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Montel’s criterion and shared function

By YAN XU (Nanjing)

Abstract. In this paper, we prove some normal criteria for families of meromor-

phic functions that concern sharing values or functions, which improve and generalize

Montel’s normality criterion and the related results of Chang–Fang–Zalcman, and Sun

et al. Some examples are given to show that the sharpness of our results.

1. Introduction

Let F be a family of meromorphic functions defined in D. F is said to be

normal in D, in the sense of Montel, if for any sequence fn ∈ F there exists a

subsequence fnj , such that fnj converges spherically, locally and uniformly in D,

to a meromorphic function or ∞(see [6], [12]).

The most celebrated theorem in the theory of normal families is the following

criterion of Montel [6], who created the theory of normal families.

Theorem A. Let F be a family of meromorphic functions defined in a

domain D. If, for every function f ∈ F , f 6= 0, 1,∞ in D, then F is normal.

In past years, this result has undergone various extensions (for details, see

[1]–[5], [7]–[10] etc.).

Let f , g and ψ be three meromorphic functions in D. If f(z) − ψ(z) and

g(z)−ψ(z) have the same zeros (ignoring multiplicity), we say that f and g share

function ψ in D. If ψ is a constant a, then f and g share the value a in D. Sun [8]

proved the following general result.
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Theorem B. Let F be a family of meromorphic functions defined in D. If,

for each pair of functions f and g in F , f and g share 0, 1,∞ in D, then F is

normal.

Remark 1. As we know, the classical Nevanlinna’s five point theorem asserts

that: if two non-constant meromorphic functions f and g share five distinct values

in the complex plane, then f ≡ g. Here Theorem B only supposes that each pair

of functions f and g in F , f and g share three distinct values in a domain D (not

the whole plane), so the family F in Theorem B is not trivial.

It is natural to consider the case that each pair of functions f, g ∈ F share

two value or one value. In this paper, we prove the following results.

Theorem 1. Let F be a family of meromorphic functions defined in a domain

D ⊂ C. Suppose that (1) for each pair of functions f, g ∈ F , f and g share 0,∞
in D; (2) all zeros of f − 1 are multiple for each f ∈ F in D. Then F is normal

in D.

Theorem 2. Let F be a family of meromorphic functions defined in a domain

D ⊂ C. Suppose that (1) for each pair of functions f, g ∈ F , f and g share 0

in D; (2) all poles of f have multiplicity at least 2 (or 3) and all zeros of f − 1

have multiplicity at least 3 (or 2) in D for each f ∈ F in D. Then F is normal

in D.

Remark 2. If f and g share other two values (in Theorem 1), or other one

value (in Theorem 2), similarly results can be proved by using the same argument

as in this paper.

We further extend the constant ‘1’ in Theorem 1, 2 and B to a general

function ‘ψ(z)’, as follows.

Theorem 3. Let F be a family of meromorphic functions defined in a do-

main D, and let ψ(z) be a meromorphic function such that ψ(z) 6≡ 0,∞ in D.

Suppose that (1) for each pair of functions f, g ∈ F , f and g share 0,∞ in D; (2)

all zeros of f − ψ are multiple in D for f ∈ F ; (3) the multiplicity of f ∈ F is

larger than that of ψ(z) at the common zeros or poles of f and ψ(z) in D. Then

F is normal in D.

Theorem 4. Let F be a family of meromorphic functions defined in a do-

main D, let ψ(z) be a holomorphic function such that ψ(z) 6≡ 0 in D. Suppose

that (1) for each pair of functions f, g ∈ F , f and g share 0 in D; (2) all poles

of f have multiplicity at least 2 (or 3) and all zeros of f − ψ have multiplicity at
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least 3 (or 2) for each f ∈ F in D; (3) the multiplicity of f ∈ F is larger than

that of ψ(z) at the common zeros of f and ψ(z) in D. Then F is normal in D.

Theorem 5. Let F be a family of meromorphic functions defined in a do-

main D, let ψ(z) be a meromorphic function such that ψ(z) 6≡ 0,∞ in D. Suppose

that (1) for each pair of functions f, g ∈ F , f and g share 0,∞, ψ(z) in D; (2)

the multiplicity of f ∈ F is larger than that of ψ(z) at the common zeros or poles

of f and ψ(z) in D. Then F is normal in D.

Remark 3. In [2], Chang, Fang and Zalcman proved that Montel’s criter-

ion is still valid if 0, 1,∞ are replaced by three distinct meromorphic functions

a(z), b(z), c(z). Clearly, our above theorems extend their result in some sense.

Remark 4. The condition that the multiplicity of f ∈ F is larger than that

of ψ(z) at the common zeros or poles of f and ψ(z) in D in Theorem 3–5 cannot

be omitted, as is shown by the following examples.

Example 1. Let D = {z : |z| < 1}, ψ(z) = zk, where k ≥ 2 is a positive

integer, and

F = {fn(z) = nz2, n = 2, 3, . . . }.

Clearly, for each pair of functions fn, fm ∈ F , fn(z) and fm(z) share 0,∞ in D.

Since fn(z)− ψ(z) = (n− zk−2)z2 and fm(z)− ψ(z) = (m− zk−2)z2, fn(z) and

fm(z) share ψ(z) in D. But F is not normal in D.

Example 2. Let D = {z : |z| < 1}, ψ(z) = 1/zk, where k ≥ 1 is a positive

integer, and

F =
{
fn(z) =

1

nz
, n = 2, 3, . . .

}
.

Clearly, for each pair of functions fn, fm ∈ F , fn(z) and fm(z) share 0,∞ in D.

Since

fn(z)− ψ(z) =
zk−1 − n

nzk
, fm(z)− ψ(z) =

zk−1 −m

mzk
,

fn(z)−ψ(z) and fm(z)−ψ(z) have no zeros in D, so that fn(z) and fm(z) share

ψ(z) in D. But F is not normal in D.

Remark 5. The above examples also show that ψ(z) 6≡ 0,∞ in Theorem 3–5

is necessary.
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2. Lemmas

We first give some notations. Dr(z0) is the open disc of radius r and center z0,

and D′
r(z0) is the same disc minus its center.

The following is the local version of Zalcman’s lemma [11] (see also [12]).

Lemma 1. Let F be a family of functions meromorphic in a domain D. If F
is not normal at z0 ∈ D, then there exist a sequence of points zn ∈ D, zn → z0,

a sequence of positive numbers ρn → 0, and a sequence of functions fn ∈ F such

that
gn(ζ) = fn(zn + ρnζ) → g(ζ)

locally uniformly with respect to the spherical metric, where g is a nonconstant

meromorphic function on C.

The next is a fundamental result in the normal theory, which has appeared

in the proofs of some papers. For brevity, we here state it independently, and

give its proof.

Lemma 2. Let F be a family of functions holomorphic in Dr(z0). Suppose

that F is normal in D′
r(z0), but not normal at z0. Then there exists a sequence

{fn} ⊂ F such that fn → ∞ locally uniformly in D′
r(z0).

Proof. Since F is normal in D′
r(z0), but not normal at z0, there exists a

sequence {fn} ⊂ F such that fn converges to a function h or the constant infinity

locally uniformly in D′
r(z0), but not in Dr(z0).

If fn(z) → h(z) in D′
r(z0), then h is holomorphic in D′

r(z0) since fn is

holomorphic in Dr(z0). For each 0 < r′ < r, there exists a positive number M

such that |h(z)| ≤ M on |z−z0| = r′. It follows that |fn(z)| ≤ 2M on |z−z0| = r′

for large n. The maximum modulus theorem implies that |fn(z)| ≤ 2M holds

in D̄r′(z0) = {z : |z − z0| ≤ r′}. Then h is bounded in D̄r′(z0), and thus h

extends to be holomorphic in D̄r′(z0). Again by the maximum modulus theorem,

fn(z) → h(z) in D̄r′(z0), so that fn(z) → h(z) in Dr(z0), a contradiction.

Thus fn → ∞ on compact subsets of D′
r(z0). Lemma 2 is proved. ¤

3. Proof of Theorems

Proof of Theorem 1. Since normality is a local property, it is enough to

show that F is normal at each z0 ∈ D.
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Suppose not; then, by Lemma 1, there exist functions fn ∈ F , points zn → z0
and positive numbers ρn → 0, such that

gn(ζ) = fn(zn + ρnζ) → g(ζ)

converges spherically uniformly on compact subsets of C, where g(ζ) is a non-

constant meromorphic function on C.
We divide into three cases.

Case 1. There exists f ∈ F such that f(z0) 6= 0,∞.

Then we can find r > 0 such that Dr(z0) ⊂ D, and f(z) 6= 0,∞ in Dr(z0).

By the assumptions of Theorem 1, we know that these still hold for each f ∈ F .

It follows that g 6= 0, and g is entire in C. Since

gn(ζ)− 1 = fn(zn + ρnζ)− 1 → g(ζ)− 1,

and fn − 1 has only multiple zeros, g − 1 has no simple zeros. Nevanlinna’s

fundamental theorem implies that g is a constant, a contradiction.

Case 2 There exists f ∈ F such that f(z0) = 0.

Then we may choose r > 0 such that Dr(z0) = {z : |z − z0| < r} ⊂ D, and

f(z) 6= 0 in D′
r(z0) and f(z) 6= ∞ in z ∈ Dr(z0). Also by the assumptions of

Theorem 1, these still hold for each f ∈ F .

As in Case 1, g is entire and g − 1 has only multiple zeros in C.
Furthermore, we claim that g has at most one zero point in C. Indeed, note

the fact that each fn has only one zero at z0 in Dr(z0) and g is nonconstant. If

(zn − z0)/ρn → ∞, in view of gn(−(zn − z0)/ρn) = fn(z0), then the zero of gn
corresponding to that of fn at z0 drifts off to infinity, and thus g has no zeros. If

(zn − z0)/ρn 6→ ∞, taking a subsequence and renumbering, we may assume that

(zn − z0)/ρn → α (a finite complex number). Since

fn(ρnζ + z0) = fn

(
zn + ρn

(
ζ − zn − z0

ρn

))
= gn

(
ζ − zn − z0

ρn

)
→ g(ζ − α),

we deduce that g has only one zero at −α.

Hence, by Nevanlinna’s fundamental theorem, g is not transcendental. Then

g has the form

g(ζ) = A(ζ −B)l

where A( 6= 0), B are constants, l is a positive integer. So g(ζ)−1 = A(ζ−B)l−1

has only simple zeros, a contradiction.

Case 3. There exists f ∈ F such that f(z0) = ∞.
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As before, we can find r > 0 such that Dr(z0) ⊂ D, and f(z) 6= 0 in Dr(z0)

and f(z) 6= ∞ in D′
r(z0) for each f ∈ F .

Consider the family F1 = {1/f : f ∈ F}. Then F1 is not normal at z0. As

Case 2, we can derive a contradiction. Theorem 1 is proved. ¤

Proof of Theorem 2. Suppose F is normal at z0∈D. Then, by Lemma 1,

there exist functions fn ∈ F , points zn → z0 and positive numbers ρn → 0, such

that
gn(ζ) = fn(zn + ρnζ) → g(ζ)

converges spherically uniformly on compact subsets of C, where g(ζ) is a non-

constant meromorphic function on C.
Now we divide into two cases.

Case 1. There exists f ∈ F such that f(z0) 6= 0.

Then we can find r > 0 such that Dr(z0) ⊂ D, and f(z) 6= 0 for z ∈ Dr(z0).

By the assumptions of Theorem 2, we know that this still holds for each f ∈ F .

Hurwitz’s theorem implies that that g 6= 0. Since all poles of fn have mul-

tiplicity at least 2 (or 3) and all zeros of fn− 1 have multiplicity at least 3 (or 2),

all poles of g have multiplicity at least 2(or 3) and all zeros of g− 1 have multip-

licity at least 3 (or 2). By Nevanlinna’s fundamental theorem, g is a constant, a

contradiction.

Case 2. There exists f ∈ F such that f(z0) = 0.

As before, we can find r > 0 such that Dr(z0) ⊂ D, and f(z) 6= 0 in D′
r(z0)

and f(z) 6= ∞ in z ∈ Dr(z0) for each f ∈ F .

Then, g is entire in C and all zeros of g−1 have multiplicity at least 3 (or 2).

Using the same argument as in Case 2 of the proof of Theorem 1, we conclude

that g has at most one zero, and then we can derive a contradiction. Theorem 2

is thus proved. ¤

Proof of Theorem 3. Let z0∈D. We distinguish the following three cases.

Case 1. ψ(z0) 6= 0,∞.

Arguing similarly as the proof of Theorem 1, we can prove that F is normal

at z0 for this case.

Case 2. ψ(z0) = 0.

Then there exists r > 0 such that Dr(z0) ⊂ D and ψ(z) 6= ∞ in Dr(z0), and

ψ(z) 6= 0 in D′
r(z0). By Case 1, F is normal in D′

r(z0). Set

G =

{
F =

f

ψ
: f ∈ F

}
. (∗)
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Since for each pair of functions f, g ∈ F , f and g share 0,∞ in D and all zeros

of f − ψ are multiple for f ∈ F , noting that the multiplicity of f ∈ F is larger

than that of ψ(z) at the common zeros or poles of f and ψ(z) in D, we deduce

that, for each pair of functions F,G ∈ G, F and G share 0,∞ in D, and all zeros

of F − 1 in D are multiple for F ∈ G. So, by Theorem 1, G is normal in D.

Now we distinguish two subcases.

Case 2.1. There exists f ∈ F such that f(z0) 6= 0.

Then we can find 0 < r1 < r such that f 6= 0 in Dr1(z0). It follows from the

assumptions of Theorem 3 that f 6= 0 in Dr1(z0) for each f ∈ F . Thus, for all

F ∈ G, F (z0) = f(z0)/ψ(z0) = ∞.

Since G is normal at z0, G is equicontinuous at z0 with respect to the spherical

distance. Hence, there exists 0 < r2 < r1 such that |F (z)| ≥ 1 for all F ∈ G and

z ∈ Dr2(z0). On the other hand, F is normal in D′
r2(z0), but not normal at z0,

then the family F1 = {1/f : f ∈ F} is normal in D′
r2(z0), but not normal at z0.

Note that F1 is holomorphic in Dr2(z0), by Lemma 2, there exists a sequence

{1/fn} ⊂ F1 such that 1/fn → ∞ in D′
r2(z0). Then fn → 0 converges locally

uniformly in D′
r2(z0), and hence so does {Fn} ⊂ G, where Fn = fn/ψ. But

|Fn(z)| ≥ 1 for each z ∈ Dr2(z0), we derive a contradiction.

Case 2.2. There exists f ∈ F such that f(z0) = 0.

As before, we can find 0 < r1 < r such that f is holomorphic in Dr1(z0) and

f(z0) = 0 for each f ∈ F .

Since the multiplicity of f ∈ F is larger than that of ψ(z) at the common

zeros of f and ψ(z), we have that F (z0) = f(z0)/ψ(z0) = 0 for each F ∈ G. As

above, there exists 0 < r2 < r1 such that |F (z)| ≤ 1 for all F ∈ G and z ∈ Dr2(z0).

On the other hand, F is normal in D′
r2(z0), but not normal at z0. Since fn is

holomorphic in Dr2(z0) for each n, again by Lemma 2, fn → ∞ in D′
r2(z0). It

follows that Fn → ∞ in D′
r2(z0), where Fn = fn/ψ. But |Fn(z)| ≤ 1 for each

z ∈ Dr2(z0), a contradiction.

Case 3. ψ(z0) = ∞.

There exists r > 0 such that Dr(z0) ⊂ D, and ψ(z) 6= 0 in Dr(z0) and

ψ(z) 6= ∞ in D′
r(z0). Then, by Case 1, F is normal in D′

r(z0).

Consider the family G defined as in (∗). Similarly as above, G is normal in D.

we also distinguish two subcases.

Case 3.1. There exists f ∈ F such that f(z0) 6= ∞.

Then we can choose 0 < r1 < r such that f 6= ∞ in Dr1(z0), and this also

holds for each f ∈ F by the assumptions of Theorem 3. Thus, for all F ∈ G,
F (z0) = f(z0)/ψ(z0) = 0. We can derive a contradiction as Case 2.2.

Case 3.2. There exists f ∈ F such that f(z0) = ∞.
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As above, we can find 0 < r1 < r such that f(z0) = ∞ and f 6= 0 in Dr1(z0)

for each f ∈ F . Since the multiplicity of f ∈ F is larger than that of ψ(z) at

the common poles of f and ψ(z), we know that F (z0) = f(z0)/ψ(z0) = ∞ for all

F ∈ G. Similarly as in Case 2.1, we can obtain a contradiction.

Theorem 3 is thus proved. ¤

Proof of Theorem 4 and Theorem 5. Theorem 4 and Theorem 5 can

be proved by using almost the same argument as in Theorem 3. We here omit

the details. ¤
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