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L1-factorization of Pietsch integral operators

By RAFFAELLA CILIA (Catania) and JOAQUIN M. GUTIÉRREZ (Madrid)

Abstract. Given a compact Hausdorff space K and a regular positive finite, Borel

measure µ on K, we characterize the operators on C(K) admitting a factorization

through the natural inclusion of C(K) into L1(K, µ). We also characterize the op-

erators on L∞(Ω, ν), with ν a positive finite measure, that factor through the natural

inclusion of L∞(Ω, ν) into L1(Ω, ν).

Throughout, E and F will denote Banach spaces, BE∗ will stand for the

closed unit ball of the dual space E∗ endowed with the weak-star topology, and

L(E, F ) will be the space of all (linear bounded) operators from E into F endowed

with the supremum norm. The symbol kF will be used for the canonical isometric

embedding of F into F ∗∗.

An operator T ∈ L(E, F ) is Pietsch integral [DU, Definition VI.3.8] if there

exists a countably additive F -valued, Borel measure G of bounded variation on

BE∗ such that

T (x) =

∫

BE∗

x∗(x) dG(x∗) (x ∈ E).

The Pietsch integral norm of T is given by

‖T ‖PI := inf|G|(BE∗),

where |G| denotes the variation of G and the infimum is taken over all vector

measures G satisfying the definition.
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In the theory of Pietsch integral operators and its development, a fundamen-

tal rôle is played by the following well-known factorization theorem.

Theorem 1 ([DU, Theorem VI.3.11]). An operator T ∈ L(E, F ) is Pietsch

integral if and only if there are a compact Hausdorff space K, a regular Borel

measure µ on K, and operators S ∈ L(L1(K, µ), F ) and R ∈ L(E, C(K)) giving

rise to the commutative diagram

E
T

−−−−→ F

R





y

x




S

C(K) −−−−→
J

L1(K, µ)

where J denotes the natural inclusion of C(K) into L1(K, µ).

It is well-known that K may be chosen to be any weak-star compact norming

subset of BE∗ , denoting by R the natural isometric embedding of E into C(K)

[DJT, Theorem 5.6].

Villanueva [V, pages 58–59] noticed that the result remains true if K is any

compact space (not necessarily contained in BE∗) such that there is an isomorphic

embedding of E into C(K). So we can state:

Theorem 2. Let T ∈ L(E, F ) be an operator, and let K be a compact

Hausdorff space such that there is an isomorphic embedding R ∈ L(E, C(K)).

Then T is Pietsch integral if and only if there exist a regular Borel measure µ

on K and an operator S ∈ L(L1(K, µ), F ) such that the following diagram is

commutative
E

T
−−−−→ F

R





y

x




S

C(K) −−−−→
J

L1(K, µ)

where J denotes the natural inclusion of C(K) into L1(K, µ).

Therefore, we can select the compact space K and the operator

R ∈ L(E, C(K)), provided that it be an isomorphism. Then it seems natural to

ask if we can also select the regular Borel measure µ on K.

It is easy to see that the answer is negative. Moreover, we give characteriza-

tions of the operators on C(K) spaces that factor through the natural inclusion

of C(K) into L1(K, µ) when µ is a given regular positive finite, Borel measure
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on K. We also characterize the operators on L∞(Ω, ν), with ν a positive finite

measure, that factor through the natural inclusion of L∞(Ω, ν) into L1(Ω, ν).

The following simple example shows that there exists a functional on C[0, 1]

(trivially, Pietsch integral) that cannot be factored through the natural inclusion

of C[0, 1] into L1([0, 1], µ), where µ is Lebesgue measure.

Example 3. Consider δ1/2 ∈ C[0, 1]∗. Assume that it factors through the

natural inclusion J : C[0, 1] → L1([0, 1], µ). Then δ1/2 = ξ ◦ J , where ξ ∈

L∞([0, 1], µ). For each natural number n, let fn ∈ C[0, 1] be a function such that

fn(t) =































0, if t ≤
1

2
−

1

n

1, if t =
1

2

0, if t ≥
1

2
+

1

n
.

Then

1 = fn

(

1

2

)

=
∣

∣δ1/2(fn)
∣

∣ = |ξ ◦ J(fn)| ≤ ‖ξ‖ ‖J(fn)‖L1
−−−−→
n→∞

0,

a contradiction.

In fact, this example can be deduced easily from Theorem 5 below.

Given a compact Hausdorff space K, let Σ be the σ-algebra of the Borel

subsets of K. Denote by B(Σ) the space of all uniform limits of simple measurable

functions on K, endowed with the supremum norm.

Let

λ : B(Σ) −→ C(K)∗∗

be the isometric embedding given by

〈λ(f), ν〉 :=

∫

K

f dν (ν ∈ C(K)∗, f ∈ B(Σ)),

where the integral is defined as in [DU, Definition I.1.12], that is, first on the

simple measurable functions and then extended to B(Σ).

Denote by

i : C(K) −→ B(Σ)

the natural embedding [D, Corollary §14.5.1].
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Given an operator T ∈ L(C(K), F ), the representing measure mT : Σ → F ∗∗

associated with T is defined by

mT (A) := T ∗∗(λ(χA)) (A ∈ Σ)

(see the proof of [DU, Theorem VI.2.1]).

If µ is a finite positive measure on K, denote by

J : C(K) −→ L1(K, µ)

and

J : B(Σ) −→ L1(K, µ)

the natural inclusions. Note that J ◦ i = J (see the diagram below).

B(Σ) L1(K, µ)

C(K)

J

i J

Indeed, given ω ∈ K and f ∈ C(K), since J , J , and i are natural inclusions, we

have

J(f)(ω) = f(ω) = i(f)(ω) = J(i(f))(ω) =
(

J ◦ i(f)
)

(ω),

so J ◦ i = J .

The following lemma is well-known (see the proof of [DU, Example VI.3.6]),

but we have not found its proof in the literature. We include it for completeness.

Lemma 4. Let K be a compact Hausdorff space and let µ be a regular finite

positive, Borel measure on K. Then the representing measure mJ of J : C(K) →

L1(K, µ) is given by

mJ(A) := χA (A ∈ Σ).

Proof. Define a vector measure G : Σ → L1(K, µ) by

G(A) := χA (A ∈ Σ).

Using the regularity of µ, and choosing ξ ∈ L∞(K, µ), it is easy to show that

ξ ◦ G is a regular set function. It is also easy to see that it is countably additive

and has bounded variation.



L1-factorization of Pietsch integral operators 445

By [DS, Theorem VI.7.3], there is a (weakly compact) operator

T : C(K) −→ L1(K, µ)

given by

T (f) :=

∫

K

f dG (f ∈ C(K)),

whose representing measure is G.

By [DU, Theorem I.1.13], there is an operator

U : B(Σ) −→ L1(K, µ)

given by

U(f) :=

∫

K

f dG (f ∈ B(Σ)),

with representing measure G.

Using the definitions of U and T , we obtain U ◦ i = T .

For A ∈ Σ, we have

U(χA) =

∫

K

χA dG =

∫

A

dG = G(A) = χA = J(χA).

Given f ∈ C(K), there is a sequence (fn) of simple measurable functions

such that fn → i(f) in B(Σ), under the supremum norm [D, Corollary §14.5.1].

Therefore,

T (f) = U ◦ i(f) = lim
n

U(fn) = lim
n

J(fn) = J ◦ i(f) = J(f),

so T = J and mJ = G. �

Given an operator T ∈ L(C(K), F ), the following diagram is commutative:

B(Σ) C(K)∗∗

C(K) F F ∗∗

λ

T

i kC(K)

kF

T∗∗

Indeed, it is enough to show that λ ◦ i = kC(K). For f ∈ C(K) and ν ∈ C(K)∗,

we have

〈λ ◦ i(f), ν〉 =

∫

K

i(f) dν =

∫

K

f dν = 〈ν, f〉 = 〈kC(K)(f), ν〉,

and the claim is proved.
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Theorem 5. Let K be a compact Hausdorff space, let µ be a regular positive

finite, Borel measure on K, and let T ∈ L(C(K), F ) be an operator. Then the

following assertions are equivalent:

(a) There is an operator S ∈ L(L1(K, µ), F ) such that T = S◦J (see the diagram

below).

C(K) F

L1(K, µ)

T

J S

(b) There exists a constant C > 0 such that

‖mT (A)‖ ≤ Cµ(A) (A ∈ Σ).

(c) There exists a constant C > 0 such that

|mT | (A) ≤ Cµ(A) (A ∈ Σ).

(d) There exists a constant C > 0 such that

‖T (f)‖ ≤ C ‖J(f)‖L1
(f ∈ C(K)).

Moreover, if (b), (c) or (d) holds, then T is Pietsch integral, and

‖T ‖
PI

≤ Cµ(K).

Proof. (a) ⇒ (b). For A ∈ Σ, we have

‖mT (A)‖ = ‖T ∗∗(λ(χA))‖ = ‖S∗∗ ◦ J∗∗(λ(χA))‖

≤ ‖S‖ ‖mJ (A)‖ = ‖S‖ ‖χA‖L1
(by Lemma 4)

= ‖S‖µ(A).

(b) ⇒ (c). By the definition of variation, given A ∈ Σ, we have

|mT | (A) = sup
π

∑

N∈π

‖mT (N)‖ ,

where the supremum is taken over all partitions π of A into a finite number of

pairwise disjoint members of Σ. Then,

sup
π

∑

N∈π

‖mT (N)‖ ≤ C sup
π

∑

N∈π

µ(N) = Cµ(A).
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(c) ⇒ (d). Let

g :=

n
∑

i=1

aiχAi

be a simple measurable function on K, with (Ai)
n
i=1 a disjoint family of members

of Σ. Then,

‖T ∗∗(λ(g))‖ =

∥

∥

∥

∥

∥

n
∑

i=1

aiT
∗∗(λ(χAi

))

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

n
∑

i=1

aimT (Ai)

∥

∥

∥

∥

∥

≤
n

∑

i=1

|ai| ‖mT (Ai)‖ ≤
n

∑

i=1

|ai| |mT | (Ai)

≤ C

n
∑

i=1

|ai|µ(Ai) = C

∫

K

∣

∣

∣

∣

∣

n
∑

i=1

aiχAi

∣

∣

∣

∣

∣

dµ = C
∥

∥J(g)
∥

∥

L1
.

Given f ∈ C(K), let (fn) be a sequence of simple measurable functions on

K such that i(f) = limn fn in B(Σ). Then,

‖T (f)‖ = ‖kF ◦ T (f)‖ = ‖T ∗∗(λ(i(f)))‖

= lim
n

‖T ∗∗(λ(fn))‖ ≤ C lim
n

∥

∥J(fn)
∥

∥

= C
∥

∥J(i(f))
∥

∥ = C ‖J(f)‖L1
.

(d) ⇒ (a). Define an operator S : J(C(K)) → F by S(J(f)) := T (f), for all

f ∈ C(K). We have

‖S(J(f))‖ = ‖T (f)‖ ≤ C ‖J(f)‖L1
(f ∈ C(K)),

so S is continuous on J(C(K)) endowed with the L1-norm. Since J(C(K)) is

dense in L1(K, µ) [DS, Lemma IV.8.19], S has an extension, denoted also by S,

to L1(K, µ) such that S ◦ J = T and ‖S‖ ≤ C.

Suppose now that T satisfies (b), (c) or (d), for a constant C > 0. Then T

satisfies also (a), with ‖S‖ ≤ C. Since J is Pietsch integral, so is T = S ◦ J , and

‖T ‖PI ≤ ‖S‖ ‖J‖PI ≤ Cµ(K),

where we have used [DU, Example VI.3.10]. �

We now study the operators on L∞(Ω, ν). We first give an example of a

functional on L∞([0, 1], µ), where µ is Lebesgue measure, that cannot be factored

through the canonical inclusion into L1([0, 1], µ).



448 Raffaella Cilia and Joaqúın M. Gutiérrez

Example 6. For every n ∈ N, let

gn := n(n + 1)χ[ 1
n+1 , 1

n
].

Obviously, gn ∈ L1([0, 1], µ) and ‖gn‖L1([0,1],µ) = 1. Define a linear form

H : L∞([0, 1], µ) −→ R

by

H(f) :=

+∞
∑

n=1

1

n3/2

∫

[0,1]

fgn dµ for f ∈ L∞([0, 1], µ).

Since

|H(f)| ≤

+∞
∑

n=1

1

n3/2
‖f‖L∞([0,1],µ) ,

H is continuous. Suppose that there exists B ∈ L1([0, 1], µ)∗ such that the fol-

lowing diagram is commutative

L∞([0, 1], µ) R

L1([0, 1], µ)

H

J B

where J is the natural inclusion of L∞([0, 1], µ) into L1([0, 1], µ). For each m ∈ N,

consider the function

fm := χ[ 1
m+1 , 1

m
].

We have

B ◦ J(fm) = H(fm) =

+∞
∑

n=1

1

n3/2

∫

[0,1]

χ[ 1
m+1 , 1

m
]n(n + 1)χ[ 1

n+1 , 1
n

] dµ =
1

m3/2
.

Therefore

1

m3/2
= |B ◦ J(fm)| ≤ ‖B‖ ‖fm‖L1([0,1],µ) = ‖B‖

1

m(m + 1)
,

so
m(m + 1)

m3/2
≤ ‖B‖ for all m ∈ N,

a contradiction.



L1-factorization of Pietsch integral operators 449

The following result is mentioned in [LM, Exercise 10.10]. We give a proof

for completeness.

Lemma 7. Let (Ω, Σ, µ) be a measure space. Then the space of simple

measurable functions is dense in L∞(Ω, µ).

Proof. Let f ∈ L∞(Ω, µ). Suppose first that f ≥ 0. There is a subset

M ⊂ Ω with µ(M) = 0 such that f is bounded on Ω\M . By [R, Theorem 1.17],

there is a nondecreasing sequence (fn) of simple measurable functions such that

lim
n

fn(ω) = f(ω) (ω ∈ Ω\M).

Since f is bounded, the convergence is uniform on Ω\M (see the comment after

[R, Theorem 1.17]). Therefore, the L∞-norm of (fn − f) tends to zero.

If f is arbitrary, we decompose f = f+ − f− as usual. There are sequences

(gn) and (hn) of simple measurable functions converging respectively to f+ and

f−. Then, the sequence of simple measurable functions (gn − hn) converges to f

in L∞(Ω, µ). �

The following result is contained in [DJT, Examples 2.9 and Corollary 5.22].

Lemma 8. Let (Ω, Σ, µ) be a finite measure space. Then the natural inclu-

sion

J : L∞(Ω, µ) −→ L1(Ω, µ)

is Pietsch integral with norm ‖J‖
PI

= µ(Ω).

Given an operator T ∈ L(L∞(Ω, µ), F ), its representing measure mT : Σ →

F is defined by

mT (A) := T (χA) (A ∈ Σ)

[DU, page 148].

Theorem 9. Let (Ω, Σ, µ) be a positive finite measure space and let

T ∈ L(L∞(Ω, µ), F )

be an operator. Then the following assertions are equivalent:

(a) There is an operator S ∈ L(L1(Ω, µ), F ) such that T = S◦J (see the diagram

below).
L∞(Ω, µ) F

L1(Ω, µ)

T

J S
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(b) There exists a constant C > 0 such that

‖mT (A)‖ ≤ Cµ(A) (A ∈ Σ).

(c) There exists a constant C > 0 such that

|mT | (A) ≤ Cµ(A) (A ∈ Σ).

(d) There exists a constant C > 0 such that

‖T (f)‖ ≤ C ‖J(f)‖L1
(f ∈ L∞(Ω, µ)).

Moreover, if (b), (c) or (d) holds, then T is Pietsch integral, and

‖T ‖
PI

≤ Cµ(Ω).

Proof. (a) ⇒ (b). For A ∈ Σ, we have

‖mT (A)‖ = ‖T (χA)‖ = ‖S ◦ J(χA)‖ ≤ ‖S‖ ‖χA‖L1
= ‖S‖µ(A).

(b) ⇒ (c) as in Theorem 5.

(c) ⇒ (d). Let

g :=

n
∑

i=1

aiχAi

be a simple measurable function on Ω, with (Ai)
n
i=1 a disjoint family of members

of Σ. Then,

‖T (g)‖ =

∥

∥

∥

∥

∥

n
∑

i=1

aiT (χAi
)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

n
∑

i=1

aimT (Ai)

∥

∥

∥

∥

∥

≤ C

∫

Ω

∣

∣

∣

∣

∣

n
∑

i=1

aiχAi

∣

∣

∣

∣

∣

dµ (as in the proof of Theorem 5)

= C ‖J(g)‖L1
.

Let f ∈ L∞(Ω, µ). By Lemma 7, there is a sequence (fn) of simple measur-

able functions on Ω such that limn fn = f in L∞(Ω, µ). Then,

‖T (f)‖ = lim
n

‖T (fn)‖ ≤ C lim
n

‖J(fn)‖L1
= C ‖J(f)‖L1

.

(d) ⇒ (a) as in the proof of Theorem 5, bearing in mind that J(L∞(Ω, µ))

is dense in L1(Ω, µ) [R, Theorem 3.13].

Suppose now that T satisfies (b), (c) or (d), for a constant C > 0. Then T

satisfies also (a), with ‖S‖ ≤ C. Since J is Pietsch integral, so is T = S ◦ J , and

‖T ‖PI ≤ ‖S‖ ‖J‖PI ≤ Cµ(Ω),

where we have used Lemma 8. �
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