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On solutions of the GoÃla̧b-Schinzel functional equation

By JANUSZ BRZDȨK (Rzeszów)

Let X be a real topological linear space and let R denote the set of
all reals. In this paper we are mainly concerned with solutions f : X → R
of the functional equation

(1) f(x + f(x)ny) = f(x)f(y),

where n is a given positive integer.
Equation (1) is a generalization of the well–known GoÃla̧b–Schinzel

functional equation

(2) f(x + f(x)y) = f(x)f(y),

which has been considered and solved in several classes of functions. For
details we refer e.g. to [2]–[6], [8]–[12], [17], [18], and [20].

Equation (1) is also a particular case of the functional equation

(3) f(f(y)kx + f(x)ny) = tf(x)f(y)

studied by many authors in variuous case (see e.g. [5]–[7], [16], and [19]).
Finally, we must mention that equation (1) is tightly connected with

some classes of subgroups of the Lie groups L1
s, the one-dimensional affine

group, and some other groups (see [8], cf. also [2], pp. 309–311, [3], [6],
[16], and [20]).

We determine solutions of (1) having the Darboux property in the
class of functions f : X → R. Such solutions f : R → R of equation (3)
have already been studied in [19] for k > 0 and t = 1 and in [5] for k = 0.
Our results (see Corollary 2 and Theorem 1) are interesting especially in
view of the second part of Hilbert’s fifth problem (cf. [1], p. 153).

We also prove that every linear functional g : X → R having the
Darboux property is continuous (see Corollary 1) and give an application
of some of the results obtained to the question of finding subgroups.

Let us remind that a function f : X → R has the Darboux property,
whenever, for every non-empty connected set D ⊂ X, the set f(D) is
connected in R.
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We start with some facts concerning linear functionals, which are
necessary in the proof of Theorem 1.

Proposition 1. Let g : X → R be a linear functional such that the
set g(D) is connected in R for every non-empty and connected (in X) set
D ⊂ B := g−1((−1,+∞)). Then g is continuous.

For the proof of Proposition 1 we need the following two lemmas.

Lemma 1. Let g : X → R, g 6= 0 (i.e. g(X) 6= {0}), be a linear
functional. Then 0 ∈ cl(g−1((−1, 0))).

Proof. For the proof by contradiction suppose that this is not the
case. Then the set B0 = X \ cl(g−1((−1, 0))) is open and 0 ∈ B0. Since
g 6= 0, int(ker g) = ∅. Thus there is z ∈ B0 with g(z) 6= 0. By the
continuity of the function R 3 a → az ∈ X at 0, there exists a real c > 0
such that bz ∈ B0 for every b ∈ (−c, c). On the other hand, it is easily seen
that there is d ∈ (−c, c) satisfying the condition: g(dz) = dg(z) ∈ (−1, 0).
This yields a contradiction.

Lemma 2. Suppose that g : X → R is a linear functional such that
the set ker g is not closed. Then the set D = g−1((−1, +∞)) \ ker g is
connected.

Proof. For the proof by contradiction suppose that D is not con-
nected. Put B1 = g−1((0, +∞)) and B2 = g−1((−1, 0)). B1 and B2 are
connected, because they are convex. Thus B1 ∩ cl(B2) = ∅ (cf. e.g. [15]).
This yields

(4) cl(B2) ∩ cl(−B2) = cl(B2) ∩ (− cl(B2)) ⊂ X \ (B1 ∪ (−B1)) = ker g.

On the other hand, x+cl(B2) = cl(x+B2) and x+B2 = B2 for every
x ∈ ker g. Hence (ker g) + cl(B2) = cl(B2). Since ker g = − ker g and, by
Lemma 1, ker g ⊂ (ker g) + cl(B2), we obtain ker g ⊂ cl(B2) ∩ cl(−B2),
which, in view of (4), implies ker g = cl(B2) ∩ cl(−B2). This contradicts
the hypothesis on ker g.

Now we are in a position to prove Proposition 1. So, suppose that
g is not continuous. Then the set ker g is not closed. Thus, according
to Lemma 2, the set D = g−1((−1, +∞)) \ ker g is connected. Since
g(D) = (−1,+∞) \ {0}, we get a contradiction. This completes the proof
of Proposition 1.

In particular, from Proposition 1 we get the next

Corollary 1. Every linear functional g : X → R having the Darboux
property is continuous.
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Remark 1. Corollary 1 is the more interesting as there are discontin-
uous additive functions h : R→ R having the Darboux property (see [13],
cf. also [14], pp. 286–291). Given a continuous linear functional g : X → R,
g 6= 0, and a discontinuous additive function h : R → R having the Dar-
boux property, we can obtain a discontinuous additive function f : X → R
having the Darboux property by putting f(x) = h(g(x)) for x ∈ X.

In the sequel we shall need some results from [8]. Let us recall them.

Lemma 4 (see [8], Corollary 1). Let f : X → R, f 6= 0, be a function
satisfying equation (1). Put A = f−1({1}) and W = f(X) \ {0}. Then:

(i) A is an additive subgroup of X;
(ii) W is a multiplicative subgroup of R;
(iii) anA = A for every a ∈ W .

Lemma 5 (see [8], Proposition 3). Let f : X → R be a function
satisfying (1). Let A = f−1({1}) and W = f(X) \ {0}. If there is a0 ∈ W
such that an

0 6= 1 and (an
0 − 1)A ⊂ A, then

(5) an 6= 1 for a ∈ W \ {1}
and there exists x0 ∈ X \⋃{(an − 1)−1A : a ∈ W \ {1}} such that

(6) f(x) =

{
a if x ∈ (an − 1)x0 + A and a ∈ W ;
0 otherwise,

for x ∈ X.

The next proposition will be very useful in the proof of Theorems 1
and 2. The proposition gives us, as well, some examples of solutions of
equation (1).

Proposition 2. A function f : X → R satisfies equation (1) and
int(f(X)) 6= ∅ iff there exists a linear subspace Y ⊆ X, Y 6= {0}, and a
linear functional g : Y → R, g 6= 0, such that,

1◦ in the case when n is odd, either

(7) f(x) =

{
n
√

(g(x) + 1) for x ∈ Y ;
0 for x ∈ X \ Y,

or

(8) f(x) =

{
n
√

sup(g(x) + 1, 0) for x ∈ Y ;
0 for x ∈ X \ Y ;

2◦ in the case when n is even, (8) holds.

Proof. Put A = f−1({1}) and W = f(X) \ {0}. According to
Lemma 4(ii), we have either W = (0, +∞) or W = R \ {0}. Thus, by
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Lemma 4(i), (iii), A is a linear subspace of X. Hence (an − 1)A ⊂ A for
every a ∈ W . Consequently, in view of Lemma 5, conditions (5) and (6)
are valid with some x0 ∈ X \ A. Put Y = Rx0 + A and define a linear
functional g : Y → R by the formula:

g(ax0 + y) = a for a ∈ R, y ∈ A.

It is easy to check that, according to (6),

g(x) = f(x)n − 1 for x ∈ (Wn − 1)x0 + A,

where Wn = {an : a ∈ W}. Further, in virtue of (5),
– in the case when n is odd, W = R \ {0} or W = (0,+∞);
– in the case when n is even W = (0, +∞).

Whence, by the definition of g and (6), conditions 1◦, 2◦ hold.
The converse is easy to verify. This completes the proof.

Now we have all the tools to prove our main result.

Theorem 1. A function f : X → R, f 6= 0, has the Darboux prop-
erty and satisfies the functional equation (1) if and only if there exists a
continuous linear functional g : X → R such that,

1◦ in the case when n is odd,

(9) f(x) = n
√

(g(x) + 1) for x ∈ X

or

(10) f(x) = n
√

sup(g(x) + 1, 0) for x ∈ X;

2◦ in the case when n is even, f is of form (10).

Proof. The case f = 1 is trivial. So, assume that f(X) 6= {1}. Since
X is connected, the set f(X) is connected. Further, in virtue of Lemma 4
(ii), 1 ∈ f(X). Thus int(f(X)) 6= ∅. Hence, according to Proposition 2,
there exist a linear subspace Y of X and a linear functional g : Y → R
such that conditions 1◦, 2◦ of Proposition 2 are valid.

Suppose that there is x0 ∈ X \Y . Then the set Rx0 is connected and
f(Rx0) = {0, 1}. This is a contradiction. Consequently Y = X.

Notice that (7) or (8) implies g(x) = f(x)n−1 for x ∈ g−1((−1, +∞)).
Thus the set g(D) is connected in R for every non-empty connected set
D ⊂ g−1((−1, +∞)). Hence, in view of Proposition 1, g is continuous.
This completes the first part of the proof. The converse is easy to check.

Since the function f = 0 is continuous, from Theorem 1 we derive the
following

Corollary 2. Every function f : X → R having the Darboux property
and satisfying equation (1) is continuous.
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Remark 2. In the case n = 0 Corollary 2 is not valid. In fact, let h :
R→ R be a discontinuous additive function having the Darboux property
and assume that there exists a continuous linear functional g : X → R,
g 6= 0. Then the function f : X → R given by the formula: f(x) = eh(g(x))

for x ∈ X, is discontinuous, satisfies (1) with n = 0, and has the Darboux
property.

Finally, we shall give an example for the application of Proposition 2
to the problem of finding subgroups of some groups.

In the set P = (R \ {0})×X we introduce a binary operation
· : P × P → P as follows:

(a, x) · (b, y) = (ab, y + bnx) for (a, x), (b, y) ∈ P.

It is easy to verify that (P, · ) is a group. In particular, in the case X = R,
(P, · ) is isomorphic with a subgroup of the Lie group L1

n+1 (see [8], p.2).
For further details concerning the group (P, · ) we refer to [2] (pp. 310–311),
[3], [5], [8], and [16].

We have the following description of a class of subgroups of the group
(P, · ):

Theorem 2. Suppose that f : X → R is a function with f(X) \
{0, 1} 6= ∅. Then the set D = {(f(x), x) : x ∈ X, f(x) 6= 0} is a connected
subgroup of the group (P, · ) (P is endowed with the product topology)
if and only if there exist a linear subspace Y of X, Y 6= {0}, and a
linear functional g : Y → R such that g 6= 0 and (8) holds, i.e. D ={(

n
√

g(x) + 1, x
)

: x ∈ Y, g(x) > −1
}

.

Proof. First, let us recall a result from [8]. Namely, we have the
following

Lemma 6 (see [8], Theorem 1(ii)). Let f 6= 0 be a function mapping
X into R. Then the set D = {(f(x), x) : x ∈ X, f(x) 6= 0} is a subgroup
of the group (P, · ) iff f satisfies equation (1).

Assume that D is a connected subgroup of (P, · ). Then, according
to Lemma 6, f is a solution of equation (1). Further, notice that the
function p : P → R, defined by: p(a, x) = a for (a, x) ∈ P , is continuous.
Thus the set p(D) = f(X) \ {0} is connected. Hence int(f(X)) 6= ∅, since
f(X) \ {0, 1} 6= ∅ and, by Lemma 4(ii), 1 ∈ f(X). Consequently, in virtue
of Proposition 2, there exist a linear subspace Y of X, Y 6= {0}, and a
linear functional g : Y → R, g 6= 0, such that (7) or (8) holds. To complete
the first part of the proof it suffices to notice that in the case when f is of
form (7) the set f(X) \ {0} is not connected.

For the converse, on account of Proposition 2 and Lemma 6, we must
show that the set D0 =

{(
n
√

g(x) + 1, x
)

: x ∈ Y, g(x) > −1
}

is con-
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nected for every linear subspace Y 6= {0} of X and every linear functional
g : Y → R, g 6= 0.

Fix x, y ∈ g−1((−1, +∞)). Since the function

[0, 1] 3 t → (tg(y − x), t(y − x)) ∈ P

is continuous, the set T = {(g(x) + tg(y − x), x + t(y − x)) : t ∈ [0, 1]}
is connected. Moreover (g(x), x), (g(y), y) ∈ T ⊂ D0. So, we have proved
that the set {(g(x), x) : x ∈ X, g(x) > −1} is connected. Consequently
D0 is connected, because the function

(−1, +∞)×X 3 (a, x) → (
n
√

a + 1, x
) ∈ P

is continuous. This completes the proof.
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