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Some characterizations of L9(2) related to its prime graph

By BEHROOZ KHOSRAVI (Tehran)

Abstract. Let G be a finite group. The prime graph of G is denoted by Γ(G). In

this paper as the main result we determine finite groups G such that Γ(G) = Γ(L9(2)).

Let πe(G) be the set of element orders of G, which is called the spectrum of G. Denote by

h(G) the number of isomorphism classes of finite groups H satisfying πe(H) = πe(G).

It is proved that some finite groups are uniquely determined by their spectrum, i.e.

h(G) = 1. As a consequence of our result we prove that the simple group L9(2) is

uniquely determined by its spectrum.

The degree pattern of a finite group is denoted by D(G). At last we prove that

if G is a finite group such that |G| = |L9(2)| and D(G) = D(L9(2)), then G ∼= L9(2).

1. Introduction

We denote by π(n) the set of all prime divisors of the integer n. Let G be
a finite group. The set π(|G|) is denoted by π(G). Also the set of orders of the
elements of G is denoted by πe(G) and is called the spectrum of G. It is clear that
the set πe(G) is closed and partially ordered by divisibility, hence it is uniquely
determined by µ(G), the subset of its maximal elements. The prime graph of G

is a graph whose vertex set is π(G) and two distinct primes p and q are joined
by an edge (we write p ∼ q) if and only if G contains an element of order pq.
The prime graph of G is denoted by Γ(G) and sometimes called Kegel–Gruenberg
graph. We denote by t(Γ(G)), the number of connected components of Γ(G).
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Hagie in [4] determined finite groups G satisfying Γ(G) = Γ(S), where S is
a sporadic simple group. In [6] finite groups with the same prime graph as a CIT

simple group are determined. It is proved that if q = 32n+1 (n > 0), then the
simple group 2G2(q) is uniquely determined by its prime graph [5], [16]. Also the
authors in [7] proved that if p > 11 is a prime number and p 6≡ 1 (mod 12), then
PSL(2, p) is uniquely determined by its prime graph. We note that the prime
graph of the previous groups are disconnected. In this paper we consider a group
with connected prime graph and we prove that

Theorem 1.1. If G is a finite group and Γ(G) = Γ(L9(2)), then G/Oπ(G) ∼=
L9(2), where π ⊆ {2, 3, 5}.

In [9] it is proved that Ln(2), where n ≥ 3 is recognizable by spectrum. As
a consequence of Theorem 1.1, we can give a new proof for this theorem when
n = 9.

Theorem 1.2. The simple group L9(2) is uniquely determined by its spec-

trum. In other words, if G is a finite group, then G ∼= L9(2) if and only if

πe(G) = πe(L9(2)).

Let π(G) = {p1, p2, . . . , pm} and p1 < p2 < · · · < pm. The degree pattern
of G is denoted by D(G) and defined as follows:

D(G) = (deg(p1), deg(p2), . . . , deg(pm)),

where deg(pi) is the degree of vertex pi in the prime graph of G. A group G

is called OD-characterizable if G is uniquely determined by |G| and D(G). It
is proved that some finite groups are OD-characterizable, for example sporadic
simple groups, PSL(2, q), PSL(3, q), PSU(3, q) [11], [12], [17].

Theorem 1.3. The simple group L9(2) is OD-characterizable, in other

words if G is a finite group, then G ∼= L9(2) if and only if |G| = |L9(2)| and

D(G) = D(L9(2)).

In this paper, all groups are finite and by simple groups we mean non-abelian
simple groups. All further unexplained notations are standard and refer to [2],
for example.

2. Preliminary results

Denote by t(G) the maximal number of primes in π(G) pairwise nonadja-
cent in Γ(G). Also we denote by t(2, G) the maximal number of vertices in the
independent sets of Γ(G) containing 2.
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Lemma 2.1 (see [13]). Let G be a finite group satisfying the two conditions:

(a) there exists three primes in π(G) pairwise nonadjacent in Γ(G); i.e. t(G) ≥ 3;

(b) there exists an odd prime in π(G) nonadjacent in Γ(G) to the prime 2; i.e.

t(2, G) ≥ 2.

Then there is a finite nonabelian simple group S such that S ≤ G = G/K ≤
Aut(S) for the maximal normal soluble subgroup K of G. Furthermore t(S) ≥
t(G)− 1, and one of the following statements holds:

(1) S ∼= A7 or L2(q) for some odd q, and t(S) = t(2, S) = 3.

(2) For every prime p ∈ π(G) nonadjacent to 2 in Γ(G) a Sylow p-subgroup of

G is isomorphic to a Sylow p-subgroup of S. In particular, t(2, S) ≥ t(2, G).

By using [10, Table 2], we have the following result.

Lemma 2.2. µ(L9(2)) = {16, 56, 120, 124, 186, 210, 217, 252, 254, 255, 381,

465, 511}.
Therefore the prime graph of G is as follows:
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Lemma 2.3 (see [15]). The group Ln+1(q), n ≥ 4, contains a Frobenius

subgroup with kernel of order qn and cyclic complement of order (qn− 1)/(n + 1,

q − 1).

Lemma 2.4 (see [8]). Let G be a group, N a normal subgroup of G, and

G/N a Frobenius group with Frobenius kernel K and cyclic complement C. If

(|K|, |N |) = 1 and K is not contained in NCG(N)/N , then p|C| ∈ πe(G) for some

prime divisor p of |N |.
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Lemma 2.5 ([14, Corollary]). If G is a solvable group with at least two

prime graph components, then G is either Frobenius group or 2-Frobenius group

and G has exactly two prime graph components one of which consists of the

primes dividing the lower Frobenius complement.

As a corollary of Lemma 2.5, it follows that if G is a solvable finite group,
then t(Γ(G)) ≤ 2.

Lemma 2.6 (Zsigmondy Theorem, (see [18])). Let p be a prime and n be a

positive integer. Then one of the following holds:

(i) there is a primitive prime p′ for pn− 1, that is, p′ | (pn− 1) but p′ - (pm− 1),
for every 1 ≤ m < n,

(ii) p = 2, n = 1 or 6,

(iii) p is a Mersenne prime and n = 2.

Remark 1. Let p be a prime number and (a, p) = 1. Let k ≥ 1 be the smallest
positive integer such that ak ≡ 1 (mod p). Then k is called the order of a with
respect to p and we denote it by ordp(a). Obviously by the Fermat’s little theorem
it follows that ordp(a) | (p− 1). Also if an ≡ 1 (mod p), then ordp(a) | n.

3. Groups with the same prime graph as L9(2)

In this section we prove Theorem 1.1 through the following lemmas. So in
this section let G be a finite group such that Γ(G) = Γ(L9(2)).

Lemma 3.1. Let G be a finite group and Γ(G) = Γ(L9(2)). Then G is not

a solvable group.

Proof. Let G be a solvable group. We know that {17, 31, 73, 127} ⊆ π(G).
Therefore G has a Hall {17, 31, 73, 127}-subgroup. If H is a Hall {17, 31, 73, 127}-
subgroup of G, then t(Γ(H)) = 4, since Γ(H) is a subgraph of Γ(G) and {17, 31, 73,
127} are pairwise nonadjacent in Γ(G). Hence G is not a solvable group by
Lemma 2.5. ¤

Lemma 3.2. Let N be the maximal normal solvable subgroup of G. If

A = π(N) ∩ {17, 31, 73, 127}, then |A| ≤ 1.

Proof. By using Lemma 3.1, it follows that N 6= G. If A 6= ∅, then let H

be a Hall A-subgroup of N . If |A| ≥ 3, then similar to the proof of Lemma 3.1,
it follows that t(Γ(H)) ≥ 3, which is a contradiction, by Lemma 2.5.
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If |A| = 2, then A = {p1, p2}. Now N is a normal subgroup of G and H is a
Hall subgroup of N . Hence by the Frattini argument it follows that G = NNG(H).
Let p3 ∈ {17, 31, 73, 127}\A. Obviously p3 6∈ π(N) and so NG(H) has an element
of order p3, say x. Then x is an element of order p3 which acts fixed point freely
on H. Now by using Thompson’s Theorem [3, Theorem 10.2.1], it follows that
H is nilpotent and so p1 ∼ p2 in Γ(H), which is a contradiction. Therefore
|A| ≤ 1. ¤

Lemma 3.3. If N is the maximal normal subgroup of G, then L9(2) ≤
G/N ≤ Aut(L9(2)).

Proof. Easily we can see that t(G) = 4 and t(2, G) = 3. Therefore by
using Lemma 2.1, there exists a nonabelian simple group P such that P ≤
G/N ≤ Aut(P ). We note that it is proved that P ∼= Socle(G/N). Now we
use the classification theorem of finite simple groups. Obviously π(P ) ⊆ π(G)
and π(G/N) ⊆ π(Aut(P )). Also we know that {17, 31, 73, 127} ∩ π(Aut(P ))
has at least three elements. If P is a sporadic simple group, then {73, 127} ∩
π(Aut(P )) = ∅, which is a contradiction. Also easily we can see that P is
not isomorphic to an alternating group. So P is a simple group of Lie type.
Now we prove that π(Aut(P )) ∩ {17, 31, 73, 127} ⊆ π(P ). In fact we prove that
{17, 31, 73, 127}∩π(Out(P )) = ∅ and so {17, 31, 73, 127}∩π(P ) has at least three
elements. Let p ∈ {17, 31, 73, 127} ∩ π(Out(P )). By using the notations of [2,
Page XVI] we know that |Out(P )| = gdf . By using the tables of [2, PageXVI],
we see that for every finite simple group P we have g | 3!. Also if P 6= An(q) and
P 6= 2An(q), then d | 12. If P = An(q) and p | d, then p | (n + 1) and hence
n ≥ 16. Now (qt − 1) | |P |, for every 2 ≤ t ≤ n + 1 and hence |π(P )| ≥ 10,
by Zsigmondy Theorem, which is a contradiction. Similarly it follows that P =
2An(q) and p | d is impossible. Therefore p | f where q = pf

0 and p0 is a
prime number. We know that for finite simple groups in [2, page XVI], always
(q − 1) is a divisor of |P |. Also (pp

0 − 1) | (q − 1) and p ∈ {17, 31, 73, 127}.
Easily we can see that if p0 ∈ {2, 3, 5, 7, 17, 31, 73, 127}, then pp

0 − 1 has a prim-
itive prime which is not a divisor of |G|, and this is a contradiction. Therefore
π(Aut(P )) ∩ {17, 31, 73, 127} ⊆ π(P ) and so {17, 31, 73, 127} ∩ π(P ) has at least
three elements. Now we must consider each possibility separately. For conve-
nience we omit the details of the proof and only state a few of them.

Step 1. Let P ∼= An(q), where q = pα
0 . Obviously p0 ∈ π(G) and we know

that {17, 31, 73, 127}∩π(P ) has at least three elements. If p0 =2, then q =2α.
We know that ord2 17 = 8, ord2 31 = 5, ord2 73 = 9 and ord2 127 = 7. Also
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π(
∏9

i=2(2
i − 1)) = {3, 5, 7, 17, 31, 73, 127}. Therefore by using Zsigmondy Theo-

rem it follows that (2m − 1) - |P |, for m ≥ 10. Also

n+1∏

i=2

(qi − 1)
∣∣

9∏

i=2

(2i − 1),

and at least three items of 25− 1, 27− 1, 28− 1 and 29− 1 divide
∏n+1

i=2 (2iα− 1).
Therefore α = 1 and q = 2, which implies that n ≥ 7. Then P ∼= L8(2) or
P ∼= L9(2).

If P ∼= L8(2), then 73 ∈ π(N), since 73 does not divide |Aut(P )|. Now by
using Lemma 2.3, P ∼= L8(2) contains a Frobenius subgroup KC whose kernel K

is an elementary abelian 2-group of order 27 and whose complement C is cyclic
of order 27 − 1. Therefore G/N contains a Frobenius subgroup T/N which is
isomorphic to KC. Now let Ĝ = G/O73′(N). It is obvious that O73(Ĝ) 6= 1.
Hence T/N acts on O73(Ĝ) faithfully and its kernel of order 27 acts fixed point
freely on O73(Ĝ). Now by using Lemma 2.4, we conclude that G has an element
of order 73(27 − 1), which is a contradiction.

Also 13 divides (33 − 1) and (54 − 1). Similarly 19 | (73 − 1), 307 | (173 − 1),
331 | (313 − 1), 37 | (732 − 1) and 5419 | (1273 − 1), which implies that p0 6∈
π(G) \ {2}.
Step 2. Let P ∼= 2An(q), where q = pα

0 and n ≥ 2. It is obvious that every
primitive prime of x2n − 1 divides xn + 1. If p0 = 2, then for k ≥ 10, 2k − 1 does
not divide |P |. Therefore (2t +1) - |P |, for t ≥ 5. Therefore {31, 73, 127} ⊆ π(N),
which is a contradiction. If p0 = 3, then ord17 3 = 16 and easily we get a
contradiction. Similar arguments show that other cases are impossible.

Step 3. Let P ∼= Bn(q) or Cn(q), where q = pα
0 and n ≥ 2. Similar to the last

steps we conclude that q 6= 2 is impossible. If q = 2α, then

n∏

i=1

(q2i − 1)
∣∣

9∏

i=1

(2i − 1),

since (210 − 1) - |P |. Therefore 25 − 1, 27 − 1 and 29 − 1 do not divide the order
of P , which is a contradiction.

Other steps are similar and we omit the details of the proof, for convenience.
¤

Lemma 3.4. N is a {2, 3, 5}-subgroup of G.

Proof. Let N 6= 1. So there exists a prime p such that Op(N) 6= N ,
since N is solvable. Then N/Op(N) is a nontrivial p-group. Let N̂ = N/Op(N)
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and Ĝ = G/Op(N), since Op(N) is a characteristic subgroup of N and N C G. If
the Frattini subgroup of N̂ is denoted by Φ(N̂), then N̂/Φ(N̂) is an elementary
abelian p-group and we have

G

N
∼= Ĝ

N̂
∼= Ĝ/Φ(N̂)

N̂/Φ(N̂)
.

Therefore without loss of generality we can assume that N is an elementary
abelian p-group. Let C = CG(N) and note that C is a normal subgroup of G.
Therefore CN is a normal subgroup of G. If C � N , then CN/N contains a
subgroup which is isomorphic to L9(2), since Socle(G/N) ∼= L9(2). Then 73
divides |L9(2)| and hence 73 is a divisor of |CN/N | = |C/(C ∩N)| and so CG(N)
contains an element of order 73. By assumption p divides |N | and hence G

contains an element of order 73p. Now the prime graph of G shows that p = 7.
Similar argument shows that G contains an element of order 127× 7, which is a
contradiction. Therefore we may assume that C ≤ N and L9(2) acts faithfully
on N .

By assumption, L9(2) ≤ G/N and L9(2) contains a Frobenius subgroup
KF whose kernel K is an elementary abelian 2-group of order 28 and whose
complement F is cyclic of order 28−1. Hence G/N contains a Frobenius subgroup
T/N of the form 28 : 28 − 1. Now by using Lemma 2.4, we conclude that 3 ×
5 × 17 × p = (28 − 1)p ∈ πe(G). Therefore p ∈ {2, 3, 5, 17}. Now we prove that
p = 17 is impossible. If {2, 17} ⊆ π(N), then let H be a Hall {2, 17}-subgroup
of N . Then by Frattini argument it follows that G = NNG(H). Therefore 73
divides |NG(H)|, and so an element of order 73, say x acts fixed point freely on H.
Hence H is nilpotent by Thompson’s Theorem [3, Theorem 10.2.1] and G has an
element of order 34, which is not the case. If 17 but not 2, divides the order of N

then, since L2(9) contains a non-cyclic abelian 2-subgroup, G again contains an
element of order 34, which is a contradiction. Hence N is a {2, 3, 5}-subgroup
of G. ¤

Lemma 3.5. The finite group G/N is isomorphic to L9(2).

Proof. Up to now it follows that L9(2) ≤ G/N ≤ Aut(L9(2)). Also
|Out(L9(2))| = 2, which implies that G/N ∼= L9(2) or G/N ∼= Aut(L9(2)).

Let G/N ∼= Aut(L9(2)). If σ is a graph automorphism of order 2 of L9(2),
then by using Theorem 19.9 in [1] we have

CL9(2)(σ) ∼= PSO+(9, 2),

and so |CL9(2)(σ)| = 216(28−1)(26−1)(24−1)(22−1). Therefore 2 ∼ 17 in Γ(G),
which is a contradiction. Hence G/N ∼= L9(2). ¤
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Now the proof of Theorem 1.1 is completed. As a consequence of this result
we can prove that L9(2) is recognizable by its order elements.

Proof of Theorem 1.2. If πe(G) = πe(L9(2)), then obviously Γ(G) =
Γ(L9(2)) and so by using Theorem 1.1 it follows that G/N ∼= L9(2). We note
that in the proof of Lemma 3.4, we prove that if p | |N |, then 3 × 5 × 17 × p =
(28 − 1)p ∈ πe(G). Now by using Lemma 2.2, we get a contradiction, if |N | is
not a 2-group. If N is a 2-group, then by using [9] we get a contradiction. Hence
N = 1 and so G ∼= L9(2). Therefore L9(2) is characterizable by its spectrum. ¤

4. OD-characterization of L9(2)

In this section we prove Theorem 1.3 and it follows that the simple group
L9(2) is uniquely determined by its order and its degree pattern. Therefore
throughout this section let G be a finite group such that |G| = |L9(2)| = 236 ×
35× 52× 73× 17× 31× 73× 127 and D(G) = D(L9(2)) = (5, 6, 4, 4, 2, 2, 1, 2). We
prove Theorem 1.3 through the following lemmas. We note that the proof of this
theorem has similar steps as the proof of Theorem 1.1. We note that in graph
theory a complete graph on n vertices is denoted by Kn. It is obvious that the
degree of each vertex of Kn is n− 1.

Lemma 4.1. If |G| = |L9(2)| and D(G) = D(L9(2)), then the prime graph

of G is connected.

Proof. If p is a vertex of the prime graph, then N(p) is defined as follows:

N(p) = {p′ | p′ ∈ π(G), p ∼ p′ in Γ(G)}.

By assumption we know that deg(3) = 6 and deg(2) = 5. First let 2 � 3 in
Γ(G). Then each vertex of Γ(G), except 2 and 3, is joined to vertex 3. Also 2 is
joined to 5 vertices. Obviously N(2) ∩N(3) is nonempty and so there is a path
between 2 and 3, too. Therefore Γ(G) is connected. If 2 ∼ 3, then N(2) ∪N(3)
has at least 7 elements, since deg(3) = 6. But we know that there is no element
of order 0, and so Γ(G) is connected. ¤

Lemma 4.2. Let N be the maximal normal solvable subgroup of G. Then

π(N) ∩ {5, 17, 31, 73, 127} = ∅.

Especially G is nonsolvable.



Some characterizations of L9(2) related to its prime graph 383

Proof. We know that if p ∈ {17, 31, 73, 127}, then p2 - |G|. So if p1, p2 ∈
{17, 31, 73, 127} ∩ π(N), then let H be a {p1, p2}-Hall subgroup of N . Then H is
an abelian subgroup of N , since p1 - (p2 − 1) and p2 - (p1 − 1). Hence p1 ∼ p2 in
Γ(G). Let A = {17, 31, 73, 127} ∩ π(N).

If |A| = 4, then there exists a complete subgraph of order 4 in Γ(G), which is
a contradiction since the degree of these elements are at most 2. If |A| = 3, then
similarly the induced subgraph on A is K3. This implies that Γ(G) is disconnected
since for all p ∈ A, deg(p) ≤ 2, which is a contradiction.

If A = {p1, p2}, then p1 ∼ p2 in Γ(G). But we know that at least one of
them is joined to 3, since deg(3) = 6. Without loss of generality assume that
p1 ∼ 3. Let r ∈ {17, 31, 73, 127} \ A. Let P be a Sylow p1-subgroup of N . By
Frattini argument it follows that G = NNG(P ). Since r - |N |, we conclude that
r ∈ π(NG(P )). Therefore if g ∈ NG(P ) is an element of order r, then P 〈g〉 is a
subgroup of order p1r. As we mentioned above this subgroup is abelian and so
p1 ∼ r. Hence deg(p1) ≥ 3, which is a contradiction since deg(p1) ≤ 2.

If A = {p}, then let {p1, p2, p3} = {17, 31, 73, 127} \ A. Now similar to the
last case we conclude that pi ∼ p, for 1 ≤ i ≤ 3, which is a contradiction.

Now we prove that 5 6∈ π(N). Easily we can see that if p ∈ {17, 73, 127}, then
any group of order 5p or 5p2 is abelian. As we proved {17, 73, 127} ∩ π(N) = ∅.
Again similar to the previous case let Q be a Sylow 5-subgroup of N . By using
Frattini argument it follows that 5 is joined to every element in {17, 73, 127}. But
we know that deg(3) = 6 and so 3 is joined to at least two elements in {17, 73, 127}.
We know that deg(73) = 1 and hence 17, 127 ∈ N(3) ∩ N(5). But this implies
that 3, 5 ∈ N(17) ∩ N(127) and since deg(73) = 1 and 5 ∼ 73 we conclude that
2 6∈ N(17)∪N(73)∪N(127), which is a contradiction since deg(2) = 5. Therefore
N is a {2, 3, 7}-subgroup. Especially it follows that G is nonsolvable. ¤

Lemma 4.3. Let N be the maximal normal solvable subgroup of G. Then

L9(2) ≤ G/N ≤ Aut(L9(2)).

Proof. We proved that {5, 17, 31, 73, 127} ⊆ π(G) = π(G/N). Let S =
Socle(G/N) and easily we can conclude that S ≤ G/N ≤ Aut(S). Therefore
{5, 17, 31, 73, 127} ⊆ π(Aut(S)). We claim that 2 is not joined to every element of
{5, 17, 31, 73, 127}. Otherwise since deg(2) = 5, it follows that 2 � 3. Also 73 � 3,
since deg(73) = 1. Hence we get a contradiction since deg(3) = 6. Therefore there
exists at least one element of {5, 17, 31, 73, 127}, say p, such that 2 � p. We know
that S ∼= P1 × · · · × Pk, where each Pi is a nonabelian simple group. We claim
that k = 1. Otherwise let k ≥ 2. In this case p 6∈ π(S) and p ∈ π(Aut(S)), which
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implies that p ∈ π(Out(S)). Let ϕ ∈ G be an automorphism of S of order p.
Note that 2 � p. Now exactly similar to the proof of Lemma 3.3, we conclude
that there exists i, where 1 ≤ i ≤ k, and ϕ is an outer automorphism of Pi of
order p. Note that p ≥ 5. The rest of the proof of this lemma is similar to the
proofs of Lemma 3.3. So for convenience we omit the rest of the proof of this
lemma. Similar to the proof of Lemma 3.3 and by using the classification of finite
simple groups, it follows that k = 1 and S is a nonabelian simple group such that
{5, 17, 31, 73, 127} ⊆ π(S). Hence |S| = 2a×3b×52×7c×17×31×73×127. Now
similar to the proof of Lemma 3.3, we conclude that S = Socle(G/N) ∼= L9(2).
Therefore L9(2) ≤ G/N ≤ Aut(L9(2)). ¤

Proof of Theorem 1.3. Using the above lemmas we conclude that
L9(2) ≤ G/N ≤ Aut(L9(2)). On the other hand we know that |G| = |L9(2)|.
Therefore |N | = 1 and G ∼= L9(2), as required. ¤
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