On solutions of the Gołạb-Schinzel functional equation

By JANUSZ BRZDȨK (Rzeszów)

Let X be a real topological linear space and let \mathbb{R} denote the set of all reals. In this paper we are mainly concerned with solutions $f: X \rightarrow \mathbb{R}$ of the functional equation

$$
\begin{equation*}
f\left(x+f(x)^{n} y\right)=f(x) f(y) \tag{1}
\end{equation*}
$$

where n is a given positive integer.
Equation (1) is a generalization of the well-known Gołąb-Schinzel functional equation

$$
\begin{equation*}
f(x+f(x) y)=f(x) f(y) \tag{2}
\end{equation*}
$$

which has been considered and solved in several classes of functions. For details we refer e.g. to [2]-[6], [8]-[12], [17], [18], and [20].

Equation (1) is also a particular case of the functional equation

$$
\begin{equation*}
f\left(f(y)^{k} x+f(x)^{n} y\right)=t f(x) f(y) \tag{3}
\end{equation*}
$$

studied by many authors in variuous case (see e.g. [5]-[7], [16], and [19]).
Finally, we must mention that equation (1) is tightly connected with some classes of subgroups of the Lie groups L_{s}^{1}, the one-dimensional affine group, and some other groups (see [8], cf. also [2], pp. 309-311, [3], [6], [16], and [20]).

We determine solutions of (1) having the Darboux property in the class of functions $f: X \rightarrow \mathbb{R}$. Such solutions $f: \mathbb{R} \rightarrow \mathbb{R}$ of equation (3) have already been studied in [19] for $k>0$ and $t=1$ and in [5] for $k=0$. Our results (see Corollary 2 and Theorem 1) are interesting especially in view of the second part of Hilbert's fifth problem (cf. [1], p. 153).

We also prove that every linear functional $g: X \rightarrow \mathbb{R}$ having the Darboux property is continuous (see Corollary 1) and give an application of some of the results obtained to the question of finding subgroups.

Let us remind that a function $f: X \rightarrow \mathbb{R}$ has the Darboux property, whenever, for every non-empty connected set $D \subset X$, the set $f(D)$ is connected in \mathbb{R}.

We start with some facts concerning linear functionals, which are necessary in the proof of Theorem 1.

Proposition 1. Let $g: X \rightarrow \mathbb{R}$ be a linear functional such that the set $g(D)$ is connected in \mathbb{R} for every non-empty and connected (in X) set $D \subset B:=g^{-1}((-1,+\infty))$. Then g is continuous.

For the proof of Proposition 1 we need the following two lemmas.
Lemma 1. Let $g: X \rightarrow \mathbb{R}, g \neq 0$ (i.e. $g(X) \neq\{0\}$), be a linear functional. Then $0 \in \operatorname{cl}\left(g^{-1}((-1,0))\right)$.

Proof. For the proof by contradiction suppose that this is not the case. Then the set $B_{0}=X \backslash \operatorname{cl}\left(g^{-1}((-1,0))\right)$ is open and $0 \in B_{0}$. Since $g \neq 0$, int $(\operatorname{ker} g)=\emptyset$. Thus there is $z \in B_{0}$ with $g(z) \neq 0$. By the continuity of the function $R \ni a \rightarrow a z \in X$ at 0 , there exists a real $c>0$ such that $b z \in B_{0}$ for every $b \in(-c, c)$. On the other hand, it is easily seen that there is $d \in(-c, c)$ satisfying the condition: $g(d z)=d g(z) \in(-1,0)$. This yields a contradiction.

Lemma 2. Suppose that $g: X \rightarrow \mathbb{R}$ is a linear functional such that the set $\operatorname{ker} g$ is not closed. Then the set $D=g^{-1}((-1,+\infty)) \backslash \operatorname{ker} g$ is connected.

Proof. For the proof by contradiction suppose that D is not connected. Put $B_{1}=g^{-1}((0,+\infty))$ and $B_{2}=g^{-1}((-1,0))$. B_{1} and B_{2} are connected, because they are convex. Thus $B_{1} \cap \operatorname{cl}\left(B_{2}\right)=\emptyset$ (cf. e.g. [15]). This yields
(4) $\operatorname{cl}\left(B_{2}\right) \cap \operatorname{cl}\left(-B_{2}\right)=\operatorname{cl}\left(B_{2}\right) \cap\left(-\operatorname{cl}\left(B_{2}\right)\right) \subset X \backslash\left(B_{1} \cup\left(-B_{1}\right)\right)=$ ker g.

On the other hand, $x+\operatorname{cl}\left(B_{2}\right)=\operatorname{cl}\left(x+B_{2}\right)$ and $x+B_{2}=B_{2}$ for every $x \in \operatorname{ker} g$. Hence $(\operatorname{ker} g)+\operatorname{cl}\left(B_{2}\right)=\operatorname{cl}\left(B_{2}\right)$. Since ker $g=-\operatorname{ker} g$ and, by Lemma 1, $\operatorname{ker} g \subset(\operatorname{ker} g)+\operatorname{cl}\left(B_{2}\right)$, we obtain $\operatorname{ker} g \subset \operatorname{cl}\left(B_{2}\right) \cap \operatorname{cl}\left(-B_{2}\right)$, which, in view of (4), implies $\operatorname{ker} g=\operatorname{cl}\left(B_{2}\right) \cap \operatorname{cl}\left(-B_{2}\right)$. This contradicts the hypothesis on $\operatorname{ker} g$.

Now we are in a position to Prove Proposition 1. So, suppose that g is not continuous. Then the set ker g is not closed. Thus, according to Lemma 2, the set $D=g^{-1}((-1,+\infty)) \backslash \operatorname{ker} g$ is connected. Since $g(D)=(-1,+\infty) \backslash\{0\}$, we get a contradiction. This completes the proof of Proposition 1.

In particular, from Proposition 1 we get the next
Corollary 1. Every linear functional $g: X \rightarrow \mathbb{R}$ having the Darboux property is continuous.

Remark 1. Corollary 1 is the more interesting as there are discontinuous additive functions $h: \mathbb{R} \rightarrow \mathbb{R}$ having the Darboux property (see [13], cf. also [14], pp. 286-291). Given a continuous linear functional $g: X \rightarrow \mathbb{R}$, $g \neq 0$, and a discontinuous additive function $h: \mathbb{R} \rightarrow \mathbb{R}$ having the Darboux property, we can obtain a discontinuous additive function $f: X \rightarrow \mathbb{R}$ having the Darboux property by putting $f(x)=h(g(x))$ for $x \in X$.

In the sequel we shall need some results from [8]. Let us recall them.
Lemma 4 (see [8], Corollary 1). Let $f: X \rightarrow \mathbb{R}, f \neq 0$, be a function satisfying equation (1). Put $A=f^{-1}(\{1\})$ and $W=f(X) \backslash\{0\}$. Then:
(i) A is an additive subgroup of X;
(ii) W is a multiplicative subgroup of \mathbb{R};
(iii) $a^{n} A=A$ for every $a \in W$.

Lemma 5 (see [8], Proposition 3). Let $f: X \rightarrow \mathbb{R}$ be a function satisfying (1). Let $A=f^{-1}(\{1\})$ and $W=f(X) \backslash\{0\}$. If there is $a_{0} \in W$ such that $a_{0}^{n} \neq 1$ and $\left(a_{0}^{n}-1\right) A \subset A$, then

$$
\begin{equation*}
a^{n} \neq 1 \quad \text { for } a \in W \backslash\{1\} \tag{5}
\end{equation*}
$$

and there exists $x_{0} \in X \backslash \bigcup\left\{\left(a^{n}-1\right)^{-1} A: a \in W \backslash\{1\}\right\}$ such that

$$
f(x)= \begin{cases}a & \text { if } x \in\left(a^{n}-1\right) x_{0}+A \text { and } a \in W ; \quad \text { for } x \in X \tag{6}\\ 0 & \text { otherwise }\end{cases}
$$

The next proposition will be very useful in the proof of Theorems 1 and 2. The proposition gives us, as well, some examples of solutions of equation (1).

Proposition 2. A function $f: X \rightarrow \mathbb{R}$ satisfies equation (1) and $\operatorname{int}(f(X)) \neq \emptyset$ iff there exists a linear subspace $Y \subseteq X, Y \neq\{0\}$, and a linear functional $g: Y \rightarrow R, g \neq 0$, such that,
1° in the case when n is odd, either

$$
f(x)= \begin{cases}\sqrt[n]{(g(x)+1)} & \text { for } x \in Y \tag{7}\\ 0 & \text { for } x \in X \backslash Y\end{cases}
$$

or

$$
f(x)= \begin{cases}\sqrt[n]{\sup (g(x)+1,0)} & \text { for } x \in Y \tag{8}\\ 0 & \text { for } x \in X \backslash Y\end{cases}
$$

2° in the case when n is even, (8) holds.
Proof. Put $A=f^{-1}(\{1\})$ and $W=f(X) \backslash\{0\}$. According to Lemma 4(ii), we have either $W=(0,+\infty)$ or $W=\mathbb{R} \backslash\{0\}$. Thus, by

Lemma 4(i), (iii), A is a linear subspace of X. Hence $\left(a^{n}-1\right) A \subset A$ for every $a \in W$. Consequently, in view of Lemma 5, conditions (5) and (6) are valid with some $x_{0} \in X \backslash A$. Put $Y=\mathbb{R} x_{0}+A$ and define a linear functional $g: Y \rightarrow \mathbb{R}$ by the formula:

$$
g\left(a x_{0}+y\right)=a \quad \text { for } a \in \mathbb{R}, y \in A
$$

It is easy to check that, according to (6),

$$
g(x)=f(x)^{n}-1 \quad \text { for } x \in\left(W_{n}-1\right) x_{0}+A
$$

where $W_{n}=\left\{a^{n}: a \in W\right\}$. Further, in virtue of (5),

- in the case when n is odd, $W=\mathbb{R} \backslash\{0\}$ or $W=(0,+\infty)$;
- in the case when n is even $W=(0,+\infty)$.

Whence, by the definition of g and (6), conditions $1^{\circ}, 2^{\circ}$ hold.
The converse is easy to verify. This completes the proof.
Now we have all the tools to prove our main result.
Theorem 1. A function $f: X \rightarrow \mathbb{R}, f \neq 0$, has the Darboux property and satisfies the functional equation (1) if and only if there exists a continuous linear functional $g: X \rightarrow \mathbb{R}$ such that,
1° in the case when n is odd,

$$
\begin{equation*}
f(x)=\sqrt[n]{(g(x)+1)} \quad \text { for } x \in X \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
f(x)=\sqrt[n]{\sup (g(x)+1,0)} \quad \text { for } x \in X \tag{10}
\end{equation*}
$$

2° in the case when n is even, f is of form (10).
Proof. The case $f=1$ is trivial. So, assume that $f(X) \neq\{1\}$. Since X is connected, the set $f(X)$ is connected. Further, in virtue of Lemma 4 (ii), $1 \in f(X)$. Thus $\operatorname{int}(f(X)) \neq \emptyset$. Hence, according to Proposition 2, there exist a linear subspace Y of X and a linear functional $g: Y \rightarrow \mathbb{R}$ such that conditions $1^{\circ}, 2^{\circ}$ of Proposition 2 are valid.

Suppose that there is $x_{0} \in X \backslash Y$. Then the set $\mathbb{R} x_{0}$ is connected and $f\left(\mathbb{R} x_{0}\right)=\{0,1\}$. This is a contradiction. Consequently $Y=X$.

Notice that (7) or (8) implies $g(x)=f(x)^{n}-1$ for $x \in g^{-1}((-1,+\infty))$. Thus the set $g(D)$ is connected in R for every non-empty connected set $D \subset g^{-1}((-1,+\infty))$. Hence, in view of Proposition $1, g$ is continuous. This completes the first part of the proof. The converse is easy to check.

Since the function $f=0$ is continuous, from Theorem 1 we derive the following

Corollary 2. Every function $f: X \rightarrow \mathbb{R}$ having the Darboux property and satisfying equation (1) is continuous.

Remark 2. In the case $n=0$ Corollary 2 is not valid. In fact, let h : $\mathbb{R} \rightarrow \mathbb{R}$ be a discontinuous additive function having the Darboux property and assume that there exists a continuous linear functional $g: X \rightarrow \mathbb{R}$, $g \neq 0$. Then the function $f: X \rightarrow \mathbb{R}$ given by the formula: $f(x)=e^{h(g(x))}$ for $x \in X$, is discontinuous, satisfies (1) with $n=0$, and has the Darboux property.

Finally, we shall give an example for the application of Proposition 2 to the problem of finding subgroups of some groups.

In the set $P=(\mathbb{R} \backslash\{0\}) \times X$ we introduce a binary operation .$: P \times P \rightarrow P$ as follows:

$$
(a, x) \cdot(b, y)=\left(a b, y+b^{n} x\right) \quad \text { for }(a, x),(b, y) \in P
$$

It is easy to verify that (P, \cdot) is a group. In particular, in the case $X=\mathbb{R}$, (P, \cdot) is isomorphic with a subgroup of the Lie group L_{n+1}^{1} (see [8], p.2). For further details concerning the group (P, \cdot) we refer to [2] (pp. 310-311), [3], [5], [8], and [16].

We have the following description of a class of subgroups of the group (P, \cdot) :

Theorem 2. Suppose that $f: X \rightarrow \mathbb{R}$ is a function with $f(X) \backslash$ $\{0,1\} \neq \emptyset$. Then the set $D=\{(f(x), x): x \in X, f(x) \neq 0\}$ is a connected subgroup of the group (P, \cdot) (P is endowed with the product topology) if and only if there exist a linear subspace Y of $X, Y \neq\{0\}$, and a linear functional $g: Y \rightarrow \mathbb{R}$ such that $g \neq 0$ and (8) holds, i.e. $D=$ $\{(\sqrt[n]{g(x)+1}, x): x \in Y, g(x)>-1\}$.

Proof. First, let us recall a result from [8]. Namely, we have the following

Lemma 6 (see [8], Theorem 1(ii)). Let $f \neq 0$ be a function mapping X into \mathbb{R}. Then the set $D=\{(f(x), x): x \in X, f(x) \neq 0\}$ is a subgroup of the group (P, \cdot) iff f satisfies equation (1).

Assume that D is a connected subgroup of (P, \cdot). Then, according to Lemma 6, f is a solution of equation (1). Further, notice that the function $p: P \rightarrow \mathbb{R}$, defined by: $p(a, x)=a$ for $(a, x) \in P$, is continuous. Thus the set $p(D)=f(X) \backslash\{0\}$ is connected. Hence $\operatorname{int}(f(X)) \neq \emptyset$, since $f(X) \backslash\{0,1\} \neq \emptyset$ and, by Lemma $4(\mathrm{ii}), 1 \in f(X)$. Consequently, in virtue of Proposition 2, there exist a linear subspace Y of $X, Y \neq\{0\}$, and a linear functional $g: Y \rightarrow \mathbb{R}, g \neq 0$, such that (7) or (8) holds. To complete the first part of the proof it suffices to notice that in the case when f is of form (7) the set $f(X) \backslash\{0\}$ is not connected.

For the converse, on account of Proposition 2 and Lemma 6, we must show that the set $D_{0}=\{(\sqrt[n]{g(x)+1}, x): x \in Y, g(x)>-1\}$ is con-
nected for every linear subspace $Y \neq\{0\}$ of X and every linear functional $g: Y \rightarrow \mathbb{R}, g \neq 0$ ．

Fix $x, y \in g^{-1}((-1,+\infty))$ ．Since the function

$$
[0,1] \ni t \rightarrow(t g(y-x), t(y-x)) \in P
$$

is continuous，the set $T=\{(g(x)+\operatorname{tg}(y-x), x+t(y-x)): t \in[0,1]\}$ is connected．Moreover $(g(x), x),(g(y), y) \in T \subset D_{0}$ ．So，we have proved that the set $\{(g(x), x): x \in X, g(x)>-1\}$ is connected．Consequently D_{0} is connected，because the function

$$
(-1,+\infty) \times X \ni(a, x) \rightarrow(\sqrt[n]{a+1}, x) \in P
$$

is continuous．This completes the proof．

References

［1］J．AczÉl，The state of the second part of Hilbert＇s fifth problem，Bull．Amer．Math． Soc． 20 （1989），153－163．
［2］J．Aczél and J．Dhombres，Functional equations in several variables，Encyclope－ dia of mathematics and its applications v．31，Cambridge University Press，Cam－ bridge－New York－New Rochelle－Melbourne－Syndney， 1989.
［3］J．Aczél and S．Go乇A̧B，Remarks on one－parameter subsemigroups of the affine group and their homo－and isomorphism，Aequationes Math． 4 （1970），1－10．
［4］K．Baron，On the continuous solutions of the Goła̧b－Schinzel equation，Aequationes Math． 38 （1989），155－162．
［5］N．Brillouët－Belluot，On some functional equations of Goła̧b－Schinzel type， Aequationes Math． 42 （1991），239－270．
［6］N．Brillouët et J．Dhombres，Equations functionnelles et recherche de sous－ groupes，Aequationes Math． 31 （1986），253－293．
［7］J．Brzdě，On the solutions of the functional equation $f\left(x f(y)^{\ell}+y f(x)^{k}\right)=$ $t f(x) f(y)$ ，Publicationes Math．（Debrecen） 38 （1991），175－183．
［8］J．BRZDȨK，Subgroups of the group Z_{n} and a generalization of the Goła̧b－Schinzel functional equation，Aequationes Math． 43 （1992），59－71．
［9］D．E．Gheorgiu und S．Go乇a̧B，Über ein System von Functionalgleichungen， Annal．Polon．Math． 17 （1966），223－243．
［10］S．Go乇A̧B et A．Schinzel，Sur l＇équation functionelle $f(x+y f(x))=f(x) f(y)$ ， Publicationes Math．（Debrecen） 6 （1959），113－125．
［11］P．Javor，On the general solution of the functional equation $f(x+y f(x))=$ $f(x) f(y)$ ，Aequationes Math． 1 （1968），235－238．
［12］P．Javor，Continuous solutions of the functional equation $f(x+y f(x))=f(x) f(y)$ ， Proc．Internat．Sympos．on Topology and its Applications（Herceg－Novi，1968）， Savez Društava Math．Fiz．i Astronom．，Belgrade，1969，pp．206－209．
［13］F．B．Jones，Connected and disconnected plane sets and the functional equation $f(x+y)=f(x)+f(y)$ ，Bull．Amer．Math．Soc． 48 （1942），115－120．
［14］M．Kuczma，An introduction to the theory of functional equations and inequalities， Cauchy＇s equation and Jensen＇s inequality，Polish Scientific Publishers and Silesian University Press，Warszawa－Kraków－Katowice， 1985.
［15］K．Kuratowski，Topology，v．II，Academic Press，New York and London，1968； Polish Scientific Publishers，Warszawa．
［16］S．Midura，Sur la détermination de certains sous－groupes du groupe L_{s}^{1} a l＇aide d＇équations fonctionnelles，Dissertationes Math． 105 （1973）．
[17] P. Plaumann und S. Strambach, Zweidimensionale Quasialgebren mit Nullteilern, Aequationes Math. 15 (1977), 249-264.
[18] C. Gh. Popa, Sur l'équatcion fonctionnelle $f(x+y f(x))=f(x) f(y)$, Annal. Polon. Math. 17 (1965), 193-198.
[19] M. Sablik and P. Urban, On the solutions of the equation $f\left(x f(y)^{k}+y f(x)^{\ell}\right)=$ $f(x) f(y)$, Demonstratio Math. 18 (1985), 863-867.
[20] S. WoŁodźko, Solution générale de l'équation fonctionnelle $f(x+y f(x))=$ $f(x) f(y)$, Aequationes Math. 2 (1968), 12-29.

```
JANUSZ BRZDȨK
INSTITUTE OF MATHEMATICS
PEDAGOGICAL UNIVERSITY
REJTANA 16 A
35-310 RZESZÓW
POLAND
```

(Received July 17, 1992)

