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Finite groups in which the degrees
of non-linear constituents

of some induced characters are distinct

By YAKOV BERKOVICH (Afula)

Berkovich, Chillag and Herzog [1] classified all finite groups G,
in which the degrees of the non-linear irreducible characters are distinct.
If G is such a non-abelian group, then one of the following assertions holds
[1]:

(a) G = ES(m, 2), an extra-special group of order 21+2m;
(b) G = (C(pm − 1), E(pm)), a Frobenius group with elementary

abelian kernel E(pm) of order pm (p is a prime), and a complementary
cyclic factor C(pm − 1) of order pm − 1;

(c) G = (Q(8), E(9)), a Frobenius group with the elementary abelian
kernel E(9) of order 9, and a complementary factor Q(8), the ordinary
quaternion group of order 8.

In this note we study a more general class of groups, which we call
D-groups:

D : If 1 < N ≤ G′, N is normal in G, and 1N 6= λ ∈ Irr(N), then
the degrees of the irreducible constituents of the induced character λG are
distinct.

Let Irr1(G) denote the set of all non-linear irreducible characters of
G.

We denote by Irr(χ) the set of all irreducible constituents of the char-
acter χ. Let Irr1(χ) denote the set of all non-linear irreducible constituents
of the character χ, and cd1(χ) = {ϕ(1) | ϕ ∈ Irr1(χ)}. A character χ is
said to be a D-character if the sets cd1(χ) and Irr1(χ) contain the same
number of elements.

Lemma 1. Suppose that H is a non-trivial normal subgroup of a non-
abelian group G, G/H ' C(m) (C(m) is a cyclic group of order m). If,
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for some non-principal λ ∈ Irr(H), the character λG is a D-character, then
|Irr1(λG)| ≤ 1.

Proof. Suppose that χ, τ ∈ Irr1(λG). Then

〈χH , λ〉 = 1 = 〈τH , λ〉
by Clifford’s theory. So by Clifford’s theorem χ(1) = τ(1) and χ = τ
since χ, τ are non-linear irreducible constituents of the same degree of the
D-character λG.

Corollary 1.1. Suppose that 1 < G′ < G, G/G′ ' C(m). If, for
every non-principal λ ∈ Irr(G′), the character λG is a D-character, then
G = (C(m), G′), a Frobenius group with a complementary factor C(m)
and the kernel G′.

Proof. If 1G′ 6= λ ∈ Irr(G′) then Irr(λG) = Irr1(λG), so by Lemma 1,
λG ∈ Irr(G). Now the result follows from [2, Corollary 2.5] (see also [5,
corollary 37.5.4]).

Remark. If G′ ≤ N ≤ G and a non-principal λ ∈ Irr(N), then all
irreducible constituents of the character λG have the same degree (see [4],
Problem 6.2).

Lemma 2. Suppose that H is a non-trivial normal subgroup of G,
G/H ' Q(8) and, for some non-principal λ ∈ Irr(H) the character λG is a
D-character. Then λG has at most one non-linear irreducible constituent.

Proof. Let

λG = e1χ
1 + . . . + esχ

s, Irr(λG) = {χ1, . . . , χs}.
By Clifford’s theory e1, . . . , es are degrees of irreducible projective rep-
resentations of the group IG(λ)/H, where IG(λ) is the inertia group of
λ in G. Since the Schur’s multiplier of any subgroup of Q(8) is trivial
then in fact e1, . . . , es are degrees of ordinary irreducible representations
of IG(λ)/H. Hence ei ≤ 2 for all i.

Suppose that distinct χ1, χ2 ∈ Irr1(λG). By reciprocity and Clifford’s
theorem e1 6= e2. Let e1 > e2. Then e1 = 2, e2 = 1. Since e1 = 2 then
IG(λ)/H ' Q(8), i.e., IG(λ) = G and λ is invariant under G. Then

χ1
H = 2λ, χ2

H = λ,

and λ is non-linear (since χ2 is non-linear). Hence Irr1(λG) = Irr(λG) by
reciprocity. Therefore s = 2 and

|G : H|λ(1) = 8λ(1) = λG(1) = e1χ
1(1) + e2χ

2(1) = 5λ(1),

a contradiction.
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Corollary 2.1. Suppose that H is a non-trivial normal subgroup of
G, G/H ' Q(8) and H < G′. If for every non-principal λ ∈ Irr(H) the
character λG is a D-character, then G = (Q(8), G′).

See the proof of Corollary 1.1.

Lemma 3. Let p be a prime. Suppose that

pn = pk + a1p
2c(1) + . . . + asp

2c(s),

where s, n, k, a1, . . . , as, c(1), . . . , c(s) are positive integers. Then

(a) k ≥ 2c(1).
(b) If a1 < p2−p then s = 1, k = 2c(1), n = 2c(1)+1, a1 = p−1.

We omit an easy proof of this lemma.
Let G be a group, cd(G) = {χ(1) | χ ∈ Irr(G)}. Then

d(G) = (a0 · 1, a1 · d1, . . . , at · dt)

denotes that |G : G′| = a0, and Irr(G) contains exactly ai characters of
degree di, i ∈ {1, . . . , t}. Usually we assume that 1 < d1 < . . . < dt.

Lemma 4 (see [1]). Suppose that G is a non-abelian p-group, d(G) =
(pk · 1, a1 · pc(1), . . . , at · pc(t)). If a1 < p2 − p then G ' ES(m, p).

Proof. Let |G| = pn. Then

pn = pk + a1p
2c(1) + . . . atp

2c(t).

By the condition t ≥ 1. Hence (Lemma 3)

t = 1, k = 2c(1) = n− 1, a1 = p− 1.

Therefore |G′| = p and c(1) = (n − 1)/2. If χ ∈ Irr(G) is a non-linear
character then

pn−1 = χ(1)2 ≤ |G : Z(G)| ≤ pn−1.

Then |Z(G)| = p = |G′| =⇒ G′ = Z(G) and G ' ES(m, p).

Lemma 5. Suppose that N is a non-trivial normal subgroup of G,
N ≤ G′, G/N is a p-group. If for some non-principal λ ∈ Irr(N) the
character λG is a D-character, then λG = eχ with χ ∈ Irr(G).

Proof. Let

λG = e1χ
1 + . . . + esχ

s, Irr(λG) = {χ1, . . . , χs}.
Since N ≤ G′ and λ 6= 1N , then all χi are non-linear. Let

χi
N = ei(λ1 + . . . + λn)
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be Clifford’s decomposition, λ1 = λ. Then χi(1) = einλ(1),

|G : N |λ(1) = λG(1) = nλ(1) (e2
1 + . . . + e2

s),

|G : N | = n(e2
1 + . . . + e2

s).

Here n = |G : IG(λ)| is a power of p since N ≤ IG(λ). If |IG(λ) : N | = pα,
then

pα = e2
1 + . . . + e2

s.

Since IG(λ)/N is a p-group then e1, . . . , es are powers of p. If i 6= j
then einλ(1) = χi(1) 6= χj(1) = ejnλ(1) =⇒ ei 6= ej . Suppose that
e1 < . . . < es, ei = pβ(i). If s > 1 then

pα−2β(1) = 1 + p2(β(2)−β(1)) + . . . + p2(β(s)−β(1)),

which is impossible. Hence s = 1 and λG = e1χ
1, χ1 ∈ Irr(G).

Lemma 6. Suppose that G = (A,H) is a Frobenius group, 1 < N <
H and N is a normal in G, H/N is a p-group. If a non-principal λ ∈ Irr(N)
and the character λG is a D-character, then λG = eψ where ψ ∈ Irr(G).

Proof. Suppose that

λG = e1χ
1 + . . . + esχ

s, Irr(λG) = {χ1, . . . , χs}.
Obviously N < G′, so that χ1, . . . , χs are non-linear. Let

χi
N = ei(λ1 + . . . + λn)

be the Clifford’s decomposition, λ1 = λ. Then χi(1) = einλ(1), |G : N | =
n(e2

1 + . . . = e2
s). Since (A,N) is a Frobenius group then IG(λ) ≤ H, so

that n = |A|n0. Therefore

|G : N | = |G : H| |H : N | = |A| |H : N | = |A|n0(e2
1 + . . . + e2

s),

|H : N |n−1
0 = e2

1 + . . . + e2
s.

Since N ≤ IG(λ) ≤ H then n0 is a power of p. As before e1, . . . , es are
distinct powers of p (as degrees of irreducible projective representations of
a p-group IG(λ)/N). As in Lemma 5 this implies s = 1.

Lemma 7. Suppose that H is a normal Hall subgroup of a group G.
Then H ∩ Φ(G) = Φ(H); here Φ(G) is the Frattini subgroup of G.

Proof. The inclusion Φ(H) ≤ Φ(G) follows from the modular law.
So we may assume without loss of generality that Φ(H) = 1. Suppose
that D = H ∩ Φ(G) > 1. Let A be the least subgroup of H such that
AD = H and D does not contained in A (A exists since D > 1 and
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Φ(H) = 1). Let D1 = A ∩D. From the choice of A it follows easily that
D1 ≤ Φ(A). Since D is abelian, then NH(D1) ≥ 〈A,D〉 = H. Then as
it is known D1 ≤ Φ(H) = 1. Thus 1 = D1 = A ∩ D, and H = AD, a
semi-direct product. Since D is abelian then by Gaschutz’s theorem [3,
§1.17] there exists a subgroup F in G such that G = FD and F ∩D = 1.
Since 1 < D ≤ Φ(G) one obtains a contradiction. Thus D = 1 and
H ∩ Φ(G) = 1 = Φ(H).

Lemma 8 (see [5, Lemma 37.3.3]). Suppose that P is a non-trivial
minimal normal p-subgroup of a group G = CP , C ∩ P = 1 and a cyclic
subgroup C of order b acts on P faithfully. Let m be the order of p(mod b).
Then |P | = pm.

Proof (A. Mann). Put E = EndGF (p)C(P ). Then E is a finite
skew field (Schur’s lemma). By Wedderburn’s theorem E is commutative.
Obviously C ⊂ E. So all E-subspaces of P are trivial. Therefore dimE P =
1. Let F be the least subfield of E containing C. As above dimF P = 1.
Hence |E| = |P | = |F |, F = E. Put |E| = pn. Then |C| |(pn− 1). Since C
generates E as field then n is the least positive integer such that pn ≡ 1
(mod b).

Main Theorem. Suppose that G is a non-abelian solvable D-group.
Then one and only one of the following assertions holds:

(a) G = ES(m, p), an extra-special p-group of order p1+2m.

(b) G = (Q(8), E(pn)), Q(8) acts on E(pn) irreducibly.

(c) G = (C(s), E(pn)), C(s) acts on E(pn) irreducibly (in particular
n is the order of p (mod s)).

Proof. It is easy to see that groups (a)–(c) are in fact D-groups.
Suppose that R is a minimal normal subgroup of G such that R ≤ G′.

Let |R| = pn.

(i) G/R is a D-group.
This is obvious.

(ii) If G is nilpotent then G ' ES(m, p).

Proof. Suppose that G = P ×Q where P ∈ Sylp(G) is non-abelian,
Q > 1 (so we may assume that R < P ). Let 1R 6= λ ∈ Irr(R), χ ∈ Irr(λG);
χ is non-linear since R ≤ G′. Let µ be a non-principal linear character of
Q. Then χ × 1Q, χ × µ are distinct non-linear irreducible constituents of
λG of the same degree, a contradiction. Thus G is a p-group.

Let a non-principal λ ∈ Irr(R). Then (Lemma 5) λG = eχ, χ ∈ Irr(G).
Since λ is G-invariant then e = χ(1) (Clifford) and

λG = χ(1)χ, |G : R| = λG(1) = χ(1)2 ≤ |G : Z(G)| =⇒ R = Z(G).
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If |G| = pn then Irr(G) contains exactly p − 1 characters of degree
p(n−1)/2. Since n − 1 is even then n − 2 is odd. Hence G/R is abelian.
Then R = G′ = Z(G) has order p, and G = ES(m, p).

In the sequel we suppose that G is non-nilpotent.

(iii) If G/R is abelian then G = (C(s), R).

Proof. By the condition R = G′. Since G is non-nilpotent then R
does not contained in Φ(G). So G = AR, A ∩ R = 1; here A is a max-
imal subgroup of G. Obviously A is abelian, Z(G) < A and G/Z(G) =
(C(s), E(pn)). In particular every non-principal character from Irr(R)
belongs to the G-orbit of length s. If a non-principal λ ∈ Irr(R) then
IG(λ) = RZ(G) and cd(G) = {1, s}. Since λG has no linear constituents
then by the condition λG = eχ with χ ∈ Irr(G), χ(1) = s. So by the
Clifford’s theorem e = 1. Then |G : R| = λG(1) = χ(1) = s ⇒ Z(G) = 1
and G = (C(s), E(pn)).

(iv) If G′ is abelian (and G is non-nilpotent) then G = (C(s), E(pn)) =
(C(s), R), i.e. G′ = R is a minimal normal subgroup of G.

Proof. In view of (iii) we may assume that R < G′.
Let T be the greatest normal subgroup of G which is properly con-

tained in G′. It has been proved in (iii) that

G/T ∈ {ES(m, q)}, (C(s), E(qm)); here q is a prime.

(1iv) G/T ' ES(m, q).
In view of (ii), q does not divide |T | (we recall that T is abelian). Now

T > 1 since G is non-nilpotent.
So G = QT where Q ∈ Sylq(G). If a non-principal λ ∈ Irr(T ) then

λG = eχ, χ ∈ Irr(G) (Lemma 5). In particular χ vanishes on G − T ,
and so also on Q# = Q − {1}. Hence |Q||χ(1). Since λG(1) = |Q| then
λG = χ for any choice of non-principal λ ∈ Irr(T ). Hence G = (Q,T ) (see
[5, Corollary 37.5.4])]. Then G′ = (Q′, T ) is non-abelian, a contradiction.

(2iv) G/T = (C(s), E(qm)), the subgroup E(qm) is a minimal normal
subgroup of G/T .

Then G/G′ ' C(s), so G = (C(s), G′) (Corollary 1.1), cd(G) = {1, s}.
Let a non-principal λ ∈ Irr(T ). Since λG has no linear constituents then
λG = eχ, χ ∈ Irr(G) (Lemma 6), χ(1) = s. Since every non-principal
irreducible character of T has exactly s conjugates under G, then e = 1
(Clifford) and λG = χ ∈ Irr(G). In this case G is a Frobenius group with
the kernel T [5, Corollary 37.5.4], a contradiction since a Frobenius group
has only one Frobenius kernel.
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(v) If G/G′ = C(s) then G = (C(s), G′), G′ ∈ Sylp(G), Φ(G′) =
Φ(G).

Proof. By Corollary 1.1, G = (C(s), G′). In particular G′ is nilpo-
tent (Thompson). Since G′/G′′ is a minimal normal subgroup of G/G′′ by
(iv), then G′/G′′ is primary =⇒ G′ is primary, say, G′ is a p-group. In
particular G′ ∈ Sylp(G). Now Φ(G′) = Φ(G) (Lemma 7).

(vi) If G/R ' ES(m, q) then G = (Q(8), R).

Proof. Recall that R is a minimal normal subgroup of order pn in
G and G is non-nilpotent. So q 6= p. Now R < G′ by the choice of R. In
view of (iv) we may assume that G′ is non-abelian. We have |G′| = qpn.
Since G′ is non-abelian, it is non-nilpotent. Hence Z(G′) < R = 1 =⇒
G′ = (Z(Q), R) where Q ∈ Sylq(G), Q ' ES(m, q). If a non-principal
λ ∈ Irr(R) then λG = eχ, χ ∈ Irr(G) (Lemma 5). In particular, χ vanishes
on G − R, and, as in (2iv) one obtains G = (Q, R). Hence Q = Q(8),
G = (Q(8), R) = (Q(8), E(pn)).

(vii) If G/G′′ ' ES(m, q) and G′′ > 1 then G = (Q(8), E(pn)) and
E(pn) is a minimal normal subgroup of G.

Proof. Let T be the greatest normal subgroup of G which is prop-
erly contained in G′′. Then by (vi), G/T ' (Q(8), E(pn)). In particular
G/G′′ ' Q(8). Hence G = (Q(8), G′′) by Corollary 2.1. Then G′′ is
abelian (Burnside) and cd(G) = {1, 2, 8}. If a non-principal λ ∈ Irr(T )
then λG = eχ, χ ∈ Irr(G) (Lemma 6). Now λ belongs to a G-orbit of
length 8 = χ(1). Hence e = 1 by the Clifford’s theorem. Thus λG = χ and
χ(1) = 8 = λG(1) = |G : T |, a contradiction. Hence T = 1.

(viii) If G/G′′ = (C(s), E(pm)) then G′′ = 1. In particular G′ is a
minimal normal subgroup of G.

Proof. One has G = (C(s), G′) where G′ ∈ Sylp(G) by (v). If
G′′ = 1 then the result follows from (iv). Suppose that G′′ > 1. Without
loss of generality we may assume that G′′ is a minimal normal subgroup of
G. Since G′′ ≤ Z(G′) then G′′ is a minimal normal subgroup of C(s)G′′.
So (Lemma 8) |G′′| = |G′/G′′| = pm. Take an element x in G′−G′′. Then
the mapping ϕ : G′ → G′′ which is defined by ϕ(a) = [x, a] (a ∈ G′) is
a homomorphism. Obviously the kernel of ϕ is equal to CG′(x). Hence
[x,G′], the image of ϕ is a proper subgroup of G′′. Take a non-principal
λ ∈ Irr(G′′) such that [x,G′] ≤ kerλ. Then xkerλ ≤ Z(G′/ kerλ). Now
λG = eχ, χ ∈ Irr(G) (Lemma 6). So [4, Theorem 6.11] λG′ = eψ, ψ ∈
Irr(G′). Obviously

kerψ = kerλ.
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Since λ is G′-invariant then e = ψ(1) (Clifford). Now

|G′ : G′′| = λG′(1) = ψ(1)2 ≤ |G′/ kerψ : Z(G′/ kerψ)|,
so that |Z(G′/ kerψ)| = p. Hence Z(G′/ kerψ) = G′′/ kerψ, a contradic-
tion since xkerλ ∈ Z(G′/ kerλ) − G′′/ kerλ. Thus G′′ = 1. The theorem
is proved.

Corollary [1]. Suppose that the degrees of the non-linear irreducible
characters of a non-abelian solvable group G are distinct. Then

G ∈ {ES(m, 2), (Q(8), E(9)), (C(pn − 1), E(pn))}.

Proof. Obviously G is a D-group. Hence by the Main Theorem we
have to consider the following three cases.

(i) G ' ES(m, p).
In this case Irr(G) contains exactly p − 1 characters of degree pm.

Hence p− 1 = 1, p = 2, G ' ES(m, 2).
(ii) G = (Q(8), E(pn)).
In this case Irr(G) contains exactly (pn − 1)/8 characters of degree 8.

Therefore (pn − 1)/8 = 1, pn = 9, G = (Q(8), E(9)).
(iii) G = (C(s), E(pn)).
In this case Irr(G) contains exactly (pn − 1)/s characters of degree s.

So (pn − 1)/s = 1, s = pn − 1, G = (C(pn − 1), E(pn)).

Note that all non-abelian simple groups are D-groups.
Next we consider D-groups, i.e. groups G, satisfying the following

condition:
D : If N > 1 is any normal subgroup of G and 1N 6= λ ∈ Irr(N) then

λG is a D–character.
Obviously D-groups are D-groups.

Theorem 9. If G is a non-solvable D-group then G′ = G.

Proof. Suppose that G′ < G. Let H be the last term of the derived
series of G. Then G/H is a non-identity D-group. Since G/H is also a
D-group, we have to consider the following four possibilities.

(i) G/H ' ES(m, p).

If 1H 6= λ ∈ Irr(H) then λG = eχ, χ ∈ Irr(G) (Lemma 5). If τ ∈
Irr(G) and H does not contained in ker τ then 〈τH , 1H〉 = 0, so µG = fτ
for a certain non-linear µ ∈ Irr(H). Then p divides χ(1) for all χ ∈ Irr(G)
such that H does not contained in kerχ. If ϕ ∈ Irr(G) is non-linear and
H ≤ kerϕ, then ϕ ∈ Irr(G/H) so that ϕ(1) = pm. Thus p divides degrees
of all non-linear irreducible characters of G. By Thompson’s theorem
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[4, corollary 12.2] the group G has a normal p-complement, and this p-
complement coincides with H since H ′ = H. Let P ∈ Sylp(G). Then for
a non-principal λ ∈ Irr(H), the character λG = eχ (Lemma 5) vanishes
on P# ⊆ G − H. So |P ||χ(1), e = 1 and λG = χ is irreducible. Hence
G = (P, H) [5, corollary 37.5.4], H is nilpotent by Thompson’s theorem
[5, theorem 37.3.3], G is solvable, a contradiction.

(ii) G/H ' (Q(8), E(pn)).
Then G/G′′ ' Q(8) and G = (Q(8), G′′) by Corollary 2.1, G′′ is

abelian (Burnside), G is solvable, a contradiction.
(iii) G/H ' (C(s), P/H), P/H ∈ Sylp(G/H).
Then P/H = G′/H, G/G′ ' C(s) and G = (C(s), G′) (Corollary

1.1), G′ is nilpotent (Thompson), G is solvable, a contradiction.
(iv) G/H is abelian.
Then H = G′. Let n = exp G/H, and let G′ ≤ T < G be such that

G/T ' C(n). Take a non-linear χ ∈ Irr(G). Then by Clifford’s theory

χT = λ1 + . . . + λs,

where λ1, . . . , λs ∈ Irr(T ) are pairwise distinct of the same degree, and

T ∩ kerχ = ker χT =
s⋂

i=1

kerλi.

Since G/ kerχ is non-abelian then G/(T ∩kerχ) is non-abelian. Hence
all λi are non-linear since T ′ = G′. So λG

i = χ by reciprocity and Lemma 1.
In particular n | χ(1) for all χ ∈ Irr1(G). Therefore for all prime divisors
p of n the group G has a normal p-complement [4, corollary 12.2]. So
H = G′ is a Hall subgroup of G.

Take a non-principal λ ∈ Irr(H). Since G is a D-group then λG = eχ
by [4, problem 6.2]. Hence χ vanishes on R# where R is a complement to
H (R exists by Schur–Zassenhaus theorem). Then |R| | χ(1). Since R and
H are Hall subgroups of G and

λG(1) = |G : H|λ(1) = |R|λ(1), (|R|, λ(1)) = 1, λ(1) | χ(1)

then λG(1) = χ(1), λG = χ for all non-principal λ ∈ Irr(H). Therefore
G = (R, H) [5, corollary 37.5.4], H is nilpotent (Thompson [5, theorem
37.3.3]), a contradiction.

Let a D0-group be a group in which the degrees of the non-linear irre-
ducible characters are distinct. Since all non-linear irreducible characters
of D0-group G are rational-valued, then G′ < G[1] (it is a corollary of
well-known Feit–Seitz theorem). Hence G is solvable by Theorem 9. We
have obtained a new proof of the main theorem of note [1].
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Remark. If for any N ≥ G′ it follows from 1N 6= λ ∈ Irr(N) that the
character λG is a D–character, then G is solvable or G′ = G. My proof of
this assertion uses the classification of finite simple groups.

Conjecture. Non-solvable D–groups are simple.

A character χ of a group G is said to be a D1–character if |Irr1(χ)| ≥
|cd1(χ)| − 1. A group G is said to be a D1–group if for any non-identity
normal subgroup N of G, N ≤ G′, and for any non-principal λ ∈ Irr(N)
the character λG is a D1–character.

Question. Classify all D1–groups.

Acknowledgement. My deep thanks to Prof. Avinoam Mann for use-
ful discussions, and to the referee for many remarks and suggestions (in
particular the assertion that G′ is a minimal normal subgroup of G in the
part (c) of the Main Theorem due to the referee).
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