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Curvature of the contact distribution

By AUREL BEJANCU (Kuwait) and HANI REDA FARRAN (Kuwait)

Abstract. We define and study both the sectional and ϕ-sectional curvatures of

the contact distribution D on a K-contact manifold M . We prove that 3-dimensional K-

contact manifolds of constant curvature are the only ones who carry contact distributions

of constant curvature. Also, we prove that D is of constant ϕ-sectional curvature if and

only if M is a Sasakian space form.

Introduction

A contact metric manifold carries a non-integrable distribution, which is
called the contact distribution. Thus such a manifold belongs to the class of
non-holonomic manifolds which have been introduced as a need for a geomet-
ric interpretation of non-holonomic mechanical systems (cf. Vrănceanu [10],
Neimark–Fufaev [7]).

The geometry of manifolds endowed with non-integrable distributions have
been intensively studied from many different points of view. We mention here
some directions in which such research has been carried out.

First, we refer to the studies on contact manifolds by using associate Rie-
mannian metrics (cf. Blair [2]). As a result of these studies, two important classes
of contact manifolds have been investigated: Sasakain and 3-Sasakian manifolds.
Then, there are tight relations between CR-manifolds (cf. Greenfield [3]) and
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contact manifolds. A great role in such studies was played by the canonical con-
nection on a CR-manifold introduced by Tanaka [9].

Finally, we point out that from the studies on manifolds endowed with non-
integrable distributions has emerged a new branch of differential geometry which
is known as subriemannian geometry (cf. Montgomery [6]). This geometry is
mainly based on the study of those geodesics of the manifold which remain tangent
to the horizontal distribution. Also, we find here the notion of curvature of a
distribution, which is a 2-form that measures its nonintegrability.

Our approach in this paper is different. We introduce and study a curvature
tensor field for a contact distribution. This enables us to define and study the
sectional curvature and the ϕ-sectional curvature of a contact distribution on a
K-contact manifold. The whole theory is developed by using both the Levi–
Civita connection and the Vrănceanu connection. The latter one was specially
introduced for studying non-holonomic manifolds.

Now, we outline the content of the paper. First we present the results and
formulas on the theory of contact metric manifolds which we need in our study.
Then we introduce an adapted frame field on a contact metric manifold and
express both the Levi–Civita and Vrănceanu connections with respect to this
frame field. In particular, we show that Vrănceanu connection defines two types
of covariant derivatives. In Section 4 we show that the restriction of the cur-
vature tensor field of Vrănceanu connection to the contact distribution has the
same nice properties as the Levi–Civita connection on a Riemannian manifold
(cf. Theorem 4.3), provided the manifold is K-contact. This enables us to define
a sectional curvature for the contact distribution on a K-contact manifold. Then
we prove a Schur Theorem type for dimensions greater than 3 (cf. Theorem 4.5)
and obtain an explicit formula for the curvature tensor field of a contact distri-
bution of constant sectional curvature (see (4.15)). We also prove that contact
distributions of constant curvature live on 3-dimensional K-contact manifolds of
constant curvature but they do not exist on manifolds of higher dimensions (cf.
Theorems 4.7 and 4.9). Finally, in the last section we define the ϕ-sectional
curvature of the contact distribution and prove that Sasakian space forms carry
contact distributions of constant ϕ-sectional curvature (cf. Theorem 5.1). Also,
we obtain a formula for the curvature tensor field of a contact distribution of
constant ϕ-sectional curvature (see 5.2a).
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1. Preliminaries

Let M be a (2m + 1)-dimensional manifold and η a differential 1-form on M

such that η ∧ (dη)m 6= 0 everywhere on M . Then M is called a contact manifold
and η a contact form on M . It is well known that a contact manifold admits a
contact metric structure (ϕ, ξ, η, g), where ϕ is a tensor field of type (1, 1), ξ is a
vector field, and g is a Riemannian metric satisfying (cf. Blair [2], p. 36)

(a) ϕ2 = −I + η ⊗ ξ, (b) η(ξ) = 1,

(c) g(ϕX,ϕY ) = g(X, Y )− η(X)η(Y ), (d) dη(X, Y ) = g(X, ϕY ), (1.1)

for any X, Y ∈ Γ(TM). We denote by M(ϕ, ξ, η, g) the contact metric manifold
M with the contact metric structure (ϕ, ξ, η, g). The equations in (1.1) imply that

(a) ϕξ = 0, (b) g(X, ϕY ) + g(Y, ϕX) = 0,

(c) η ◦ ϕ = 0, (d) dη(ξ, X) = 0, (e) η(X) = g(X, ξ), (1.2)

for any X, Y ∈ Γ(TM).
Here and in the sequel, Γ(TM) stands for the module of smooth vector

fields on M . The same notation we use for the module of smooth sections of any
distribution on M . Also, we should note that we use dη given by

dη(X, Y ) =
1
2
{X(η(Y ))− Y (η(X))− η([X,Y ])}.

A contact metric manifold M(ϕ, ξ, η, g) for which the characteristic vector
field ξ is a Killing vector field is called a K-contact manifold. It is known that M

is a K-contact manifold if and only if

∇̃Xξ = −ϕX, ∀X ∈ Γ(TM), (1.3)

where ∇̃ is the Levi–Civita connection on M with respect to g given by (cf. Yano–

Kon [11], p. 29)

2g(∇̃XY,Z) = X(g(Y, Z)) + Y (g(Z, X))− Z(g(X, Y ))

+ g([X, Y ], Z)− g([Y,Z], X) + g([Z, X], Y ), (1.4)

for any X, Y ∈ Γ(TM).
Finally, we recall that the curvature tensor field R̃ of a Sasakian space form

M of constant ϕ-sectional curvature c is expressed as follows (cf. Blair [2], p. 113)

R̃(X, Y )Z =
c + 3

4
{g(Y, Z)X − g(X,Z)Y }
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+
c− 1

4
{η(X)η(Z)Y − η(Y )η(Z)X + g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ

+ Φ(Z, Y )ϕX − Φ(Z, X)ϕY + 2Φ(X, Y )ϕZ}, (1.5)

for any X, Y, Z ∈ Γ(TM), where Φ is the fundamental 2-form of the contact
metric structure given by

Φ(X,Y ) = g(X, ϕY ), ∀X, Y ∈ Γ(TM). (1.6)

2. The Levi–Civita connection on a contact metric manifold

LetD be the contact distribution on the contact metric manifold M(ϕ, ξ, η, g),
that is we have

Dx = {Xx ∈ TxM : η(Xx) = 0}, ∀x ∈ M.

It follows from (1.1d) that D is not an integrable distribution. Also, we consider
on M the foliation determined by ξ, whose transversal distribution is D. Thus
we have the orthogonal decomposition

TM = D ⊕D⊥, where D⊥ = span{ξ}. (2.1)

This enables us to choose an adapted local coordinate system {U ; x0, xi}, i ∈
{1, . . . , 2m}, such that ξ = ∂/∂x0 on U . Then the contact form η is locally
expressed as follows

η = dx0 + ηidxi, where ηi = η

(
∂

∂xi

)
.

Now, we consider the vector fields

δ

δxi
=

∂

∂xi
− ηi

∂

∂x0
, i ∈ {1, . . . , 2m}, (2.2)

which form a basis in Γ(D). Thus {∂/∂x0, δ/δxi} is a frame field on M adapted
to the decomposition (2.1).

Next, we examine the Lie brackets of the vector fields from the above frame
field. First, from (1.2d) we deduce that

[
δ

δxi
, ∂

∂x0

]
∈ Γ(D), ∀i ∈ {1, . . . , 2m}.
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On the other hand, by direct calculations using (2.2) we obtain
[

δ

δxi
, ∂

∂x0

]
=

∂ηi

∂x0

∂

∂x0
.

Thus we have

(a)
[

δ

δxi
, ∂

∂x0

]
= 0 and (b)

∂ηi

∂x0
= 0, ∀i ∈ {1, . . . , 2m}. (2.3)

Also, by using (2.2) and (2.3) we infer that
[

δ

δxi
, δ

δxj

]
=

(
∂ηi

∂xj
− ∂ηj

∂xi

)
∂

∂x0
. (2.4)

Now we note that the matrix of the Riemannian metric g with respect to the
frame field {∂/∂x0, δ/δxi} is

[g] =

[
1 0

0 gij

]
, (2.5)

where we put

gij = g

(
δ

δxi
, δ

δxj

)
. (2.6)

The inverse matrix of [gij ] is denoted by [gij ]. Also, we express ϕ and Φ locally,
as follows

(a) ϕ

(
δ

δxi

)
= ϕj

i
δ

δxj
, (b) Φij = Φ

(
δ

δxi
, δ

δxj

)
= gikϕk

j . (2.7)

Then, by using (1.1d), (2.4) and (2.7), we obtain
[

δ

δxi
, δ

δxj

]
= −2Φij

∂

∂x0
. (2.8)

Now we can state the following.

Theorem 2.1. Let M(ϕ, ξ, η, g) be a contact metric manifold. Then the

Levi–Civita connection ∇̃ on M is completely determined by the following equal-

ities

(a) ∇̃ δ

δxj

δ

δxi
= Fi

k
j

δ

δxk
− Lij

∂

∂x0
,

(b) ∇̃ ∂
∂x0

δ

δxj
= ∇̃ δ

δxj

∂

∂x0
= Lk

j
δ

δxk
,

(c) ∇̃ ∂
∂x0

∂

∂x0
= 0, (2.9)
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where we set

(a) Fi
k

j =
1
2
gkh

{
δghi

δxj
+

δghj

δxi
− δgij

δxh

}
,

(b) Lij =
1
2

δgij

δx0
− Φij , (c) Lk

j = gkiLij . (2.10)

Proof. Take X = δ
δxi , Y = δ

δxj and Z = δ
δxh in (1.4) and by using (2.6),

(2.8) and (2.9a) we deduce that Fi
k

j must be given by (2.10a). Similarly, if we
take in (1.4) the same X and Y , but Z = ∂

∂x0 we obtain (2.10b) via (2.3a),
(2.8) and (2.9a). Next, the first equality in (2.9b) follows from (2.3a) since ∇̃ is
torsion-free. The coefficients Lk

j from (2.9b) are obtained by similar calculations
in (1.4) as we explained for Fi

k
j and Lij . Finally, (2.9c) represents a well-known

property of the characteristic vector field ξ = ∂/∂x0. ¤

3. The Vrănceanu connection on a contact metric manifold

Let M(ϕ, ξ, η, g) be a contact metric manifold. Then the Vrănceanu connec-
tion ∇ defined by the Levi–Civita connection ∇̃ is given by

∇XY = P ∇̃PXPY + Q∇̃QXQY + P [QX, PY ] + Q[PX,QY ], (3.1)

for any X, Y ∈ Γ(TM), where P and Q are the projection morphisms of TM on D
and D⊥ with respect to the decomposition (2.1). Ianuş [4] has given the formula
(3.1) for manifolds endowed with almost product structures. The study of the
geometry of foliations via Vrănceanu connection was developed by the authors
in a recent book (cf. Bejancu–Farran [1]). The present paper shows that this
approach can be very useful and effective in studying the geometry of some classes
of contact metric manifolds.

First we state the following.

Theorem 3.1. The Vrănceanu connection on the contact metric manifold

M(ϕ, ξ, η, g) is completely determined by the functions Fi
k

j given by (2.10a).

Proof. Indeed, by using (3.1), (2.9) and (2.3a) we obtain

(a) ∇ δ

δxj

δ

δxi
= Fi

k
j

δ

δxk
, (b) ∇ ∂

∂x0

δ

δxi
= 0,

(c) ∇ δ

δxj

∂

∂x0
= 0, (d) ∇ ∂

∂x0

∂

∂x0
= 0, (3.2)

which proves the assertion of the theorem. ¤
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Next, let T and R be the torsion and curvature tensor fields of ∇ given by
(cf. Yano–Kon [11], p. 25)

T (X, Y ) = ∇XY −∇Y X − [X, Y ], (3.3)

and
R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, (3.4)

respectively. Then, by direct calculations using (3.2), (3.3), (3.4), (2.3a) and
(2.8), we deduce that

(a) T

(
δ

δxi
,

δ

δxj

)
= 2Φij

∂

∂x0
, (b) T

(
∂

∂x0
, δ

δxj

)
= 0, (3.5)

and

(a) R

(
δ

δxk
, δ

δxj

)
δ

δxi
= Ri

h
jk

δ

δxh
,

(b) R

(
∂

∂x0
, δ

δxj

)
δ

δxi
= Ri

h
j0

δ

δxh
,

(c) R

(
δ

δxk
, δ

δxj

)
∂

∂x0
= R

(
∂

∂x0
, δ

δxj

)
∂

∂x0
= 0, (3.6)

where we set

(a) Ri
h

jk =
δFi

h
j

δxk
− δFi

h
k

δxj
+ Fi

t
jFt

h
k − Fi

t
kFt

h
j ,

(b) Ri
h

j0 =
∂Fi

h
j

∂x0
. (3.7)

Next, we consider an F(M)− (r + t)-multilinear mapping

S : Γ(D∗)r × Γ(D)t −→ F(M),

where F(M) is the algebra of smooth functions on M and D∗ is the dual vector
bundle of D. Then we call S a D-tensor field of type (r, t). We should remark that
D-tensor fields are particular cases of adapted tensor fields on foliated manifolds
(see Section 2.2 of Bejancu–Farran [1]). The local components of S with
respect to the frame fields {η, dxi} and {∂/∂x0, δ/δxi} are defined as follows:

Si1...ir
j1...jt

= S

(
dxi1 , . . . , dxir ,

δ

δxj1
, · · · , δ

δxjt

)
.

The Vrănceanu connection induces two covariant derivatives of such tensor fields.
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First, it is the contact covariant derivative of S with respect to the Vrănceanu
connection, which is defined by

Si1...ir

j1...jt k
=

δSi1...ir
j1...jt

δxk
+

r∑
x=1

Si1...h...ir
j1...jt

Fh
ix

k −
t∑

y=1

Si1...ir

j1...h...jt
Fjy

h
k. (3.8)

Then the structural covariant derivative of S with respect to the Vrănceanu con-
nection is given by

Si1...ir

j1...jt 0
=

∂Si1...ir
j1...jt

∂x0
. (3.9)

It is noteworthy that both covariant derivatives defined above produce adapted
tensor fields on M . As an example, by using (3.8) and (2.10a) we deduce that

gij k =
δgij

δxk
− ghj Fi

h
k − gihFj

h
k = 0. (3.10)

However, by (3.9) we have

gij 0 =
∂gij

∂x0
, (3.11)

which says that the Vrănceanu connection is not a metric connection.
Finally, by (3.2a) and (2.10a), we deduce that on the contact distribution D

the Levi–Civita and Vrănceanu connections are related as follows

∇̃ δ

δxj

δ

δxi
= ∇ δ

δxj

δ

δxi
− Lij

∂

∂x0
. (3.12)

4. The sectional curvature of the contact distribution

In the present section we suppose that M(ϕ, ξ, η, g) is a K-contact manifold.
Then, by using (1.3), (2.7a) and (2.9b), we deduce that M is K-contact if and
only if we have

Li
j = −ϕi

j . (4.1)

This enables us to state a new characterization of K-contact manifolds by means
of the Vrănceanu connection.

Theorem 4.1. Let M(ϕ, ξ, η, g) be a contact metric manifold. Then M is a

K-contact manifold if and only if the Vrănceanu connection is a metric connection.
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Proof. By using (2.10c), (2.10b) and (2.7b) into (4.1) we deduce that M is
K-contact if and only if

∂gij

∂x0
= 0, ∀i, j ∈ {1, . . . , 2m}. (4.2)

Then the assertion follows by using (3.10), (3.11) and (4.2). ¤

Also, we obtain the following corollary.

Corollary 4.2. M is a K-contact manifold if and only if

∂ϕi
j

∂x0
= 0, ∀i, j ∈ {1, . . . , 2m}. (4.3)

Proof. First, by comparing (3.4) and (2.8), we deduce that

Φij =
1
2

(
∂ηj

∂xi
− ∂ηi

∂xj

)
.

Then, by (2.3b) we see that Φij are functions of (x1, . . . , x2m) alone. Thus we
obtain the equivalence of (4.2) and (4.3) via (2.7b). ¤

Next, by using (3.2), (2.11a) and (4.2), we deduce that the Vrănceanu connec-
tion on a K-contact manifold M is completely determined by the local coefficients

Fi
k

j =
1
2

gkh

{
∂ghi

∂xj
+

∂ghj

∂xi
− ∂gij

∂xh

}
, (4.4)

which formally look as the local coefficients of a Levi–Civita connection on a
2m-dimensional manifold. As a consequence of this, from (3.6) and (3.7) we
obtain that the curvature tensor field R of Vrănceanu connection is completely
determined by the local components

Ri
h

jk =
∂Fi

h
j

∂xk
− ∂Fi

h
k

∂xj
+ Fi

t
jFt

h
k − Fi

t
k Ft

h
j . (4.5)

Moreover, we show here that R has some nice properties as the curvature tensor
field of a Levi–Civita connection. To state this we put

Rijkh = g

(
R

(
δ

δxh
,

δ

δxk

)
δ

δxi
,

δ

δxj

)
= gjtRi

t
kh. (4.6)

Now we prove the following.
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Theorem 4.3. Let M be a K-contact manifold. Then the curvature tensor

field of the Vrănceanu connection on M satisfies the identities:

(a) Rijkh + Rijhk = 0, (b) Rijkh + Rjikh = 0,

(c)
∑

(i,j,k)

{Rtijk} = 0, (d) Rijkh = Rkhij ,

(e)
∑

(i,j,k)

{Rtsij k} = 0, (4.7)

where
∑

(i,j,k) denotes the cyclic sum with respect to (i, j, k) and “ ” represents

the contact covariant derivative with respect to Vrănceanu connection.

Proof. First, (4.7a) is a property of the curvature tensor field of any linear
connection on M . Then, taking into account that ∇ is a metric connection and
by using (4.6), (3.4), (2.8), (3.2b) and (4.2) we obtain

Rijkh = g

(
∇ δ

δxh
∇ δ

δxk

δ

δxi
,

δ

δxj

)
− g

(
∇ δ

δxk
∇ δ

δxh

δ

δxi
,

δ

δxj

)

=
δ

δxh

(
g

(
∇ δ

δxk

δ

δxi
,

δ

δxj

))
− g

(
∇ δ

δxk

δ

δxi
,∇ δ

δxh

δ

δxj

)

− δ

δxk

(
g

(
∇ δ

δxh

δ

δxi
,

δ

δxj

))
+ g

(
∇ δ

δxh

δ

δxi
,∇ δ

δxk

δ

δxj

)

= −g

(
δ

δxi
,∇ δ

δxh
∇ δ

δxk

δ

δxj
−∇ δ

δxk
∇ δ

δxh

δ

δxj

)

+
[

δ

δxh
,

δ

δxk

]
(gij) = −Rjikh − 2Φhk

∂gij

∂x0
= −Rjikh.

Next, from the first Bianchi identity of a linear connection (cf. Kobayashi–

Nomizu [5], p. 135), we deduce that

∑

(i,j,k)

{(
∇ δ

δxi
T

) (
δ

δxj
,

δ

δxk

)
+ T

(
T

(
δ

δxi
,

δ

δxj

)
,

δ

δxk

)

−R

(
δ

δxi
,

δ

δxj

)
δ

δxk

}
= 0. (4.8)

By using (3.5) and taking into account that both distributions D and D⊥ are
parallel with respect to ∇ we deduce that

T

(
T

(
δ

δxi
,

δ

δxj

)
,

δ

δxk

)
= 0,
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and (
∇ δ

δxi
T

) (
δ

δxj
,

δ

δxk

)
∈ Γ(D⊥).

Thus (4.7c) follows from (4.8) via (4.6), (4.7a) and (4.7b). Now, following O’Neill

[8], p. 75, by a combinatorial exercise using (4.7a), (4.7b) and (4.7c), we obtain
(4.7d). Finally, the second Bianchi identity for ∇ implies

∑

(i,j,k)

{(
∇ δ

δxi
R

) (
δ

δxj
,

δ

δxk

)
+ R

(
T

(
δ

δxi
,

δ

δxj

)
,

δ

δxk

)}
δ

δxt
= 0.

Then, by (3.5a) and (3.6c), we infer that

R

(
T

(
δ

δxi
,

δ

δxj

)
,

δ

δxk

)
= 0.

Thus, the above identity becomes
∑

(i,j,k)

{Rt
h

jk i} = 0,

which implies (4.7e) via (4.6) and (3.10). ¤

The above theorem has a crucial role in our attempt to define and study a
sectional curvature of the contact distribution. First, we consider a 2-dimensional
subspace Wx of Dx, which we call a D-plane at the point x ∈ M. Next, we take
a basis {X, Y } of Wx and define

∆(X, Y ) = g(X, X)g(Y, Y )− g(X, Y )2.

Then, by using (2.6), we obtain

∆(X, Y ) = (gikgjh − gihgjk)XjXhY iY k, (4.9)

where (Xj) and (Y k) are the local components of X and Y with respect to the
basis

{
δ

δxi

}
of Dx. Now, we define the number

K(X, Y ) =
RijkhXjXhY iY k

∆(X, Y )
. (4.10)

Next, by using (4.7a) and (4.7b), it is easy to check that K(X, Y ) is inde-
pendent of the basis {X,Y } in Wx. Then we define the sectional curvature of
the contact distribution D as a real-valued function on the set of all D-planes
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given by (4.10). By this definition, the curvature tensor field R determines the
sectional curvature K of D. To show the converse of this we consider a D-tensor
F at x ∈ M of type (0, 4) whose local components Fijkh with respect to the
frame field {δ/δxi} satisfy the identities (4.7a), (4.7b) and (4.7c). We call such
an F a curvature-like D-tensor. Then, following the same reason as in the proof
of Proposition 4.1 of O’Neill [8], p. 78, we conclude that F vanishes whenever
F (X,Y, X, Y ) = 0, for any {X, Y } spanning a D-plane in Dx. As a consequence,
we obtain the following lemma showing that K determines R.

Lemma 4.4. Let F be a curvature-like D-tensor at x ∈ M such that

K(X,Y ) =
FijkhXjXhY iY k

∆(X,Y )
,

whenever {X,Y } spans a D-plane. Then we have

Rijkh = Fijkh, at x ∈ M.

If the sectional curvature of D is a constant for all D-planes Wx and for all points
x ∈ M , then D is called a contact distribution of constant curvature. A Schur
Theorem type is stated now for D.

Theorem 4.5. Let M(ϕ, ξ, η, g) be a K-contact connected manifold of di-

mension 2m + 1, with m > 1. If the sectional curvature of D does not depend on

the D-planes, then D is of constant curvature.

Proof. Since K does not depend on D-planes, there exists a function K(x)
on M such that K(X, Y ) = K(x), for any two linearly independent vector fields
X,Y ∈ Γ(D). Then we consider the functions

Fijkh = K(x)(gikgjh − gihgjk), (4.11)

which clearly define a D-tensor field of type (0, 4) on M . Moreover, it is easy to
verify that Fijkh satisfy (4.7a), (4.7b) and (4.7c) at any x ∈ M . Thus Fijkh define
a curvature-like tensor field F on M and whenever {X, Y } spans a D-plane, we
have

K(X, Y ) = K(x) =
FijkhXjXhY iY k

∆(X, Y )
.

Thus, by Lemma 4.4, we obtain

Rijkh = K(x)(gikgjh − gihgjk). (4.12)
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Taking into account (4.4)–(4.6), we conclude that Rijkh are functions of
(x1, . . . , x2m) alone. Then, by using (4.2) and (4.12), we deduce that

∂K

∂x0
= 0. (4.13)

Now we take the contact covariant derivative in (4.12) with respect to Vrănceanu
connection and by using (3.10) we obtain

Rijkh t =
∂K

∂xt
(gik gjh − gih gjk). (4.14)

Next, (4.7e) and (4.14) imply

∂K

∂xt
(gik gjh − gih gjk) +

∂K

∂xk
(gih gjt − git gjh) +

∂K

∂xh
(git gjk − gik gjt) = 0.

By contracting this equality by gjhgis and taking into account that m > 1, we
infer that

δs
k

∂K

∂xt
− δs

t

∂K

∂xk
= 0.

Finally, for any t ∈ {1, . . . , 2m} we take s = k 6= t and obtain

∂K

∂xt
= 0,

which together with (4.13) completes the proof of the theorem. ¤

From the proof of the above theorem we deduce the following corollary.

Corollary 4.6. The contact distribution on a K-contact manifold is of con-

stant curvature c if and only if the curvature tensor field of Vrănceanu connection

is expressed as follows

Rijkh = c(gikgjh − gihgjk). (4.15)

In order to study the existence of contact distributions of constant curvature
we need to relate the curvature tensor fields R̃ and R of Levi–Civita connection
∇̃ and Vrănceanu connection ∇, respectively. First, by using (4.2), (2.10b) and
(2.10c), we deduce that

Lij = −Φij and Lk
j = −ϕk

j ,

provided M is K-contact. Thus (2.9) becomes

(a) ∇̃ δ

δxj

δ

δxi
= Fi

k
j

δ

δxk
+ Φij

∂

∂x0
,
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(b) ∇̃ ∂
∂x0

δ

δxj
= ∇̃ δ

δxj

∂

∂x0
= −ϕj

k δ

δxk
, (c) ∇̃ ∂

∂x0

∂

∂x0
= 0. (4.16)

Then, by direct calculations using (4.16), (2.7b) and (2.8), we obtain

g

(
∇̃ δ

δxh
∇̃ δ

δxk

δ

δxi
,

δ

δxj

)
= gjt

{
δFi

t
k

δxh
+ Fi

s
k Fs

t
h

}
− ΦikΦjh,

and

g

(
∇̃[ δ

δxh
, δ

δxk ]
δ

δxi
,

δ

δxj

)
= 2ΦijΦkh.

Finally, by using (3.4) for both R̃ and R, we infer that

R̃ijkh = Rijkh − ΦikΦjh + ΦihΦjk − 2ΦijΦkh.

In a coordinate-free setting the above formula becomes

R̃(X, Y, Z, U) = R(X, Y, Z, U)− Φ(X, U)Φ(Y, Z)

+ Φ(X,Z)Φ(Y, U) + 2Φ(X,Y )Φ(Z,U), (4.17)

for any X, Y, Z, U ∈ Γ(D), where we set

R̃(X,Y, Z, U) = R̃ijkhXhY kU jZi and R(X, Y, Z, U) = RijkhXhY kU jZi.

Thus, in particular, from (4.17) we deduce that the sectional curvatures K̃ and
K of M and D respectively, are related by

K̃(X, Y ) = K(X, Y )− 3
(Φ(X, Y ))2

∆(X, Y )
. (4.18)

This formula enables us to state that contact distributions of constant curvature
exist only on K-contact manifolds of constant curvature k = 1. First, we prove
the following.

Theorem 4.7. Let M be a 3-dimensional K-contact manifold. Then M is

of constant curvature k = 1 if and only if its contact distribution is of constant

curvature c = 4.

Proof. Since M is a K-contact manifold we have

K̃(X, ξ) = 1,

for any unit vector field X ∈ Γ(D). As the fibers of D are 2-dimensional, we
take {X, ϕX} as orthonormal basis in Γ(D). Then, taking into account that
Φ(X, ϕX) = −1, from (4.18) we obtain

K̃(X, ϕX) = K(X, ϕX)− 3,

which proves the assertion of the theorem. ¤
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As the standard contact structure on any unit odd sphere is K-contact we
deduce the following corollary on the existence of contact distributions of constant
curvature.

Corollary 4.8. The contact distribution of the unit sphere S3 is of constant

curvature c = 4.

The next result shows a striking difference between dimensions 3 and higher
than 3.

Theorem 4.9. Let M be a K-contact manifold of dimension 2m + 1, with

m > 1, and of constant curvature k = 1. Then its contact distribution is never of

constant curvature.

Proof. We choose {E1, . . . , Em, ϕE1, . . . , ϕEm} as orthonormal basis in
Γ(D). Then we have

(a) Φ(Ei, Ej) = 0, if i 6= j and (b) Φ(Ei, ϕEi) = −1. (4.19)

Thus, by using (4.19) into (4.18), we deduce that

K(Ei, Ej) = 1, for i 6= j and K(Ei, ϕEi) = 4.

Therefore K cannot be a constant on M . ¤

Corollary 4.10. The contact distribution of any unit sphere S2m+1, with

m > 1, is not of constant curvature.

Finally, we note that D is an almost complex distribution with the almost
complex structure ϕ. Thus, as in the case of complex manifolds, it is more appro-
priate to consider the concept of ϕ-sectional curvature on D rather than sectional
curvature. This is done in the next section.

5. ϕ-Sectional curvature of the contact distribution

Let M(ϕ, ξ, η, g) be a K-contact manifold and D be its contact distribution.
In the previous section we defined the sectional curvature of D with respect to
the D-planes of D. Taking into account that (D, ϕ) is an almost complex vector
bundle over M , it is interesting to consider D-planes that are invariant with
respect to ϕ. Such a plane at x ∈ M is spanned by an orthonormal basis {X, ϕX},
where X ∈ Dx, and it is called a ϕ-section. The sectional curvature K(X,ϕX)
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is denoted by H(X) and it is called the ϕ-sectional curvature of D at the point
x ∈ M determined by X. If H(X) is independent of both the vector X and the
point x ∈ M , we say that D is of constant ϕ-sectional curvature.

Now, in order to get more information about this special type of sectional
curvature, we use the general theory of sectional curvature of D that we developed
in the previous section. First, from (4.18) we deduce that

H̃(X) = H(X)− 3, (5.1)

where H̃(X) is the ϕ-sectional curvature of M with respect to X. Next, we
recall that there exists a well developed theory of Sasakian space forms, which
are Sasakian manifolds of constant ϕ-sectional curvature. Then, from (5.1), we
obtain the following.

Theorem 5.1. Let M be a Sasakian manifold and D be its contact distri-

bution. Then M is a Sasakian space form of constant ϕ-sectional curvature c if

and only if D is of constant ϕ-sectional curvature c + 3.

Taking into account the standard examples of Sasakian space forms: R2m+1,

S2m+1 and Bm × R are of constant ϕ-sectional curvatures c = −3, c = 4
α − 3,

α > 0 and β − 3, β < 0, respectively (cf. Blair [2], p. 114), we can state the
following.

Corollary 5.2. The contact distributions of R2m+1, S2m+1 and Bm×R are

of constant ϕ-sectional curvatures 0, 4
α and β, respectively.

Finally, we can prove the following interesting theorem.

Theorem 5.3. If the ϕ-sectional curvature of the contact distribution D at

any point of the Sasakian manifold M of dimension 2m+1, m > 1, is independent

of ϕ-section at that point, then it is a constant k on the manifold and the curvature

tensor field of Vrănceanu connection is given by

(a) R(X, Y )Z =
k

4
{g(Y,Z)X − g(X,Z)Y + g(Z,ϕY )ϕX

− g(Z,ϕX)ϕY + 2g(X,ϕY )ϕZ},
(b) R(X, Y )ξ = R(X, ξ)Z = R(X, ξ)ξ = 0, (5.2)

for any X, Y, Z ∈ Γ(D).

Proof. First, by (5.1) we deduce that the ϕ-sectional curvature of M is in-
dependent of the choice of ϕ-section. Then applying Theorem 7.14 from Blair [2],
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p. 113, we deduce that M is a Sasakian space form of constant ϕ-sectional curva-
ture c. Thus, by Theorem 5.1, D is of constant ϕ-sectional curvature k = c + 3.
Moreover, by using (1.6) into (4.17), we deduce that

R̃(X, Y )Z = R(X,Y )Z + g(Z, ϕX)ϕY − g(Z, ϕY )ϕX − 2g(X, ϕY )ϕZ,

∀X, Y, Z ∈ Γ(D). (5.3)

Then, by using (1.5) in (5.3), we obtain (5.2a). Finally, the equalities in (5.2b)
are direct consequences of (3.6b), (3.6c) and (3.7b), since Fi

h
j are functions of

(x1, . . . , x2m) alone. ¤

In the following examples we present explicitly the Vrănceanu connection
on R3 and S3.

Example 1. Let M = R3 endowed with the contact form η = 1
2 (dz − ydx)

and the Riemannian metric g = η ⊗ η + 1
4 {(dx)2 + (dy)2} (cf. Blair [2], p. 48).

Then ξ = 2 ∂
∂z and the contact distribution D is spanned by the orthonormal basis{

X = 2 ∂
∂y

, ϕX = 2
(

∂
∂x + y ∂

∂z

)}
. By direct calculations using (1.4) we deduce

that the Levi–Civita connection ∇̃ on (R3, g) satisfies:

∇̃XX = 0, ∇̃XϕX = ξ, ∇̃ϕXX = −ξ, ∇̃ϕXϕX = 0, ∇̃ξξ = 0. (5.4)

Also we have
[ξ, X] = [ξ, ϕX] = 0, [X, ϕX] = 2ξ.

Then, by using (3.1), we deduce that the Vrănceanu connection on (R3, g) is
given by

∇XX = 0, ∇XϕX = 0, ∇ϕXX = 0, ∇ϕXϕX = 0, ∇ξξ = 0,

∇ξX = 0, ∇Xξ = 0, ∇ξϕX = 0, ∇ϕXξ = 0.

Thus R(X,ϕX)ϕX = 0, and therefore the contact distribution of R3 is of constant
ϕ-sectional curvature c = 0.

Example 2. Consider the 3-dimensional unit sphere

S3 = {(x1, x2, x3, x4) ∈ R4 : (x1)2 + (x2)2 + (x3)2 + (x4)2 = 1}

isometrically immersed in the Euclidean space (R4, <, >). Then

ξ = −x3 ∂

∂x1
− x4 ∂

∂x2
+ x1 ∂

∂x3
+ x2 ∂

∂x4
, (5.5)
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is a unit tangent vector field on S3. Take the contact distribution D as the or-
thogonal complementary distribution to the distribution span{ξ} with respect to
the induced Riemannian metric g on S3. Locally, with respect to a coordinate
system on U = {(x1, x2, x3, x4) ∈ S3 : x4 > 0} we deduce that D is spanned by
the orthogonal vector fields

X1 = α
∂

∂x1
+ β

∂

∂x2
+ γ

∂

∂x4
and X2 = −γ

∂

∂x2
+ α

∂

∂x3
+ β

∂

∂x4
, (5.6)

where we put

α = (x2)2 + (x4)2, β = −x1x2 − x3x4, γ = x2x3 − x1x4.

Then we have:

(a) [X1, X2]=− 2{(x2)2+(x4)2}ξ, (b) [X1, ξ]=X2, (c) [X2, ξ]=−X1. (5.7)

The matrix of the Riemannian metric g with respect to the orthogonal frame field
{X1, X2, ξ} is

[g] =




α 0 0
0 α 0
0 0 1


 . (5.8)

Then, by using (1.4) and (5.5)–(5.8), we deduce that the Levi–Civita connection
∇̃ on S3 satisfies the following:

∇̃X1X1 = −∇̃X2X2 = −x1X1 + x3X2,

∇̃X1X2 = −x3X1 − x1X2 − αξ,

∇̃X2X1 = −x3X1 − x1X2 + αξ. (5.9)

Finally, the Vrănceanu connection on S3 follows from (3.1) by using (5.9), (5.7b)
and (5.7c):

∇X1X1 = −∇X2X2 = −x1X1 + x3X2, ∇X1X2 = ∇X2X1 = −x3X1 − x1X2,

∇X1ξ = ∇X2ξ = 0, ∇ξX1 = −X2, ∇ξX2 = X1.

By direct calculations we deduce that the curvature tensor field R of the Vrănceanu
connection satisfies the following

R(X1, X2)X2 = 4αX1. (5.10)
The tensor field ϕ is given by

ϕX1 = X2, ϕX2 = −X1, ϕξ = 0.

Also, we have
g(X1, X1) = g(ϕX1, ϕX1) = α. (5.11)

Thus, by using (5.10) and (5.11), we conclude that D is of constant ϕ-sectional
curvature c = 4.
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Conclusions

In the present paper we succeeded to build on the contact distribution of a K-
contact manifold, a Riemannian geometry that formally looks like the Riemannian
geometry of a manifold. The main tool in this theory is the Vrănceanu connection
which enabled us to define, for the first time in literature, the curvature tensor field
of the contact distribution. Our results on the contact distribution D of constant
sectional curvature show that, in this case, the restriction of the curvature tensor
field of Vrănceanu connection on D (i.e. R(X,Y )Z, for any X, Y, Z ∈ Γ(D)) looks
like the curvature tensor field of a real space form (cf. (4.15)). Moreover, if D
is of constant ϕ-sectional curvature then R is given by the same formula as for
the curvature tensor field of a complex space form (cf. (5.2a)). Thus, we are
entitled to call R as the curvature tensor field of the contact distribution D. As a
conclusion we may say that the Vrănceanu connection on D plays the same role
as the Levi–Civita connection on M .

Next, we analyze a possible interplay between the well known subriemannian
geometry of the contact distribution and the ideas stemming from our paper.

First, we note that the curvature ofD in subriemannian geometry (see Mont-

gomery [6], p. 49) is just a 2-form on M whose local components are 2Φij , where
Φij are given by (2.7b).

Apart from this curvature, our approach introduces a new curvature tensor
field R for D, which enables us to study contact distributions of constant sectional
curvature and of constant ϕ-sectional curvature. Also, we recall that the normal
subriemannian geodesics are projections on M of the solutions of a Hamiltonian
system of differential equations on the cotangent bundle of M . But there are
subriemannian geometries which admit minimizing geodesics that do not come
from the solutions of a Hamiltonian system. They are called singular geodesics
and live in subriemannian geometries whose distributions are not contact distri-
butions everywhere (see Chapters 3 and 5 in Montgomery [6]).

On the other hand, the whole theory we developed in the first three sections
can be easily extended to all distributions of codimension one. Thus an inter-
esting question can be raised: is an autoparallel of the Vrănceanu connection a
subriemannian geodesic and viceversa? At this moment, we cannot answer this
question.
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Basel, 2001.

[3] S. Greenfield, Cauchy–Riemann equations in several variables, An. Della Scuola Norm.
Sup. Pisa 22 (1968), 275–314.

[4] S. Ianuş, Some almost product structures on manifolds with linear connections, Kodai
Math. Sem. Rep. 23 (1971), 305–310.

[5] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, Interscience,
New York, 1963.

[6] R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications,
Vol. 91, Mathematical Surveys and Monographs, Amer. Math. Soc., Providence, RI, 2002.

[7] Ju. I. Neimark and N. A. Fufaev, Dynamics of Nonholonomic Systems, Vol. 33, Transla-
tions of Mathematical Monographs, AMS, 1972.

[8] B. O’Neill, Semi–Riemannian Geometry with Applications to Relativity, Academic Press,
New York, 1983.

[9] N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan con-
nections, Japan J. Math. 2 (1976), 131–190.
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