Publ. Math. Debrecen 44 / 3-4 (1994), 225–234

Finite groups in which the degrees of non-linear constituents of some induced characters are distinct

By YAKOV BERKOVICH (Afula)

BERKOVICH, CHILLAG and HERZOG [1] classified all finite groups G, in which the degrees of the non-linear irreducible characters are distinct. If G is such a non-abelian group, then one of the following assertions holds [1]:

(a) G = ES(m, 2), an extra-special group of order 2^{1+2m} ;

(b) $G = (C(p^m - 1), E(p^m))$, a Frobenius group with elementary abelian kernel $E(p^m)$ of order p^m (p is a prime), and a complementary cyclic factor $C(p^m - 1)$ of order $p^m - 1$;

(c) G = (Q(8), E(9)), a Frobenius group with the elementary abelian kernel E(9) of order 9, and a complementary factor Q(8), the ordinary quaternion group of order 8.

In this note we study a more general class of groups, which we call D-groups:

D : If $1 < N \leq G'$, N is normal in G, and $1_N \neq \lambda \in \operatorname{Irr}(N)$, then the degrees of the irreducible constituents of the induced character λ^G are distinct.

Let $Irr_1(G)$ denote the set of all non-linear irreducible characters of G.

We denote by $\operatorname{Irr}(\chi)$ the set of all irreducible constituents of the character χ . Let $\operatorname{Irr}_1(\chi)$ denote the set of all non-linear irreducible constituents of the character χ , and $cd_1(\chi) = \{\varphi(1) \mid \varphi \in \operatorname{Irr}_1(\chi)\}$. A character χ is said to be a D-character if the sets $cd_1(\chi)$ and $\operatorname{Irr}_1(\chi)$ contain the same number of elements.

Lemma 1. Suppose that H is a non-trivial normal subgroup of a nonabelian group G, $G/H \simeq C(m)$ (C(m) is a cyclic group of order m). If,

Supported in part by the Ministry of Absorption and the Ministry of Science and Technology of Israel.

for some non-principal $\lambda \in Irr(H)$, the character λ^G is a D-character, then $|Irr_1(\lambda^G)| \leq 1$.

PROOF. Suppose that $\chi, \tau \in \operatorname{Irr}_1(\lambda^G)$. Then

$$\langle \chi_H, \lambda \rangle = 1 = \langle \tau_H, \lambda \rangle$$

by Clifford's theory. So by Clifford's theorem $\chi(1) = \tau(1)$ and $\chi = \tau$ since χ, τ are non-linear irreducible constituents of the same degree of the D-character λ^G . \Box

Corollary 1.1. Suppose that 1 < G' < G, $G/G' \simeq C(m)$. If, for every non-principal $\lambda \in \operatorname{Irr}(G')$, the character λ^G is a D-character, then G = (C(m), G'), a Frobenius group with a complementary factor C(m) and the kernel G'.

PROOF. If $1_{G'} \neq \lambda \in \operatorname{Irr}(G')$ then $\operatorname{Irr}(\lambda^G) = \operatorname{Irr}_1(\lambda^G)$, so by Lemma 1, $\lambda^G \in \operatorname{Irr}(G)$. Now the result follows from [2, Corollary 2.5] (see also [5, corollary 37.5.4]).

Remark. If $G' \leq N \leq G$ and a non-principal $\lambda \in \text{Irr}(N)$, then all irreducible constituents of the character λ^G have the same degree (see [4], Problem 6.2).

Lemma 2. Suppose that H is a non-trivial normal subgroup of G, $G/H \simeq Q(8)$ and, for some non-principal $\lambda \in Irr(H)$ the character λ^G is a D-character. Then λ^G has at most one non-linear irreducible constituent.

PROOF. Let

$$\lambda^G = e_1 \chi^1 + \ldots + e_s \chi^s, \qquad \operatorname{Irr}(\lambda^G) = \{\chi^1, \ldots, \chi^s\}.$$

By Clifford's theory e_1, \ldots, e_s are degrees of irreducible projective representations of the group $I_G(\lambda)/H$, where $I_G(\lambda)$ is the inertia group of λ in G. Since the Schur's multiplier of any subgroup of Q(8) is trivial then in fact e_1, \ldots, e_s are degrees of ordinary irreducible representations of $I_G(\lambda)/H$. Hence $e_i \leq 2$ for all i.

Suppose that distinct $\chi^1, \chi^2 \in \operatorname{Irr}_1(\lambda^G)$. By reciprocity and Clifford's theorem $e_1 \neq e_2$. Let $e_1 > e_2$. Then $e_1 = 2$, $e_2 = 1$. Since $e_1 = 2$ then $I_G(\lambda)/H \simeq Q(8)$, i.e., $I_G(\lambda) = G$ and λ is invariant under G. Then

$$\chi_H^1 = 2\lambda, \quad \chi_H^2 = \lambda,$$

and λ is non-linear (since χ^2 is non-linear). Hence $\operatorname{Irr}_1(\lambda^G) = \operatorname{Irr}(\lambda^G)$ by reciprocity. Therefore s = 2 and

$$|G:H|\lambda(1) = 8\lambda(1) = \lambda^{G}(1) = e_1\chi^1(1) + e_2\chi^2(1) = 5\lambda(1),$$

a contradiction. \Box

Corollary 2.1. Suppose that H is a non-trivial normal subgroup of G, $G/H \simeq Q(8)$ and H < G'. If for every non-principal $\lambda \in Irr(H)$ the character λ^G is a D-character, then G = (Q(8), G').

See the proof of Corollary 1.1.

Lemma 3. Let p be a prime. Suppose that

$$p^n = p^k + a_1 p^{2c(1)} + \ldots + a_s p^{2c(s)}$$

where $s, n, k, a_1, \ldots, a_s, c(1), \ldots, c(s)$ are positive integers. Then

(a) $k \ge 2c(1)$. (b) If $a_1 < p^2 - p$ then $s = 1, k = 2c(1), n = 2c(1) + 1, a_1 = p - 1$.

We omit an easy proof of this lemma. Let G be a group, $cd(G) = \{\chi(1) \mid \chi \in Irr(G)\}$. Then

$$d(G) = (a_0 \cdot 1, a_1 \cdot d_1, \dots, a_t \cdot d_t)$$

denotes that $|G:G'| = a_0$, and Irr(G) contains exactly a_i characters of degree $d_i, i \in \{1, \ldots, t\}$. Usually we assume that $1 < d_1 < \ldots < d_t$.

Lemma 4 (see [1]). Suppose that G is a non-abelian p-group, $d(G) = (p^k \cdot 1, a_1 \cdot p^{c(1)}, \ldots, a_t \cdot p^{c(t)})$. If $a_1 < p^2 - p$ then $G \simeq ES(m, p)$.

PROOF. Let $|G| = p^n$. Then

$$p^n = p^k + a_1 p^{2c(1)} + \dots a_t p^{2c(t)}.$$

By the condition $t \ge 1$. Hence (Lemma 3)

$$t = 1$$
, $k = 2c(1) = n - 1$, $a_1 = p - 1$.

Therefore |G'| = p and c(1) = (n-1)/2. If $\chi \in Irr(G)$ is a non-linear character then

$$p^{n-1} = \chi(1)^2 \le |G: Z(G)| \le p^{n-1}.$$

Then $|Z(G)| = p = |G'| \implies G' = Z(G)$ and $G \simeq \mathrm{ES}(m, p)$. \Box

Lemma 5. Suppose that N is a non-trivial normal subgroup of G, $N \leq G', G/N$ is a p-group. If for some non-principal $\lambda \in \operatorname{Irr}(N)$ the character λ^G is a D-character, then $\lambda^G = e\chi$ with $\chi \in \operatorname{Irr}(G)$.

PROOF. Let

$$\lambda^G = e_1 \chi^1 + \ldots + e_s \chi^s, \quad \operatorname{Irr}(\lambda^G) = \{\chi^1, \ldots, \chi^s\}.$$

Since $N \leq G'$ and $\lambda \neq 1_N$, then all χ^i are non-linear. Let

$$\chi_N^i = e_i(\lambda_1 + \ldots + \lambda_n)$$

Yakov Berkovich

be Clifford's decomposition, $\lambda_1 = \lambda$. Then $\chi^i(1) = e_i n \lambda(1)$,

$$|G:N|\lambda(1) = \lambda^{G}(1) = n\lambda(1) \ (e_{1}^{2} + \ldots + e_{s}^{2})$$
$$|G:N| = n(e_{1}^{2} + \ldots + e_{s}^{2}).$$

Here $n = |G : I_G(\lambda)|$ is a power of p since $N \le I_G(\lambda)$. If $|I_G(\lambda) : N| = p^{\alpha}$, then

$$p^{\alpha} = e_1^2 + \ldots + e_s^2.$$

Since $I_G(\lambda)/N$ is a *p*-group then e_1, \ldots, e_s are powers of *p*. If $i \neq j$ then $e_i n \lambda(1) = \chi^i(1) \neq \chi^j(1) = e_j n \lambda(1) \implies e_i \neq e_j$. Suppose that $e_1 < \ldots < e_s, e_i = p^{\beta(i)}$. If s > 1 then

$$p^{\alpha-2\beta(1)} = 1 + p^{2(\beta(2)-\beta(1))} + \ldots + p^{2(\beta(s)-\beta(1))},$$

which is impossible. Hence s = 1 and $\lambda^G = e_1 \chi^1, \chi^1 \in Irr(G)$. \Box

Lemma 6. Suppose that G = (A, H) is a Frobenius group, 1 < N < H and N is a normal in G, H/N is a p-group. If a non-principal $\lambda \in Irr(N)$ and the character λ^G is a D-character, then $\lambda^G = e\psi$ where $\psi \in Irr(G)$.

PROOF. Suppose that

$$\lambda^G = e_1 \chi^1 + \ldots + e_s \chi^s, \quad \operatorname{Irr}(\lambda^G) = \{\chi^1, \ldots, \chi^s\}.$$

Obviously N < G', so that χ^1, \ldots, χ^s are non-linear. Let

$$\chi_N^i = e_i(\lambda_1 + \ldots + \lambda_n)$$

be the Clifford's decomposition, $\lambda_1 = \lambda$. Then $\chi^i(1) = e_i n \lambda(1)$, $|G:N| = n(e_1^2 + \ldots = e_s^2)$. Since (A, N) is a Frobenius group then $I_G(\lambda) \leq H$, so that $n = |A|n_0$. Therefore

$$|G:N| = |G:H| |H:N| = |A| |H:N| = |A|n_0(e_1^2 + \dots + e_s^2),$$
$$|H:N|n_0^{-1} = e_1^2 + \dots + e_s^2.$$

Since $N \leq I_G(\lambda) \leq H$ then n_0 is a power of p. As before e_1, \ldots, e_s are distinct powers of p (as degrees of irreducible projective representations of a p-group $I_G(\lambda)/N$). As in Lemma 5 this implies s = 1. \Box

Lemma 7. Suppose that H is a normal Hall subgroup of a group G. Then $H \cap \Phi(G) = \Phi(H)$; here $\Phi(G)$ is the Frattini subgroup of G.

PROOF. The inclusion $\Phi(H) \leq \Phi(G)$ follows from the modular law. So we may assume without loss of generality that $\Phi(H) = 1$. Suppose that $D = H \cap \Phi(G) > 1$. Let A be the least subgroup of H such that AD = H and D does not contained in A (A exists since D > 1 and

228

 $\Phi(H) = 1$). Let $D_1 = A \cap D$. From the choice of A it follows easily that $D_1 \leq \Phi(A)$. Since D is abelian, then $N_H(D_1) \geq \langle A, D \rangle = H$. Then as it is known $D_1 \leq \Phi(H) = 1$. Thus $1 = D_1 = A \cap D$, and H = AD, a semi-direct product. Since D is abelian then by Gaschutz's theorem [3, §1.17] there exists a subgroup F in G such that G = FD and $F \cap D = 1$. Since $1 < D \leq \Phi(G)$ one obtains a contradiction. Thus D = 1 and $H \cap \Phi(G) = 1 = \Phi(H)$. \Box

Lemma 8 (see [5, Lemma 37.3.3]). Suppose that P is a non-trivial minimal normal p-subgroup of a group G = CP, $C \cap P = 1$ and a cyclic subgroup C of order b acts on P faithfully. Let m be the order of $p \pmod{b}$. Then $|P| = p^m$.

PROOF (A. MANN). Put $E = \operatorname{End}_{GF(p)C}(P)$. Then E is a finite skew field (Schur's lemma). By Wedderburn's theorem E is commutative. Obviously $C \subset E$. So all E-subspaces of P are trivial. Therefore $\dim_E P = 1$. Let F be the least subfield of E containing C. As above $\dim_F P = 1$. Hence |E| = |P| = |F|, F = E. Put $|E| = p^n$. Then $|C| |(p^n - 1)$. Since C generates E as field then n is the least positive integer such that $p^n \equiv 1 \pmod{b}$. \Box

Main Theorem. Suppose that G is a non-abelian solvable D-group. Then one and only one of the following assertions holds:

(a) G = ES(m, p), an extra-special p-group of order p^{1+2m} .

(b) $G = (Q(8), E(p^n)), Q(8)$ acts on $E(p^n)$ irreducibly.

(c) $G = (C(s), E(p^n)), C(s)$ acts on $E(p^n)$ irreducibly (in particular n is the order of $p \pmod{s}$).

PROOF. It is easy to see that groups (a)–(c) are in fact *D*-groups. Suppose that *R* is a minimal normal subgroup of *G* such that $R \leq G'$. Let $|R| = p^n$.

(i) G/R is a D-group. This is obvious.

(ii) If G is nilpotent then $G \simeq \text{ES}(m, p)$.

PROOF. Suppose that $G = P \times Q$ where $P \in \operatorname{Syl}_p(G)$ is non-abelian, Q > 1 (so we may assume that R < P). Let $1_R \neq \lambda \in \operatorname{Irr}(R), \chi \in \operatorname{Irr}(\lambda^G)$; χ is non-linear since $R \leq G'$. Let μ be a non-principal linear character of Q. Then $\chi \times 1_Q, \chi \times \mu$ are distinct non-linear irreducible constituents of λ^G of the same degree, a contradiction. Thus G is a p-group.

Let a non-principal $\lambda \in \operatorname{Irr}(R)$. Then (Lemma 5) $\lambda^{\widetilde{G}} = e\chi, \chi \in \operatorname{Irr}(G)$. Since λ is *G*-invariant then $e = \chi(1)$ (Clifford) and

$$\lambda^G = \chi(1)\chi, \ |G:R| = \lambda^G(1) = \chi(1)^2 \le |G:Z(G)| \implies R = Z(G).$$

Yakov Berkovich

If $|G| = p^n$ then $\operatorname{Irr}(G)$ contains exactly p-1 characters of degree $p^{(n-1)/2}$. Since n-1 is even then n-2 is odd. Hence G/R is abelian. Then R = G' = Z(G) has order p, and $G = \operatorname{ES}(m, p)$. \Box

In the sequel we suppose that G is non-nilpotent.

(iii) If G/R is abelian then G = (C(s), R).

PROOF. By the condition R = G'. Since G is non-nilpotent then R does not contained in $\Phi(G)$. So G = AR, $A \cap R = 1$; here A is a maximal subgroup of G. Obviously A is abelian, Z(G) < A and G/Z(G) = $(C(s), E(p^n))$. In particular every non-principal character from $\operatorname{Irr}(R)$ belongs to the G-orbit of length s. If a non-principal $\lambda \in \operatorname{Irr}(R)$ then $I_G(\lambda) = RZ(G)$ and $cd(G) = \{1, s\}$. Since λ^G has no linear constituents then by the condition $\lambda^G = e\chi$ with $\chi \in \operatorname{Irr}(G), \ \chi(1) = s$. So by the Clifford's theorem e = 1. Then $|G : R| = \lambda^G(1) = \chi(1) = s \Rightarrow Z(G) = 1$ and $G = (C(s), E(p^n))$. \Box

(iv) If G' is abelian (and G is non-nilpotent) then $G = (C(s), E(p^n)) = (C(s), R)$, i.e. G' = R is a minimal normal subgroup of G.

PROOF. In view of (iii) we may assume that R < G'.

Let T be the greatest normal subgroup of G which is properly contained in G'. It has been proved in (iii) that

 $G/T \in {\rm ES}(m,q)$, $(C(s), E(q^m))$; here q is a prime.

(1iv) $G/T \simeq \mathrm{ES}(m,q)$.

In view of (ii), q does not divide |T| (we recall that T is abelian). Now T > 1 since G is non-nilpotent.

So G = QT where $Q \in \operatorname{Syl}_q(G)$. If a non-principal $\lambda \in \operatorname{Irr}(T)$ then $\lambda^G = e\chi, \ \chi \in \operatorname{Irr}(G)$ (Lemma 5). In particular χ vanishes on G - T, and so also on $Q^{\#} = Q - \{1\}$. Hence $|Q||\chi(1)$. Since $\lambda^G(1) = |Q|$ then $\lambda^G = \chi$ for any choice of non-principal $\lambda \in \operatorname{Irr}(T)$. Hence G = (Q, T) (see [5, Corollary 37.5.4])]. Then G' = (Q', T) is non-abelian, a contradiction.

(2iv) $G/T = (C(s), E(q^m))$, the subgroup $E(q^m)$ is a minimal normal subgroup of G/T.

Then $G/G' \simeq C(s)$, so G = (C(s), G') (Corollary 1.1), $cd(G) = \{1, s\}$. Let a non-principal $\lambda \in \operatorname{Irr}(T)$. Since λ^G has no linear constituents then $\lambda^G = e\chi, \ \chi \in \operatorname{Irr}(G)$ (Lemma 6), $\chi(1) = s$. Since every non-principal irreducible character of T has exactly s conjugates under G, then e = 1 (Clifford) and $\lambda^G = \chi \in \operatorname{Irr}(G)$. In this case G is a Frobenius group with the kernel T [5, Corollary 37.5.4], a contradiction since a Frobenius group has only one Frobenius kernel. \Box Finite groups in which the degrees ...

(v) If G/G' = C(s) then $G = (C(s), G'), G' \in \text{Syl}_p(G), \Phi(G') = \Phi(G).$

PROOF. By Corollary 1.1, G = (C(s), G'). In particular G' is nilpotent (Thompson). Since G'/G'' is a minimal normal subgroup of G/G'' by (iv), then G'/G'' is primary $\implies G'$ is primary, say, G' is a *p*-group. In particular $G' \in \operatorname{Syl}_p(G)$. Now $\Phi(G') = \Phi(G)$ (Lemma 7). \Box

(vi) If $G/R \simeq \mathrm{ES}(m,q)$ then G = (Q(8), R).

PROOF. Recall that R is a minimal normal subgroup of order p^n in G and G is non-nilpotent. So $q \neq p$. Now R < G' by the choice of R. In view of (iv) we may assume that G' is non-abelian. We have $|G'| = qp^n$. Since G' is non-abelian, it is non-nilpotent. Hence $Z(G') < R = 1 \implies G' = (Z(Q), R)$ where $Q \in \text{Syl}_q(G), Q \simeq \text{ES}(m, q)$. If a non-principal $\lambda \in \text{Irr}(R)$ then $\lambda^G = e\chi, \chi \in \text{Irr}(G)$ (Lemma 5). In particular, χ vanishes on G - R, and, as in (2iv) one obtains G = (Q, R). Hence Q = Q(8), $G = (Q(8), R) = (Q(8), E(p^n))$. \Box

(vii) If $G/G'' \simeq \mathrm{ES}(m,q)$ and G'' > 1 then $G = (Q(8), E(p^n))$ and $E(p^n)$ is a minimal normal subgroup of G.

PROOF. Let T be the greatest normal subgroup of G which is properly contained in G''. Then by (vi), $G/T \simeq (Q(8), E(p^n))$. In particular $G/G'' \simeq Q(8)$. Hence G = (Q(8), G'') by Corollary 2.1. Then G'' is abelian (Burnside) and $cd(G) = \{1, 2, 8\}$. If a non-principal $\lambda \in \operatorname{Irr}(T)$ then $\lambda^G = e\chi, \ \chi \in \operatorname{Irr}(G)$ (Lemma 6). Now λ belongs to a G-orbit of length $8 = \chi(1)$. Hence e = 1 by the Clifford's theorem. Thus $\lambda^G = \chi$ and $\chi(1) = 8 = \lambda^G(1) = |G:T|$, a contradiction. Hence T = 1. \Box

(viii) If $G/G'' = (C(s), E(p^m))$ then G'' = 1. In particular G' is a minimal normal subgroup of G.

PROOF. One has G = (C(s), G') where $G' \in \operatorname{Syl}_p(G)$ by (v). If G'' = 1 then the result follows from (iv). Suppose that G'' > 1. Without loss of generality we may assume that G'' is a minimal normal subgroup of G. Since $G'' \leq Z(G')$ then G'' is a minimal normal subgroup of C(s)G''. So (Lemma 8) $|G''| = |G'/G''| = p^m$. Take an element x in G' - G''. Then the mapping $\varphi : G' \to G''$ which is defined by $\varphi(a) = [x, a]$ ($a \in G'$) is a homomorphism. Obviously the kernel of φ is equal to $C_{G'}(x)$. Hence [x, G'], the image of φ is a proper subgroup of G''. Take a non-principal $\lambda \in \operatorname{Irr}(G'')$ such that $[x, G'] \leq \ker \lambda$. Then $x \ker \lambda \leq Z(G' / \ker \lambda)$. Now $\lambda^G = e\chi, \ \chi \in \operatorname{Irr}(G)$ (Lemma 6). So [4, Theorem 6.11] $\lambda^{G'} = e\psi, \ \psi \in \operatorname{Irr}(G')$. Obviously

$$\ker \psi = \ker \lambda.$$

Since λ is G'-invariant then $e = \psi(1)$ (Clifford). Now

$$|G':G''| = \lambda^{G'}(1) = \psi(1)^2 \le |G'/\ker\psi: Z(G'/\ker\psi)|,$$

so that $|Z(G'/\ker\psi)| = p$. Hence $Z(G'/\ker\psi) = G''/\ker\psi$, a contradiction since $x \ker \lambda \in Z(G'/\ker\lambda) - G''/\ker\lambda$. Thus G'' = 1. The theorem is proved. \Box

Corollary [1]. Suppose that the degrees of the non-linear irreducible characters of a non-abelian solvable group G are distinct. Then

 $G\in\{E\!S\!(m,2),\ (Q(8),E(9)),\ (C(p^n-1),\ E(p^n))\}.$

PROOF. Obviously G is a D-group. Hence by the Main Theorem we have to consider the following three cases.

(i) $G \simeq \mathrm{ES}(m, p)$.

In this case Irr(G) contains exactly p-1 characters of degree p^m . Hence $p-1=1, p=2, G \simeq ES(m,2)$.

(ii) $G = (Q(8), E(p^n)).$

In this case Irr(G) contains exactly $(p^n - 1)/8$ characters of degree 8. Therefore $(p^n - 1)/8 = 1$, $p^n = 9$, G = (Q(8), E(9)).

(iii) $G = (C(s), E(p^n)).$

In this case $\operatorname{Irr}(G)$ contains exactly $(p^n - 1)/s$ characters of degree s. So $(p^n - 1)/s = 1$, $s = p^n - 1$, $G = (C(p^n - 1), E(p^n))$. \Box

Note that all non-abelian simple groups are *D*-groups.

Next we consider D-groups, i.e. groups G, satisfying the following condition:

 \overline{D} : If N > 1 is any normal subgroup of G and $1_N \neq \lambda \in Irr(N)$ then λ^G is a D-character.

Obviously \overline{D} -groups are D-groups.

Theorem 9. If G is a non-solvable \overline{D} -group then G' = G.

PROOF. Suppose that G' < G. Let H be the last term of the derived series of G. Then G/H is a non-identity \overline{D} -group. Since G/H is also a D-group, we have to consider the following four possibilities.

(i) $G/H \simeq \mathrm{ES}(m, p)$.

If $1_H \neq \lambda \in \operatorname{Irr}(H)$ then $\lambda^G = e\chi$, $\chi \in \operatorname{Irr}(G)$ (Lemma 5). If $\tau \in \operatorname{Irr}(G)$ and H does not contained in ker τ then $\langle \tau_H, 1_H \rangle = 0$, so $\mu^G = f\tau$ for a certain non-linear $\mu \in \operatorname{Irr}(H)$. Then p divides $\chi(1)$ for all $\chi \in \operatorname{Irr}(G)$ such that H does not contained in ker χ . If $\varphi \in \operatorname{Irr}(G)$ is non-linear and $H \leq \ker \varphi$, then $\varphi \in \operatorname{Irr}(G/H)$ so that $\varphi(1) = p^m$. Thus p divides degrees of all non-linear irreducible characters of G. By Thompson's theorem

232

[4, corollary 12.2] the group G has a normal p-complement, and this pcomplement coincides with H since H' = H. Let $P \in \operatorname{Syl}_p(G)$. Then for a non-principal $\lambda \in \operatorname{Irr}(H)$, the character $\lambda^G = e\chi$ (Lemma 5) vanishes on $P^{\#} \subseteq G - H$. So $|P||\chi(1)$, e = 1 and $\lambda^G = \chi$ is irreducible. Hence G = (P, H) [5, corollary 37.5.4], H is nilpotent by Thompson's theorem [5, theorem 37.3.3], G is solvable, a contradiction.

(ii) $G/H \simeq (Q(8), E(p^n)).$

Then $G/G'' \simeq Q(8)$ and G = (Q(8), G'') by Corollary 2.1, G'' is abelian (Burnside), G is solvable, a contradiction.

(iii) $G/H \simeq (C(s), P/H), P/H \in \operatorname{Syl}_p(G/H).$

Then P/H = G'/H, $G/G' \simeq C(s)$ and G = (C(s), G') (Corollary 1.1), G' is nilpotent (Thompson), G is solvable, a contradiction.

(iv) G/H is abelian.

Then H = G'. Let $n = \exp G/H$, and let $G' \leq T < G$ be such that $G/T \simeq C(n)$. Take a non-linear $\chi \in \operatorname{Irr}(G)$. Then by Clifford's theory

$$\chi_T = \lambda_1 + \ldots + \lambda_s,$$

where $\lambda_1, \ldots, \lambda_s \in \operatorname{Irr}(T)$ are pairwise distinct of the same degree, and

$$T \cap \ker \chi = \ker \chi_T = \bigcap_{i=1}^s \ker \lambda_i.$$

Since $G/ \ker \chi$ is non-abelian then $G/(T \cap \ker \chi)$ is non-abelian. Hence all λ_i are non-linear since T' = G'. So $\lambda_i^G = \chi$ by reciprocity and Lemma 1. In particular $n \mid \chi(1)$ for all $\chi \in \operatorname{Irr}_1(G)$. Therefore for all prime divisors p of n the group G has a normal p-complement [4, corollary 12.2]. So H = G' is a Hall subgroup of G.

Take a non-principal $\lambda \in Irr(H)$. Since G is a D-group then $\lambda^G = e\chi$ by [4, problem 6.2]. Hence χ vanishes on $R^{\#}$ where R is a complement to H (R exists by Schur–Zassenhaus theorem). Then $|R| \mid \chi(1)$. Since R and H are Hall subgroups of G and

$$\lambda^{G}(1) = |G:H|\lambda(1) = |R|\lambda(1), \quad (|R|,\lambda(1)) = 1, \quad \lambda(1) \mid \chi(1)$$

then $\lambda^G(1) = \chi(1), \ \lambda^G = \chi$ for all non-principal $\lambda \in \operatorname{Irr}(H)$. Therefore G = (R, H) [5, corollary 37.5.4], H is nilpotent (Thompson [5, theorem 37.3.3]), a contradiction. \Box

Let a D_0 -group be a group in which the degrees of the non-linear irreducible characters are distinct. Since all non-linear irreducible characters of D_0 -group G are rational-valued, then G' < G[1] (it is a corollary of well-known Feit–Seitz theorem). Hence G is solvable by Theorem 9. We have obtained a new proof of the main theorem of note [1].

Yakov Berkovich : Finite groups in which the degrees

Remark. If for any $N \ge G'$ it follows from $1_N \ne \lambda \in \operatorname{Irr}(N)$ that the character λ^G is a *D*-character, then *G* is solvable or G' = G. My proof of this assertion uses the classification of finite simple groups.

Conjecture. Non-solvable \overline{D} -groups are simple.

A character χ of a group G is said to be a D_1 -character if $|\operatorname{Irr}_1(\chi)| \geq |cd_1(\chi)| - 1$. A group G is said to be a D_1 -group if for any non-identity normal subgroup N of G, $N \leq G'$, and for any non-principal $\lambda \in \operatorname{Irr}(N)$ the character λ^G is a D_1 -character.

Question. Classify all D_1 -groups.

Acknowledgement. My deep thanks to Prof. AVINOAM MANN for useful discussions, and to the referee for many remarks and suggestions (in particular the assertion that G' is a minimal normal subgroup of G in the part (c) of the Main Theorem due to the referee).

References

- YA. G. BERKOVICH, D. CHILLAG and M. HERZOG, Finite groups in which the degrees of the non-linear irreducible characters are distinct, *Proc. Amer. Math.* Soc. 115, 4 (1992), 955–959.
- [2] YA. G. BERKOVICH, Existence of normal subgroups in a finite group, Publ. Math. (Debrecen) 37 1-2 (1990), 1-13, (Russian).
- [3] B. HUPPERT, Endliche Gruppen, Bd.1, Springer, Berlin, 1967.
- [4] I. M. ISAACS, Character theory of finite groups, Academic Press, New York, 1976.
- [5] G. KARPILOVSKY, Group representations, vol. 1, Part B, North-Holland, Amsterdam, 1992.

YAKOV BERKOVICH DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE UNIVERSITY OF HAIFA AFULA RESEARCH INSTITUTE P.O.B. 2016, AFULA 18100, ISRAEL

(Received March 24, 1992; revised October 4, 1992)