Lorentzian Para-contact submanifolds

By SHANTESHWAR PRASAD (Varanasi) and RAM HIT OJHA (Varanasi)

Matsumoto and Mihai [1] introduced the idea of Lorentzian Paracontact structure and studied its several properties. The purpose of the present paper is to initiate the study of Lorentzian Para-contact submanifolds.

1. Introduction

Let us consider an n-dimensional real differentiable manifold of differentiability class C^{∞} endowed with a C^{∞} vector valued linear function φ, a C^{∞} vector field ξ and a C^{∞} 1-form η and a Lorentzian metric g satisfying

$$
\begin{align*}
\varphi^{2}(V) & =V+\eta(V) \xi \tag{1.1}\\
\eta(\xi) & =-1 \tag{1.2}\\
g(\varphi U, \varphi V) & =g(U, V)+\eta(U) \eta(V) \tag{1.3}\\
g(V, \xi) & =\eta(V) \tag{1.4}
\end{align*}
$$

for arbitrary vector fields U and V, then V_{n} is called a Lorentzian Paracontact manifold and the structure (φ, ξ, η, g) is called a Lorentzian Paracontact structure.

In a Lorentzian para-contact structure the following hold:

$$
\begin{gather*}
\varphi \xi=0, \quad \eta(\varphi V)=0 \tag{1.5}\\
\operatorname{rank}(\varphi)=n-1 \tag{1.6}
\end{gather*}
$$

A Lorentzian para-contact manifold is called Lorentzian Para-Sasakian manifold if

$$
\begin{equation*}
\left(\nabla_{U} \varphi\right)(V)=g(U, V) \xi+U \eta(V)+2 \eta(U) \eta(V) \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{U} \xi=\varphi U \tag{1.8}
\end{equation*}
$$

where ∇_{U} denotes the covariant differentiation with respect to g.
Let us put

$$
\begin{equation*}
\Phi(U, V)=g(\varphi U, V) \tag{1.9}
\end{equation*}
$$

Then the tensor field Φ is symmetric:

$$
\begin{equation*}
\Phi(U, V)=\Phi(V, U) \tag{1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi(U, V)=\left(\nabla_{U} \eta\right)(V) \tag{1.11}
\end{equation*}
$$

Definition 1.1. An Lorentzian para-contact manifold will be called an LP-cosymplectic manifold if

$$
\begin{equation*}
\nabla_{U} \varphi=0 \tag{1.12}
\end{equation*}
$$

Definition 1.2. An Lorentzian Para (LP)-contact manifold will be called an LP-nearly cosymplectic manifold if

$$
\begin{equation*}
\text { (a) } \quad\left(\nabla_{U} \varphi\right)(U)=0 \Longleftrightarrow\left(\nabla_{U} \varphi\right)(V)+\left(\nabla_{V} \varphi\right)(U)=0 \tag{1.13}
\end{equation*}
$$

It can be easily seen that on an LP-Cosymplectic manifold $\nabla_{U} \xi=0$.
Theorem 1.1. The Lorentzian para-contact structure on V_{n} is not unique.

Proof. Let (φ, ξ, η, g) be a Lorentzian Para-contact structure on V_{n}. Let ξ^{\prime} be a nonzero vector field nowhere in the ξ-direction, then we have a non-singular tensor field μ of type $(1,1)$ such that $\mu \xi^{\prime}=\xi$. If we define a tensor field φ^{\prime} and a 1 -form η^{\prime} by $\mu \varphi^{\prime} U=\varphi \mu U, \eta^{\prime}(U)=\eta(\mu U)$, then we have

$$
\mu \varphi^{\prime 2} U=\varphi \mu \varphi^{\prime} U=\varphi^{2} \mu U=\mu U+\eta(\mu U)=\mu\left(U+\eta^{\prime}(U) \xi\right)
$$

yielding

$$
\varphi^{\prime 2} U=U+\eta^{\prime}(U) \xi^{\prime}
$$

Let us define a metric tensor g^{\prime} by $g^{\prime}(U, V)=g(\mu U, \mu V)$.
Then $g^{\prime}\left(\varphi^{\prime} U, \varphi^{\prime} V\right)=g\left(\mu \varphi^{\prime} U, \mu \varphi^{\prime} V\right)=g^{\prime}(U, V)+\eta^{\prime}(U) \eta^{\prime}(V)$.
Also $g^{\prime}\left(\xi^{\prime}, U\right)=\eta^{\prime}(U)$.
Thus $\left(\varphi^{\prime}, \xi^{\prime}, \eta^{\prime}, g^{\prime}\right)$ is another Lorentzian Para-contact structure.
Theorem 1.2. On a nearly $L P-$ Cosymplectic manifold $\nabla_{U} \xi=0$.
Proof. Equation (1.13) (b) is equivalent to

$$
\begin{equation*}
\left(\nabla_{U} \Phi\right)(V, W)=\left(\nabla_{V} \Phi\right)(U, W)=0 \tag{1.14}
\end{equation*}
$$

Equations (1.9) and (1.14) give

$$
\begin{equation*}
\left(\nabla_{U} \eta\right)(\varphi V)+\left(\nabla_{V} \eta\right)(\varphi U)=0 \tag{1.15}
\end{equation*}
$$

Putting ξ for U in (1.14) and using in (1.15) we get $\nabla_{U} \xi=0$.

2. Lorentzian Para-contact submanifold

Let $V_{2 m-1}$ be a submanifold of $V_{2 m+1}$ with the inclusion map b : $V_{2 m-1} \rightarrow V_{2 m+1}$ such that $p \in V_{2 m-1}$ goes to $b p \in V_{2 m+1}$. The map b induces a linear transformation (Jacobian map) $b_{\star}: T_{(2 m-1)} \rightarrow T_{(2 m+1)}$ where $T_{2 m-1}$ is the tangent space to $V_{2 m-1}$ at a point p and $T_{2 m+1}$ is the tangent space to $V_{2 m+1}$ at a point $b p$ such that

$$
\left(X \text { in } V_{2 m-1} \text { at } p\right) \rightarrow\left(b_{\star} X \text { in } V_{2 m+1} \text { at } b p\right)
$$

Agreement 2.1. In what follows the equations containing X, Y, Z hold for arbitrary vector fields X, Y, Z in $V_{2 m-1}$.

Let M, N be mutually orthogonal unit vectors normal to $V_{2 m-1}$. If \tilde{g} is an induced metric tensor in $V_{2 m-1}$, we have

$$
\begin{array}{llrr}
\text { (a) } & g\left(b_{\star} X, b_{\star} Y\right) \mathrm{ob}=\tilde{g}(X, Y) & \text { (b) } & g\left(b_{\star} X, M\right) \mathrm{ob}=0 \\
\text { (c) } & g\left(b_{\star} X, N\right) \mathrm{ob}=0 & \text { (d) } & g(M, N) \mathrm{ob}=0 \\
\text { (e) } & g(M, M) \mathrm{ob}=g(N, N) \mathrm{ob}=1 . & & \tag{2.1}
\end{array}
$$

If D is the induced connection on $V_{2 m-1}$, then we have the Gauss equation

$$
\begin{equation*}
V_{b_{\star} X} b_{\star} Y=b_{\star} D_{X} Y+M H(X, Y)+N K(X, Y) \tag{2.2}
\end{equation*}
$$

where H and K are symmetric bilinear functions in $V_{2 m-1}$. The Weingarten equations in $V_{2 m-1}$ are given by

$$
\begin{array}{ll}
V_{b_{\star} X} M=-b_{\star}{ }^{\prime} H(X)+l(X) M, & g\left({ }^{\prime} H(X), Y\right) \stackrel{\text { def }}{=} H(X, Y), \\
V_{b_{\star} X} N=-b_{\star}{ }^{\prime} K(X)-l^{\prime}(X) N, & g\left({ }^{\prime} K(X), Y\right) \stackrel{\text { def }}{=} K(X, Y) .
\end{array}
$$

If the second fundamental forms H and K of $V_{2 m-1}$ are of the form $H(X, Y)=\mu_{1} \tilde{g}(X, Y), K(X, Y)=\mu_{2}, g(X, Y)$ where $\mu_{1}, \mu_{2}=\left(\operatorname{Tr} b_{\star}\right) / n^{\prime}$ then $V_{2 m-1}$ is called totally umbilical. In our case, we take $\mu_{1}=\mu_{2}=\mu$. If the second fundamental form vanishes identically then $V_{2 m-1}$ is said to be totally geodetic. (Yano and Kon [3]).

A submanifold $V_{2 m-1}$ of a Lorentzian Para-contact manifold $V_{2 m+1}$ is said to be invariant if the structure vector field ξ of $V_{2 m-1}$ is tangent to $V_{2 m+1}$ and $\varphi\left(T_{X}\left(V_{2 m-1}\right) \subseteq T_{X}\left(V_{2 m-1}\right)\right.$ where $T_{X}\left(V_{2 m-1}\right)$ denotes the tangent space of $V_{2 m-1}$ at \bar{X}. On the other hand if $\varphi\left(T_{X}\left(V_{2 m-1}\right) \subseteq\right.$ $T_{X}\left(V_{2 m-1}\right)^{\perp}$ for all $X \in V_{2 m-1}$, where $T_{X}\left(V_{2 m-1}\right)^{\perp}$ is the normal space of $V_{2 m-1}$ at X then $V_{2 m-1}$ is said to be antiinvariant in $V_{2 m-1}$.

Let us put

$$
\begin{align*}
& \text { (a) } \varphi\left(b_{\star} X\right)=b_{\star} X+\alpha(X) M+\nu(X) N \\
& \text { (b) } \xi=b_{\star} \xi+\rho M+\sigma N \\
& \text { (c) } \varphi(M)=-b_{\star} p+\delta N \tag{2.3}\\
& \text { (d) } \varphi(N)=-b_{\star} q+\theta M
\end{align*}
$$

Pre-multiplying (2.3) (a) by φ and using (1.1), (2.3) (b), (c), (d) we obtain

$$
\begin{align*}
& b_{\star} X+\eta\left(b_{\star} X\right)\left(b_{\star} \xi+\rho M+\sigma N\right)=b_{\star} \phi^{2} X-b_{\star} p \alpha(X) \\
& \quad-b_{\star} q \nu(X)+M(\alpha(\phi(X))+\theta \nu(X)+N(\nu(\phi(X))+\delta \alpha(X)) \tag{2.4}
\end{align*}
$$

Substituting from (2.3) (a) in

$$
g\left(\varphi\left(b_{\star} X\right), \varphi\left(b_{\star} Y\right)\right)=g\left(b_{\star} X, b_{\star} Y\right)+\eta\left(b_{\star} X\right) \eta\left(b_{\star} Y\right)
$$

and using (2.1) we obtain

$$
\begin{align*}
g(\phi X, \phi Y) & =g(X, Y)+\left(\eta\left(b_{\star} X\right) o b\right)\left(\eta\left(b_{\star} Y\right) o b\right) \\
& -\alpha(X) \alpha(Y)-\nu(X) \nu(Y) \tag{2.5}
\end{align*}
$$

Equations (2.4) and (2.5) give

$$
\begin{gathered}
\varphi^{2} X=X+a(X) T \\
g(\varphi X, \varphi Y)=g(X, Y)+a(X) a(Y)
\end{gathered}
$$

iff

$$
\begin{gathered}
\left(b_{\star} X\right) o b=a(X), \quad p(\alpha(X))+q(\nu(X))=0 \\
\rho a(X)=\alpha(\varphi(X))+\theta(\nu(X)), \quad \sigma a(X)=\nu(\varphi X)+\delta(\alpha(X)) \\
\alpha(X) \alpha(Y)+\nu(X) \nu(Y)=0 .
\end{gathered}
$$

The above equations are consistent iff

$$
\begin{equation*}
\eta\left(b_{\star} X\right) o b=a(X), \quad \alpha(X)=\nu(X)=0, \quad \rho=\sigma=0 . \tag{2.6}
\end{equation*}
$$

Substituting these in (2.3) (a), (b) we obtain

$$
\begin{equation*}
\text { (a) } \varphi\left(b_{\star} X\right)=b_{\star} \varphi X \quad \text { (b) } \quad \xi=b_{\star} \xi \tag{2.7}
\end{equation*}
$$

Thus we have
Theorem 2.1. The necessary and sufficient conditions for a submanifold of $V_{2 m+1}$ to be a Lorentzian Para-contact submanifold are (2.6) and (2.7).

Theorem 2.2. Let us denote the Nijenhuis tensors in $V_{2 m+1}$ and $V_{2 m-1}$ by N and n, determined by φ and ϕ respectively, then $N\left(b_{\star} X, b_{\star} Y\right)=$ $b_{\star} n(X, Y)$.

Proof. In consequence of (2.2) and (2.7) (a) we have

$$
\begin{gathered}
\varphi\left(\varphi\left[b_{\star} X, b_{\star} Y\right]\right)=\varphi\left(\varphi\left(\nabla_{b_{\star} X} b_{\star} Y-\nabla_{b_{\star} Y} b_{\star} X\right)\right) \\
=b_{\star} \phi^{2}\left(D_{X} Y\right)-b_{\star} \phi^{2}\left(D_{Y} X\right)=b_{\star} \phi^{2}([X, Y])
\end{gathered}
$$

hence

$$
N\left(b_{\star} X, b_{\star} Y\right)=b_{\star} n(X, Y)
$$

Definition 2.1. An Lorentzian Para-contact manifold is said to be normal if

$$
N(X, Y)+d \eta(X, Y) \xi=0
$$

Theorem 2.3. If $V_{2 m+1}$ is normal then $V_{2 m-1}$ is also normal.
Proof. We have from Thorem (2.2)

$$
\begin{array}{ll}
& N\left(b_{\star} X, b_{\star} Y\right)=b_{\star} n(X, Y) \\
\text { Now } \quad & N\left(b_{\star} X, b_{\star} Y\right)+\left(\left(\nabla_{b_{\star} X} \eta\right)\left(b_{\star} Y\right)-\left(\nabla_{b_{\star} Y} \eta\right)\left(b_{\star} X\right)\right) \xi=0 \\
& n(X, Y)+\left(\left(D_{X} a\right)(Y)-\left(D_{Y} a\right)(X)\right) \xi-0 .
\end{array}
$$

This shows that if $V_{2 m+1}$ is normal then $V_{2 m-1}$ is also normal.
Theorem 2.4. When $V_{2 m-1}$ is an Lorentzian Para-contact submanifold in a Lorentzian Para-contact manifold we have

$$
\begin{array}{rlrlrl}
(i) & \eta(M) & =0, & & \eta(N) & =0 \\
(i i) & \varphi(M) & =\delta N, & \varphi N & =\theta M \tag{2.8}\\
(i i i) & \delta & =\theta & \text { and } & \delta \theta & =1 .
\end{array}
$$

Proof. We have $g\left(\varphi M, b_{\star} X\right)-g\left(M, b_{\star} \varphi X\right)=0$ which gives

$$
g\left(-b_{\star} p+\delta N, b_{\star} X\right)-g\left(M, b_{\star} \varphi X\right)=0
$$

Using (2.1) (a), (b), (c), (d) we get

$$
g(p, X)=0 \Longrightarrow p=0
$$

Similarly we can get $q=0$, putting this value in (2.3) (c) and (d) we get

$$
\varphi(M)=\delta N, \quad \varphi(N)=\theta M
$$

Pre-multiplying (2.3) (c), (d) by φ and using (1.1) and equating tangential and normal parts we have

$$
\eta(M)=0, \quad \eta(N)=0, \quad \delta \theta=1 .
$$

We also have

$$
g(\varphi M, N)-g(M, \varphi N)=0
$$

Putting the values of M and N as above we get

$$
\delta=\theta .
$$

Theorem 2.5. Let $V_{2 m+1}$ be an Lorentzian Para-contact cosymplectic manifold then $V_{2 m-1}$ is also an $L P$-cosymplectic manifold and

$$
\begin{equation*}
H(X, \varphi Y)=\delta K(X, Y), \quad K(X, \varphi Y)=\delta H(X, Y) \tag{2.9}
\end{equation*}
$$

where H and K are symmetric bilinear functions in $V_{2 m-1}$ and $\delta^{2}=1$.
Proof. We have

$$
\begin{aligned}
\left(\nabla_{b_{\star} X} \eta\right)\left(b_{\star} Y\right)=0 & \Longrightarrow X\left(a(Y)-a\left(D_{X} Y\right)=0\right. \\
& \Longrightarrow\left(D_{X} a\right)(Y)=0
\end{aligned}
$$

Also

$$
\left(\nabla_{b_{\star} X} \varphi\right)\left(b_{\star} Y\right)=0 \Longrightarrow \nabla_{b_{\star} X} b_{\star} Y=\varphi\left(\nabla_{b_{\star} X} b_{\star} Y\right)
$$

which gives

$$
\begin{aligned}
& b_{\star} D_{X} \varphi Y+H(X, \varphi Y) M+K(X, \varphi Y) N \\
= & b_{\star} \varphi\left(D_{X} Y\right)+H(X, Y) \delta N+K(X, Y) \delta M .
\end{aligned}
$$

This equation implies that $\left(D_{X} \varphi\right)(Y)=0$ and (2.9) are satisfied. This completes the proof.

Theorem 2.6. Let $V_{2 m+1}$ be an $L P-$ nearly cosymplectic manifold. Then $V_{2 m-1}$ is also an $L P$-nearly cosymplectic manifold and

$$
H(X, \varphi Y)+H(Y, \varphi X)-2 \delta H(X, Y)=0
$$

and

$$
K(X, \varphi Y)+K(Y, \varphi X)-2 \delta K(X, Y)=0
$$

where $\delta^{2}=1$.
Proof. For an LP-nearly cosymplectic manifold we have

$$
\begin{gathered}
\left(\nabla_{b_{\star} X} \varphi\right)\left(b_{\star} Y\right)+\left(\nabla_{b_{\star} Y} \varphi\right)\left(b_{\star} X\right)=0 \\
\nabla_{b_{\star} X} b_{\star} \varphi Y+\nabla_{b_{\star} Y} b_{\star} \varphi X=\varphi\left(\nabla_{b_{\star} X} b_{\star} Y\right)+\varphi\left(\nabla_{b_{\star} Y} b_{\star} X\right)
\end{gathered}
$$

or

$$
\begin{aligned}
& b_{\star} D_{X} \varphi Y+H(X, \varphi Y) M+K(X, \varphi Y) N+b_{\star} D_{Y} \varphi X \\
& +H(Y, \varphi X) M+K(Y, \varphi X) N=b_{\star} \varphi\left(D_{X} Y\right)+b_{\star} \varphi\left(D_{Y} X\right) \\
& +H(X, Y) \delta N+H(Y, X) \delta N+K(X, Y) \delta M+K(Y, X) \delta M
\end{aligned}
$$

This equation implies
and

$$
\begin{gathered}
\left(D_{X} \varphi\right)(Y)+\left(D_{Y} \varphi\right)(X)=0 \\
H(X, \varphi Y)+H(Y, \varphi X)-2 \delta K(X, Y)=0 \\
K(X, \varphi Y)+K(Y, \varphi X)-2 \delta H(X, Y)=0
\end{gathered}
$$

Theorem 2.7. Let $V_{2 m-1}$ be a submanifold tangent to the sturcture vector field ξ of an Lorentzian Para-Sasakian manifold $V_{2 m+1}$. If $V_{2 m-1}$ is totally umbilical then $V_{2 m-1}$ is totally geodesic.

Proof. From Gauss' equation we have

$$
\nabla_{b_{\star} X} \xi=b_{\star} D_{X} \xi+H(X, \xi) M+K(X, \xi) N
$$

or

$$
b_{\star} \varphi X=b_{\star} D_{X} \xi+H(X, \xi) M+K(X, \xi) N
$$

Equating tangential and normal parts we get

$$
\varphi X=D_{X} \xi \quad \text { and } \quad H(X, \xi)=0, \quad K(X, \xi)=0
$$

Thus

$$
H(\xi, \xi)=0, \quad K(\xi, \xi)=0
$$

If $V_{2 m-1}$ is totally umbilical, then $H(X, Y)=\mu g(X, Y)=K(X, Y)$. Writing ξ for both X and Y we get

$$
H(\xi, \xi)=K(\xi, \xi)=0 \Longrightarrow g(\xi, \xi)=0 \Longrightarrow \mu=0
$$

which implies that

$$
H(X, Y)=K(X, Y)=0
$$

Thus $V_{2 m-1}$ is totally geodesic.
If $V_{2 m-1}$ is totally geodesic then $H(X, \xi)=0$ that is φX is tangent to $V_{2 m-1}$ and hence $V_{2 m-1}$ is an invariant submanifold.

Theorem 2.8. Let $V_{2 m-1}$ be a submanifold of a Lorentzian ParaSasakian manifold. $V_{2 m+1}$ is tangent to the structure vector field ξ of $V_{2 m+1}$. Then vector field ξ is parallel with respect to the induced connection on $V_{2 m-1}$ if and only if $V_{2 m-1}$ is an anti-invariant submanifold in $V_{2 m+1}$.

Proof. We have for the tangent ξ of $V_{2 m-1}$

$$
\begin{equation*}
\nabla_{b_{\star} X} \xi=b_{\star} \varphi X=b_{\star} D_{X} \xi+H(X, \xi) M+K(X, \xi) N \tag{2.10}
\end{equation*}
$$

Since ξ is parallel with respect to the induced connection we have

$$
D_{X} \xi=0
$$

From (2.10) we have

$$
\varphi X=H(X, \xi) M+K(X, \xi) N
$$

Hence φX is normal to $V_{2 m-1}$. Thus $\varphi X \in T_{X}\left(V_{2 m-1}\right)^{\perp}$ for every vector field X on $V_{2 m-1}$. Thus $V_{2 m-1}$ is anti-invariant. Conversely if $V_{2 m-1}$ is anti-invariant then $\varphi X=H(X, \xi) M+K(X, \xi) N$, hence $D_{X} \xi=0$. This completes the proof.

Theorem 2.9. Let $V_{2 m-1}$ be a submanifold of an Lorentzian ParaSasakian manifold of $V_{2 m+1}$. If the structure vector field ξ is normal to $V_{2 m-1}$, then $V_{2 m-1}$ is totally geodesic if and only if $V_{2 m-1}$ is an antiinvariant submanifold.

Proof. Since ξ is normal to $V_{2 m-1}$ we have

$$
\begin{aligned}
g\left(b_{\star} \varphi X, b_{\star} Y\right)= & g\left(b_{\star} \nabla_{X} \xi, b_{\star} Y\right)=g\left(-b_{\star}{ }^{\prime} H(X), b_{\star} Y\right)+g\left(l(X) \xi, b_{\star} Y\right) \\
& =g\left(-b_{\star}{ }^{\prime} K(X), b_{\star} Y\right)-g\left(l^{\prime}(X) \xi, b_{\star} Y\right)
\end{aligned}
$$

or

$$
g\left(b_{\star} \varphi X, b_{\star} Y\right)=-g\left({ }^{\prime} H(X), Y\right)=g\left({ }^{\prime} K(X), Y\right) \text { for any } X
$$

and Y on $V_{2 m-1}$. Hence Φ, H and K are symmetric, hence $g\left(b_{\star} \varphi X, b_{\star} Y\right)=$ $g\left({ }^{\prime} H(X), Y\right)=0=g\left({ }^{\prime} K(X), Y\right)$. If $V_{2 m-1}$ is totally geodesic then

$$
{ }^{\prime} K(X)={ }^{\prime} H(X)=0 \Longrightarrow \varphi(X) \in T_{X}\left(V_{2 m-1}\right)
$$

Hence $V_{2 m-1}$ is anti-invariant.
Conversely if $V_{2 m-1}$ is anti-invariant then

$$
\begin{gathered}
g\left({ }^{\prime} H(X), Y\right)=0=g\left({ }^{\prime} K(X), Y\right) \\
{ }^{\prime} H(X)=0={ }^{\prime} K(X) \quad H(X, Y)=0=K(X, Y)
\end{gathered}
$$

hence $V_{2 m-1}$ is totally geodesic.

References

[1] K. Matsumoto and Ion Mihai, On certain transformation in an LP-Sasakian Manifold, Tensor N.S. 47 (1989).
[2] R. H. Ojнa, Almost contact submanifold, Tensor N.S. 28 (1974).
[3] K. Yano and M. Kon, Anti-invariant submanifold of Sasakian space forms, I. Tohoku Math. J. 29 (1977), 19-23.
[4] R. S. Mishra, Structures on differentiable manifold and their applications, Chandrama Prakashan, Allahabad, 1984.

```
SHATESHWAR PRASAD
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
BANARAS HINDU UNIVERSITY
VARANASI - 221005
INDIA
RAM HIT OJHA
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
BANARAS HINDU UNIVERSITY
VARANASI - 221005
INDIA
```

(Received March 24, 1992; revised January 20, 1993)

