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On R-quadratic Einstein Finsler space

By SÁNDOR BÁCSÓ (Debrecen) and BAHMAN REZAEI (Urmia)

Abstract. In this paper we investigate Finsler spaces that some characteristic

tensor of them depends only on position. Einstein Finsler space as spaces whose Ricci

scalar curvature depends only on position and R-quadratic spaces are considered. We

prove that any R-quadratic non Ricci flat Einstein Finsler space must be Riemannian.

1. Introduction

Let (M, F ) be a Finsler manifold. Given a non-zero vector y ∈ TxM at a point
x ∈ M , F induces an inner product gy on TxM so that F 2(y) = gy(y, y). The
second variation of geodesics gives rise to a family of linear maps Ry : TxM →
TxM , at any point y ∈ TxM . Each Ry is self-adjoint with respect to gy and
satisfies Ry(y) = 0. Ry is called the Riemann curvature in the direction y. There
are many Finsler metrics whose Riemann curvature in every direction is quadratic.
In 2001, Shen called such Finsler metrics R-quadratic Finsler metrics [8]. This
new family of Finsler metrics contains Berwald metrics and R-flat metrics. Indeed
a Finsler metric is R-quadratic if and only if the h-curvature of Berwald connection
depends on position only in the sense of Bácsó–Matsumoto [3].

The Einstein metrics comprise a major focus in differential geometry. These
metrics are more general than those with constant curvature. The well-known
Ricci tensor was introduced in 1904 by G. Ricci. Nine years later Ricci’s work
was used to formulate the Einstein’s theory of gravitation. Riemannian metric
whose Ricci is proportional to the metric have been studied extensively. They are
called Einstein manifold. In the Lorantzian case, they are important in General
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Relativity. Indeed the Einstein equation in the vacuum is given by Ric = 0. Our
definition of the Ricci scalar function in Finsler geometry is

Ric(x, y) :=
1

F 2
Ri

i

where Ri
k are coefficients of Riemann curvature. We obtain the Ricci tensor from

the Ricci scalar function as follows:

Ricij =
(

1
2
F 2 Ric(x, y)

)

yiyj

.

This definition, due to Akbar-Zadeh, is motivated by the fact that, when F arises
from any Riemannian metric a, the curvature tensor depends on x alone. A Finsler
metric is said to be an Einstein metric if the Ricci scalar function is a function
of x alone, equivalently

Ricij = Ric(x)gij ,

Going one step further, if Ric(x) does not depend on the location x either, F

is said to be Ricci-constant. In [6], [7] Einstein (α, β) metrics and projectively
relation between them are studied.

Finsler spaces that some characteristic tensor of them depends only on posi-
tion, are investigated by Bácsó–Matsumoto [3], [4]. In this paper, we consider
the common part of R-quadratic and Einstein Finsler space and by using of pro-
jective Weyl tensor prove that any R-quadratic non Ricci flat Einstein Finsler
space must be Riemannian.

Throughout this paper, we make use of Einstein convention, that is, repeated
indices with one upper index and one lower index denote summation over their
range. We also set the Berwald connection on Finsler manifolds. The h- and
v- covariant derivatives of a Finsler tensor field are denoted by “ ; ” and “ . ”
respectively.

2. Preliminaries

Let M be a n-dimensional C∞ manifold. Denote by TxM as the tangent space
at x ∈ M , and by TM = ∪x∈MTxM as the tangent bundle of M . Each element of
TM has the form (x, y), where x ∈ M and y ∈ TxM . Let TM0 = TM/{0}. The
natural projection π : TM → M is given by π(x, y) = x. The pull-back tangent
bundle π∗TM is a vector bundle over TM0 whose fiber π∗vTM at v ∈ TM0 is just
TxM , where π(v) = x. Then

π∗TM = {(x, y, v) | y ∈ TxM0, v ∈ TxM}
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A Finsler metric on a manifold M is a function F : TM → [0,∞) which has the
following properties:

(i) F is C∞ on TM0,

(ii) F (x, λy) = λF (x, y) λ > 0,

(iii) For any tangent vector y ∈ TxM , the vertical Hessian of F 2

2 given by

gij(x, y) =
[
1
2
F 2

]

yiyj

is positive definite.

Let F be a Finsler metric on M . For a non-zero vector y ∈ TpM , F induces an
inner product gy on TpM by

gy(u, v) := gij(x, y)uivj =
1
2
[F 2]yiyj (x, y)uivj .

Here x = (xi) denotes the coordinates of p ∈ M and (x, y) = (xi, yi) denotes the
local coordinates of y ∈ TpM . The geodesics are characterized by

d2ci

dt2
+ 2Gi

(
ċ(t)

)
= 0,

where Gi := 1
2gil{[F 2]xkylyk − [F 2]xl} are called the geodesic coefficients of F .

Definition 2.1. A Finsler metric F on a manifold M is called Berwald metric
if in a standard local coordinate system (xi, yi) in TM , the spray coefficients Gi

are quadratic in y ∈ TxM for all x ∈ M .

The Riemann curvature Ry = Ri
kdxk ⊗ ∂

∂xi |p : TpM → TpM is defined by

Ri
k(y) := 2

∂Gi

∂xk
− ∂2Gi

∂xj∂yk
yj + 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj

∂Gj

∂yk
. (1)

The Riemann curvature has the following properties [2]. For any non-zero vector
y, u, v ∈ TpM ,

Ry(y) = 0, gy(Ry(u), v) = gy(u, Ry(v)),

Ri
kl =

1
3

{
∂Ri

k

∂yl
− ∂Ri

l

∂yk

}
.

Ri
jkl(x, y) :=

1
3

∂

∂yj

{
∂Ri

k

∂yl
− ∂Ri

l

∂yk

}
(2)

where Ri
jkl is the Riemann curvature of Berwald connection.
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Definition 2.2. A Finsler metric is called R-quadratic if Ry is quadratic in y,
namely, in local coordinates, Ri

k(y) are quadratic in y ∈ TxM .

From (2), we have:
Ri

k = Ri
jkl(x, y)yjyl.

So we can conclude that Ri
k is quadratic in y ∈ TxM if and only if Hi

jkl are
functions of position alone.

The relation between Landsberg metrics and R-quadratic metrics was studied
by Shen. He proved the following

Theorem 2.1 ([8]). Every compact R-quadratic Finsler metric is a Lands-

berg metric.

It is obvious that every Berwald metric is quadratic in y ∈ TxM , i.e, every
Berwald space is a R-quadratic space. Hence on compact Finsler manifolds we
have

{Berwald metrics} ⊂ {R-quadratic metrics} ⊂ {Landsberg metrics}.

For a two-dimensional plane P ⊂ TpM and a non-zero vector y ∈ TpM , the flag
curvature K(P, y) is defined by

K(P, y) :=
gy(u,Ry(u))

gy(y, y)gy(u, u)− gy(y, u)2
,

where P = span{y, u}. F is said to be of scalar curvature K = λ(y) if for any
y ∈ TpM , the flag curvature K(P, y) = λ(y) is independent of P containing
y ∈ TpM , that is equivalent to the following system in a local coordinate system
(xi, yi) in TM ,

Ri
k = λ F 2{δi

k − F−1Fykyi}.
If λ is a constant, then F is said to be of constant flag curvature.
The Ricci scalar function of F is given by

Ric(x, y) :=
1

F 2
Ri

i. (3)

Therefore, the Ricci scalar function is positive homogeneous of degree 0 in y. This
means that Ric(x, y) depends on the direction of the flag pole y but not its length.
The Ricci tensor of a Finsler metric F is defined by

Ricij :=
∂2

∂yi∂yj

{
1
2
Rk

k

}
. (4)
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It is obvious that the Ricci tensor defined by (4), is symmetric and can
be a good generalization of Ricci tensor in Riemannian case. Ricci-flat mani-
folds are manifolds whose Ricci tensor vanishes. In physics, Riemannian Ricci-flat
manifolds are important because they represent vacuum solutions to Einstein’s
equations. Ricci-flat manifolds are special cases of Einstein manifolds which are
defined as follows:

Definition 2.3. A Finsler metric is said to be an Einstein metric if the Ricci
scalar function is a function of x alone, equivalently

Ricij = Ric(x)gij ,

We want to consider projectively related Finsler metrics – those having the
same geodesics as set of points. Rapcsák proved the following important lemma

Lemma 2.2 ([5], Rapcsák). Let (M, F ) be a Finsler space. A Finsler metric

F̃ is pointwise projective to F if and only if

∂F̃;k

∂yl
yk − F̃;l = 0.

In this case,

G̃i = Gi + Pyi (5)

with

P =
F̃;kyk

2F̃
. (6)

Let F and F̃ be Finsler metrics on an n-dimensional manifold M . Assume
that F̃ is pointwise projective to F . Plugging (5) into (1) yields

R̃i
k = Ri

k + Ξδi
k + τkyi, (7)

R̃m
m = Rm

m + (n− 1)Ξ(y) (8)
where

Ξ(y) := P 2 − P;kyk, τy(u) := 3(P;k − PP.k) + Ξ.k.

Let
Ai

k := Ri
k −

1
n− 1

Rm
mδi

k.

Then the Weyl curvature tensor W i
k, is defined by

W i
k := Ai

k −
1

n + 1
∂Am

k

∂ym
yi. (9)
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The Weyl curvature tensor W i
k, satisfying

W i
kyk = 0, W i

i = 0

Suppose that Finsler metric F̃ is projective to F , i.e. G̃i = Gi + Pyi. An
important fact is that the Weyl curvature W i

k of G is equal to the Weyl curvature
W̃ i

k of G̃. Thus the Weyl curvature is a projective invariant. It is easy to see that
a Finsler metric is of scalar flag curvature if and only if the Weyl tensor vanishes.
We denote by W (x) the spaces that the Weyl tensor of them depends only on
position. In [3], Bácsó and Matsumoto showed that the spaces of h-curvature
depends only on position and Douglas spaces are subset of the spaces that the
Weyl tensor depends only on position.

In [9], Shen investigated projectively Einstein Finsler manifolds. He consid-
ered Einstein metrics as a constant Ricci scalar and described all Einstein metrics
which are pointwise projective to the given an Einstein metric. He proved follow-
ing theorem:

Theorem 2.3 ([10]). Let F and F̃ be Einstein metrics on a closed n-manifold

M with

Ric = (n− 1)λ, R̃ic = (n− 1)λ̃,

where λ, λ̃ ∈ {−1, 0, 1}. Suppose that F̃ is pointwise projectively related to F .

Then λ and λ̃ have the same sign. More details are given below.

(i) If λ = 1 = λ̃, then along any unit speed geodesic c(t) of F

F̃ (ċ(t)) =
2(

a2 − 1/a2 − b2
)
cos(2t) + 2ab sin(2t) +

(
a2 + 1/a2 + b2

) ,

where a > 0 and −∞ < b < ∞ are constants. Thus, for any unit speed

geodesic segment c of F with length of π, it is also a geodesic segment of F̃

(as a point set) with length of π.

(ii) If λ = 0 = λ̃, then along any geodesic c(t) of F or F̃ ,

F (ċ(t))
F̃ (ċ(t))

= constant.

(iii) If λ = −1 = λ̃, then

F̃ = F.
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3. Einstein Finsler space

In this section, we prove that any R-quadratic Einstein Finsler space with
non zero Ricci scalar is Riemannian. From (3) and (9) we can conclude that

W i
k := Ri

k −
1

n− 1
Ric(x)δi

kF 2 − 1
n + 1

{
Rm

k.m − 2
n− 1

Ric(x)yk

}
yi (10)

Theorem 3.1. Let Fn be an R-quadratic Einstein Finsler space with non

zero Ricci scalar. Then Fn must be Riemannian.

Proof. Fn is Einstein space, so from (10), we get

W i
mknymyn = Ri

mknymyn − 1
n + 1

{
(Rh

mknymyn).h − 2
n− 1

Ric(x)yk

}
yi

− 1
n− 1

Ric(x)δi
kF 2 (11)

By assumption Fn is R-quadratic, i.e. Ri
mkn depends only on position, x, and by

Proposition 4 in [3] Fn is W -quadratic. So we can get

∂3

∂ya∂yb∂yc
{Ri

mknymyn} = 0

and
∂3

∂ya∂yb∂yc
{W i

mknymyn} = 0

By differentiation of (11) with respect to ya, yb and yc

2(n + 1)Ric(x)δi
kCabc − Ric(x)

{
2Ckab.cy

i + 2Ckabδ
i
c + 2Ckacδ

i
b + 2Ckbcδ

i
a

}
= 0

By multiplying gik, we will have

2(n− 1)(n + 2)Ric(x)Cabc = 0

By assumption Fn is non Ricci flat, so it is Riemannian. ¤

From above theorem, we can conclude as follows:

Corollary 3.1. The Weyl curvature tensor of any R-quadratic Einstein

Finsler space is written as follows:

W i
k := Ri

k −
1

n + 1
Rm

k.myi
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In the scalar flag curvature, Theorem 3.1 is reduced to the famous Numata
theorem in compact case. Because in this case, we have Ric(x, y) = (n−1)K(x, y)
and we know that any R-quadratic Finsler metric on compact manifold is Lands-
berg.

In [11], the following theorem and example have been shown:

Theorem 3.2 ([11]). Let (M,F ) be an n-dimensional (n > 2) R-quadratic

Finsler manifold. Suppose that F is of scalar flag curvature. Then F is of constant

flag curvature.

In the scalar flag curvature spaces, any Finsler metrics of non constant flag
curvature are neither R-quadratic nor Einstein.

Example 1. Let

F := |y|+ 〈x, y〉√
1 + |x|2 , y ∈ TxRn ' Rn

where |.| and 〈 , 〉 denote the Euclidian norm and inner product on Rn respectively.
F is indeed a Randers metric on the whole of Rn and it is a projectively flat
Randers metric on Rn i.e., the spray coefficients are in the form Gi = Pyi, for a
scalar function on TM0 given by

P = c

(
|y| − 〈x, y〉√

1 + |x|2

)
,

where c = 1/2(
√

1 + |x|2 ). Since F is projectively flat, it is of scalar flag curva-
ture. The flag curvature of F given by

K =
3

4(1 + |x|2) .
|y|

√
1 + |x|2 − 〈x, y〉

|y|
√

1 + |x|2 + 〈x, y〉 .

Then by Theorem 3.2, this Randers metric is not R-quadratic.

The above example shows that R-quadratic metrics are not invariant under
projective change, because it is projectively related to an R-quadratic metric, i.e.
Euclidean metric. This is also true for Einstein case, i.e. in general case, not only
Einstein Finsler metrics but also Ricci flat metrics are not projectively isolated.
For example, locally Minkowski metrics on a torus Tn are pointwise projective to
the standard flat Riemann metric on Tn. In fact, these are the only flat metrics
on Tn. From (8) we can get a corollary as follows:
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Corollary 3.2. Let Fn be an Einstein Finsler spaces projectively related

with F̄n. Then F̄n is Einstein Finsler space if and only if

(
Ξ
F̄ 2

)

.k

= 0

Until now, there are very few results on Ricci-flat spaces so the non-trivial
problem is to study Ricci-flat metrics and projectively relation between them. On
R-quadratic spaces, we will get following theorem:

Theorem 3.3. Let Fn be R-quadratic Einstein Finsler spaces projectively

related with F̄n. Suppose that F̄n is R-quadratic, then F̄n is Einstein if and

only if

ykP;k = P 2

Proof. Suppose ykP;k = P 2, so Ric = Ric. We know that Ric = 0 by
Theorem 3.1. So Ric = 0 and F̄n. Vice versa, if F̄n is Einstein then Ric = 0 and
so ykP;k = P 2.
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