the correlated
notations from [6], Chapter III.

Denote by ↑ Sm the directed n-dimensional sphere (↑ Sm = (↑ Im)/(∂ ↑ Im)
(m > 0), ↑ S0 = {−1, 1}), and ↑ Bm denotes one of the directed spaces ↑ C+

(↑Sm−1) or ↑C+(↑Sm−1), if m > 0, and B0 is a single point.

Definition 7.13. We will say that a directed space ↑K is a directed cellular
complex if K is a cellular complex for which the following conditions are satisfied:

(i) Any skeleton Km of K is endowed with the directed subspace structure and
will be denoted by ↑Km.

(ii) Any m-cell em of K is endowed with the directed subspace structure and will
be denoted by ↑em.

(iii) Any attaching map of a m-cell em is a directed map fm : ↑Bm →↑Km and
the restriction fm/Bm − Sm−1 is a directed isomorphism fm/Bm − Sm−1 :
↑(Bm − Sm−1) →↑em.

Example 7.14. 1. ↑ Sn is a directed cellular complex with one 0-cell and
one directed n-cell.

2. The ordered circle ↑O1 is a directed cellular complex with two 0-cells and
two directed 1-cells.

3. ↑ C+(↑ Sn) and ↑ C−(↑ Sn) are directed cellular complexes each with one
0-cell, one directed (n− 1)-cell and one directed n-cell.

4. ↑C+(↑O1) and ↑C−(↑O1) are not directed cellular complexes with respect
to the usual cellular structure of B2. But we can obtain a new directed space
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with the same boundary if we consider a directed cellular complex with two
0-cells, two 1-cells and two 2-cells.

Remark 7.15. Our definition for directed cellular complex differs from the
notion of “globular CW-complex” introduced in [5] to be used in the study of
higher dimensional automata.

Theorem 7.16. A directed covering space of a directed cellular complex is

a directed cellular complex such that the corresponding covering projection is a

directed cellular map.

Proof. Let p : ↑ K̃ →↑ K be a directed covering projection with ↑ K a
directed cellular complex. Then since the underlying map p : K̃ → K is a
covering projection, by [6], p. 153, K̃ has a cellular decomposition with respect to
which p is a cellular map. Since the covering projection p is trivial above any cell
of K the connected components of the inverse image by p of cells of K determine
a cellular partition of K̃ for which K̃m = p−1(Km). If em is a directed m-cell of
↑K, fm : ↑Bm →↑Km, and εm is a m-cell of p−1(em) then there exists a directed
lift g : ↑Bm →↑Lm with the following properties:

(a) g(↑(Sm−1) ⊂↑K̃m−1;

(b) g/ ↑(Bm−Sm−1) is a directed isomorphism of ↑(Bm−Sm−1) on ↑εm (see [6],
p. 153, Theorem 6.5 and Lemma 7.4).

These conditions ensure Definition 7.13 for ↑K̃ and this ends the proof. ¤

8. On the dicovering spaces of L. Fajstrup [2], [3]

The first notion of covering space in connection with d-spaces was considered
by Lisbeth Fajstrup in [2] and [3]. This author does not start from a definition
based on (directed) evenly covered subsets as in the usual case (see for example
[12], Chapter 2, Section 5) and the way we approached the present paper. But in
order to define a universal covering space she takes as model the construction of
covering spaces of connected locally path-connected spaces (see [12], Chapter 2,
Section 5, Theorem 13), and then for defining arbitrary covering spaces only the
unique lifting properties for dipaths and dihomotopies are used. Among the two
quoted papers, [3] refers to d-spaces in the sense which is used in this paper.
In this section we briefly present this paper with a view to compare the two
approaches.

If X is a d-space, for subsets W,U ⊂ |X|, −→P (X, W,U) denotes the set of
d-paths of dX with initial point in W and final point in U .
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Definition 8.1 ([3], Definition 2. 2). Let X be a d-space. On a subset V ⊂ |X|
a relation x ≤V y if

−→
P (V, x, y) 6= ∅ is defined.

The future of x in V is ↑V x := {y ∈ V | x ≤V y}.
The d-space X is locally ordered if there is a cover U of X, which is a basis

for the topology and if on each U ∈ U the relation ’≤U ’ is a partial order.

Definition 8.2 ([3], Definition 2.5). Let us consider for a d-space X a point
x ∈ X, a subset U ⊂ X and let γ1, γ2 ∈ −→P (X,x, U). Then γ1 ∼U γ2 if there is a
d-map (dihomotopy), H : I× ↑ I → X such that H(0, t) = γ1(t), H(1, t) = γ2(t),
H(s, 0) = x, H(s, 1) ∈ U . If U = {y}, a single point, one defines −→π 1(X,x, y) =−→
P (X,x, y)/ ∼, and [γ] denotes the equivalence class of a d-path γ.

Remark 8.3. This relation ’∼’ is different from the relation ’'2’ used by us
in section 5 (see [11], Remark 1.2, p. 260).

Definition 8.4 ([3], Definition 2.5). A locally ordered d-space (X,U) is locally
relatively diconnected with respect to x0 ∈ X if
• For all U ∈ U and all x, y ∈ U, |−→π 1(U, x, y)| ≤ 1.

• For all x ∈ X, there is a U ∈ U such that for γi ∈ −→
P (X,x0, y), i = 1, 2,

γ1 ∼U γ2 if and only if [γ1] = [γ2].

Definition 8.5 ([3], Definition 2.6). For a locally ordered d-space (X,U),
locally relatively connected with respect to x0 ∈ X, the universal dicovering with
respect to x0 is

X̃x0 := {[γ] ∈ −→π 1(X, x0,−)} (8.1)

with topology U[γ] generated by the sets

U[γ] := {[µ] | µ ∈ −→P (X,x0, U), µ ∼U γ}, (8.2)

for U ∈ U and γ ∈ −→P (X, x0, U).
The d-structure is

−→
P (X̃x0 , [γ],−) := {η : I → X̃x0 | η(t) =: [γ ∗ µt] | µ ∈ −→P (X̃γ(1),−),

µt(t′) = µ(tt′)} (8.3)

The projection
Π : X̃x0

−→ X (8.4)

is defined by
Π([γ]) := γ(1) (8.5)

Remark 8.6. If in the usual case of the undirected topological spaces, the two
well known approaches on the covering spaces, either by definition using neigh-
borhoods evenly covered ([12], Chapter 2, Section 1) or by a construction of them
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starting from a path space P (X,x0) ([12], Chapter 2, Section 5), coincide (under
some natural conditions), in the case of the directed spaces these approaches are
different, as we emphasize in some examples and comments.

Example 8.7. For X = ↑S1, the standard directed circle, and the point x0=1,
the universal dicovering X̃x0

can be identified with ↑ [0,∞) and then the projec-
tion Π is exp /[0,∞) : ↑ [0,∞) →↑S1.

Example 8.8. For X =↑ O1, the ordered circle, as a directed subspace of
↑Rop × R and x0 = −1, the universal dicovering X̃x0

is a singleton.
If x0 = 1, then X̃x0

can be identified with the directed space ↑ [ − 1
2 , 0

]op∪
↑[0, 1

2

]
, and then the projection Π becomes the restriction of the exponential map.

The above examples obviously show that the universal dicoverings are not
directed covering spaces.

However we can emphasize some common elements. At first it is proved
in [3](Proposition 2.8) that dipaths and dihomotopies initiating in y ∈↑ x0 lift
uniquely given an initial point in Π−1(y). Then it is proved (see the proof of
Proposition 3.9 in [2]) that Π−1(U) = ∪{γmidγ(1)∈U}U[γ] and [γ1] 6= [γ2] implies
U[γ1] ∩U[γ2] = ∅ (Proposition 3.8 in [2]). There also exist other similarities which
we mention below.

We begin with the following proposition which shows that the d-structure of
a directed covering space is obtained by using dihomotopies, similar with the case
of universal dicoverings.

Proposition 8.9. Let p : ↑ X̃ →↑ X be a directed covering projection.

Suppose that X̃ is a quotient space P (X, x0)/ ∼= {〈ω〉 | ω(0) = x0} ([12],
Theorem 13, p. 82) and p(〈ω〉) = ω(1). Then a directed path of ↑ X̃ can be

identified with a dihomotopy in ↑X initiating in x0.

Proof. Let α̃ : ↑I →↑X̃ be a directed path with α̃(0) = 〈ω〉. If we write

α̃(t) = 〈ωt〉 (8.6)

then ωt(0) = x0, ω0 = ω. Moreover since α̃ is a directed path if and only if
p ◦ α̃ ∈ d(↑X), we have that the map

α(t) := ωt(1) (8.7)

is a directed path α : ↑I →↑X.
Now we can define

H : I× ↑I →↑X. (8.8)

H(t′, t) = ωt(t′). (8.9)
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This is a dimap satisfying the conditions H(0, t) = x0, H(t′, 0) = ω(t′), and
H(1, t) = α(t) is a directed path of ↑ X. Therefore it is a dihomotopy in ↑ X

initiating in x0.
Conversely it is obvious that such a dihomotopy defines a directed path

of ↑X̃. ¤

Moreover we can see now that the d-structure of ↑ X̃ in Proposition 8.9 is
itself analogous with that of the universal dicovering (see 8.3).

Proposition 8.10. Let α be a directed path of ↑X, 〈ω〉 ∈ p−1(α(i)), i ∈ 0, 1,

and α̃ the directed lift of α with α̃(i) = 〈ω〉.
Then α̃ is defined by one of the following formulas:

α̃(t) = 〈ω ∗ αt〉, αt(t′) = α(tt′), if i = 0 (8.10)

α̃(t) = 〈ω ∗ α̂1−t〉, α̂1−t(t′) = α(1− t′ + tt′), if i = 1 (8.11)

Particularly, if α̃ is a directed loop in ↑X̃, with base point 〈ω〉, then α is a directed

loop in ↑X, with base point ω(1), and satisfying 〈ω〉 = 〈ω ∗ α〉.

Proof. If we write α̃(t) = 〈α̃t〉, using the existence and the uniqueness of α̃

we can search for it by requiring the following conditions: α̃0 = ω, α̃t(0) = x0

and α̃t(1) = α(t). These conditions are satisfied if we define α̃ by 8.10 or 8.11.
These formulas can be written since the condition 〈ω〉 ∈ p−1(α(i)), i ∈ 0, 1, i.e.
p(〈ω〉) = α(i) implies ω(1) = α(i). Continuity can be proved by analogy with [12]
(p. 83), where the case i = 0 and ω only the constant path in x0 is considered.
But the differences are unessential.

In the case i = 0, α̃ is a path beginning at 〈ω〉 and ending at 〈ω ∗ α〉 and in
the case i = 1, α̃ begins at 〈ω ∗ α−1〉 and ends at 〈ω〉. ¤

Remark 8.11. If we consider directed paths for X̃ only given by the formulas
8.10 and 8.11, with α a directed path of ↑X, then the projection p : ↑X̃ −→↑X,
p(〈ω〉) = ω(1), is a directed covering projections.

Proposition 8.12. Let p : X̃ −→ X be a directed covering projection and

U = {U} a cover of X by open subsets directed evenly covered by p.

Suppose that the pair (X,U) is a locally ordered d-space, locally relatively

connected with respect to a point x0 ∈ X.

Then there exists a directed map φ : X̃x0
−→ X̃ satisfying the following
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commutative diagram.

X̃x0

φ //

Π

ÃÃA
AA

AA
AA

A
X̃

p
¡¡¡¡

¡¡
¡¡

¡¡

X

Proof. As above we consider the space X̃ constructed as in [12] (Theo-
rem 13, p. 82), corresponding to the cover U and a subgroup H of π1(X, x0) .
The elements of X̃ are denoted by 〈ω〉 and those of X̃x0

by [γ]. We define φ define
by φ([γ]) = 〈γ〉, since if [γ] = [γ′] then γ ∼ γ′ rel ∂I, such that [γ ∗ γ′−1] = 0 ∈ H

and therefore 〈γ〉 = 〈γ′〉.
The commutativity of the diagram is obvious since Π([γ]) = γ(1) and p(〈ω〉) =

ω(1).
Now we verify continuity at a point [γ] ∈ X̃x0

. At first we observe that if
〈ω, U〉 is an element of the base of the used topology of X̃ which contains 〈γ〉 then
〈ω, U〉 = 〈γ, U〉. Thus, it is sufficient to prove that φ−1(〈γ〉, U) is a neighborhood
of 〈γ〉. This will result if we verify that φ(U[γ]) ⊆ 〈γ, U〉. Let [µ] be an arbitrary
element of U[γ]. We need to prove that 〈µ〉 is an element of 〈γ, U〉. We have
µ ∈ −→

P (X,x0, U) and µ ∼U γ, i.e. there exists a dihomotopy H : I× ↑ I → X

such that H(0, t) = γ(t),H(1, t) = µ(t),H(s, 0) = x0 and H(s, 1) ∈ U . Then
we consider the path ω′ : I → U given by ω′(s) = H(s, 1). For this we have
ω′(0) = γ(1) and ω′(1) = µ(1). Moreover, gluing the maps H and ω′ we obtain a
homotopy H ′ : I× I → U given by

H ′(s, t) =





H

(
s,

2t

1 + s

)
, if 0 ≤ t ≤ s + 1

2
,

ω′
(

2t− s− 1
1− s

)
, if

s + 1
2

≤ t ≤ 1.

For this we have: H ′(0, t) = (γ ∗ ω′)(t), H ′(1, t) = µ(t), H ′(s, 0) = x0, H ′(s, 1) =
(γ ∗ ω′)(1) = µ(1). Thus we have µ ∈ 〈γ, U〉 and this proves the continuity of φ.

Finally the property of directed map of φ results from Definition 8.5 and
Proposition 8.10 since the directed paths of both directed spaces X̃x0

and X̃ are
the lifts of the directed paths of X. This finishes the proof. ¤

Remark 8.13. An essential part of the proof of Proposition 8.12, that con-
cerning the continuity of the map φ, can be recovered using Remark 3.4 from [2].

Remark 8.14. Under the conditions of Proposition 8.12 if we suppose the
future of x0 is X then Π/U[γ] : U[γ] → U is a directed bijection (but not a
directed isomorphism).
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Example 8.15 (L. Fajstrup). This example (called “The box with a lid but no
bottom”) was communicated to the author by Professor Lisbeth Fajstrup (see
also [2], p. 12). It is destined to show that the directed map φ in Proposition 8.12
is not generally injective, as the Examples 8.7 and 8.8 may suggest.

Let X =↑ (∂I3\(0, 1) × (0, 1) × {0}), as a directed subspace of ↑ R3, and
let x0 = (0, 0, 0). Consider the universal dicovering projection Π : X̃x0

→ X,
Π([γ]) = γ(1). Let us consider the points B(1, 1, 0) and B′(1, 1, 1). Then the
fibre of Π over a point M(1, 1, z), with 0 ≤ z < 1, of the segment [AB), contains
two points corresponding to the distinct elements of −→π 1(X,x0, M) represented by
dipaths of X from x0 to M placed in the semi-spaces x ≥ y and x ≤ y respectively.
For all other points of X the fibres contain only one point. Thus we deduce that
the universal dicovering X̃x0

is the directed subspace of ↑R3 obtained from X by
splitting it along the semi-open edge [AB).

Now since for a covering projection of a path connected space any two fibers
are homeomorphic, by the commutativity of the diagram from Proposition 8.12,
we can conclude that this X̃x0

cannot be a directed subspace of a directed covering
space of X. In fact the underlying space of a connected directed covering space
is X and, obviously, |X̃x0

| * X.

Regarding arbitrary dicoverings, the following definition is given in [3].

Definition 8.16 ([3], Definition 2.9). A dimap p : Y → X is a dicovering with
respect to x0 ∈ X if ↑X x0 = X, ↑ p−1(x0) = Y , p is surjective and dipaths and
dihomotopies initiating in x0 lift uniquely, given an initial point in p−1(x0).

If we take into account Definition 2.2, Definition 2.4, Corollary 2.6 and The-
orem 4.8, we can state the following corollary.

Corollary 8.17. A directed fibration with unique path lifting p : Y → X

which is surjective and for a point x0 ∈ X satisfies ↑X x0 = X, ↑p−1(x0) = Y is a

dicovering with respect to x0.
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