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On a class of locally dually flat Finsler metrics
of isotropic flag curvature

By QIAOLING XIA (Hangzhou)

Abstract. In this paper, we characterize a class of locally dually flat (α, β) metrics

F = α+ εβ + k β2

α
defined by a Riemannian metric α and a non-zero 1-form β, where ε

and k are non-zero constants. As an application, we prove that there is no locally dually

flat metric in the form F = α + εβ + k β2

α
(ε 6= 0, k 6= 0, β 6= 0) with isotropic S-

curvature unless it is Minkowskian. Moreover, we prove that if F = α + εβ + k β2

α

(ε 6= 0, k 6= 0, β 6= 0) is locally dually flat, then it is locally projectively flat if and

only if it is of constant flag curvature, and there is no locally dually flat metrics in the

form F = α + εβ + k β2

α
(ε 6= 0, k 6= 0, β 6= 0) of isotropic flag curvature unless it is

Minkowskian.

1. Introduction

Locally dually flat Finsler metrics are studied in information geometry and

the notion of locally dually flat Finsler metrics is introduced in ([Sh1]). A Finsler

metric F = F (x, y) on an n-dimensional manifold M is called locally dually flat

if at every point there is a coordinate system (xi) in which the spray coefficients

are in the following form

Gi = −1

2
gijHyj , (1.1)

where H = H(x, y) is a local scalar function on the tangent bundle TM of M .

Such a coordinate system is called an adapted coordinate system. In [Sh1], the
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author proved that a Finsler metric F = F (x, y) on an open subset U ⊂ Rn is

dually flat if and only if it satisfies the following PDE

[F 2]xkylyk − 2[F 2]xl = 0. (1.2)

In this case, H = − 1
6 [F

2]xmym. Locally dually flat Finsler metrics are studied in

Finsler information geometry in [Sh1]. Recently, the classification of locally dually

flat Randers metrics with almost isotropic flag curvature is given in [CSZ].

It is known that a Riemannian metric F =
√
gij(x)yiyl is locally dually flat

if and only if in an adapted coordinate system,

gij =
∂2ψ

∂xi∂xj
(x),

where ψ = ψ(x) is a C∞ function ([AN], [Sh1]). The first example of non-Rieman-

nian dually flat metrics is the Funk metric given as follows (cf. [Sh1], [CSZ]):

F =

√
(1− |x|2)|y|2 + 〈x, y〉2

1− |x|2 ± 〈x, y〉
1− |x|2 . (1.3)

This metric is defined on the unit ball Bn ⊂ Rn and is a Randers metric with

constant flag curvature K = − 1
4 . This is only known example of locally dually

flat metrics with non-zero constant flag curvature up to a normalization. These

facts inspire us to consider a class of (α, β) metrics on M , which is expressed in

the following form

F = α+ εβ + k
β2

α
, (1.4)

where α =
√
aijyiyj is a Riemannian metric, β = biy

i is a non-zero 1-form with

b = ‖β(x)‖α < b0 for and x ∈ M , ε, k are non-zero constants such that

α2 + εαβ + kβ2 > 0, α2 + 2kb2α2 − 3kβ2 > 0,

∣∣∣∣
β

α

∣∣∣∣ ≤ b < b0. (1.5)

These metrics have been extensively studied (cf. [Sh1], [SY] and references the-

rein). We firstly give an equivalent characterization (Theorem 3.1) of locally dually

flat metrics (1.4) and give some applications. As one of applications of Theorem

3.1, we prove that if β is parallel with respect to α, then F = α+ εβ+k β2

α (ε 6= 0,

k 6= 0, β 6= 0) is locally dually flat if and only if α is flat. In this case, F is

Minkowskian.

The S-curvature S is an important non-Riemannian quantity in Finsler geo-

metry ([CS], [Sh4], [ChS]). A Finsler metric F is said to be of isotropic S-

curvature if S = (n + 1)c(x)F , where c(x) is a scalar function on M . Another
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application of Theorem 3.1 shows there is no locally dually flat Finsler metric

F = α + εβ + k β2

α (ε 6= 0, k 6= 0, β 6= 0) with isotropic S-curvature unless it is

Minkowskian.

Let’s recall another notion of locally projectively flat Finsler metrics. A Fins-

ler metric F = F (x, y) is called locally projectively flat if at every point there is

a coordinate system (xi) in which all geodesics are straight lines, or equivalently,

the spray coefficients are in the following form

Gi = Pyi, (1.6)

where P = P (x, y) is a local scalar function. Locally projectively flat metrics

have been studied extensively (see [Sh2], [Sh3], [LS], [SY], etc. and the references

therein). In [CSZ], authors proved that every dually flat and projectively flat

metric on an open subset U in Rn must be either a Minkowski metric or a Funk

metric after a normalization. A natural question is when a dually flat metric on U
is projectively flat. For the metric in the form (1.4), if it is locally dually flat, then

it is projectively flat if and only if it is of constant flag curvature (Theorem 4.1).

The main purpose of this paper is to classify locally dually flat metrics in

the form (1.4) with isotropic flag curvature. We prove that there exists no locally

dually flat metric in the form (1.4) of isotropic flag curvature (especially constant

flag curvature) unless it is Minkowskian (Theorem 4.2).

This paper is arranged as follows. Firstly we give an introduction of locally

dually flat (α, β) metric in §2. In §3, we obtain an equivalent characterization for

locally dually flat Finsler metric with the form (1.4) (see Theorem 3.1) and give

some applications of Theorem 3.1. Finally, in §4, we prove that if the metric (1.4)

is locally dually flat, then it is projectively flat if and only if it is of constant flag

curvature (see Theorem 4.1). Moreover, we prove that the metric (1.4) is a locally

dually flat metric of isotropic flag curvature if and only if ε2 = 4k, α is flat and β

is parallel with respect to α. In this case, F is locally isometric to a Minkowski

metric F = (|y|±
√
kbiy

i)2

|y| , where | · | is Euclidean metric in Rn and bi(1 ≤ i ≤ n)

are constants(see Theorem 4.2).

In the following, we will use Einstein sum convention.

2. (α, β)-metrics

Let M be an n-dimensional smooth manifold. We denote by TM the tangent

bundle of M and by (x, y) = (xi, yi) the local coordinates on the tangent bundle

TM . A Finsler manifold (M,F ) is a smooth manifold equipped with a function

F : TM → [0,∞), which has the following properties
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(i) Regularity: F is smooth in TM \ {0}.
(ii) Positively homogeneity: F (x, λy) = λF (x, y), for λ > 0.

(iii) Strong convexity: the Hessian matrix of F 2, (gij(x, y)) := 1
2

(∂2F 2(x,y)
∂yi∂yj

)
, is

positive definite on TM \{0}. We call F and the tensor gij the Finsler metric

and the fundamental tensor of M respectively.

In Finsler geometry, (α, β)-metric is a class of important Finsler metric. By

definition, an (α, β)-metric is expressed as the following form,

F = αφ(s), s :=
β

α
, (2.1)

where α =
√
aij(x)yiyj is a Riemannian metric and β = bi(x)y

i is a 1-form.

φ = φ(s) is a C∞ positive function on an open interval (−b0, b0) satisfying

φ(s)− sφ′(s) + (b2 − s2)φ′′(s) > 0, |s| ≤ b < b0, (2.2)

where b := ‖β(x)‖α. It is known that F = αφ(s) is a Finsler metric if and only

if ‖β(x)‖α < b0 for any x ∈ M ([CS]). In particular, if φ(s) = 1 + s, then (α, β)-

metric is a Randers metric. If φ(s) = 1+εs+ks2, then (α, β)-metric is exactly the

metric in the form (1.4). Let Gi(x, y) and Gi
α(x, y) denote the spray coefficients

of F and α, respectively. To express formulae for the spray coefficients Gi of F

in terms of α and β, we need to introduce some notations. Let bi;j be a covariant

derivative of bi with respect to α. Denote

rij :=
1

2
(bi;j + bj;i), sij :=

1

2
(bi;j − bj;i), (2.3)

sij := aihshj , sj := bis
i
j = sijb

i, rj = rijb
i, (2.4)

r0 := rjy
j , s0 := sjy

j , r00 := rijy
iyj . (2.5)

Thus we have the following

Lemma 2.1 ([CS]). The spray coefficients Gi are related to Gi
α by

Gi = Gi
α + αQsi0 +Θ(−2αQs0 + r00)

yi

α
+Ψ(−2αQs0 + r00)b

i, (2.6)

where

Q : =
φ′

φ− sφ′ , (2.7)

Θ : =
φ′(φ− sφ′)

2φ[(φ− sφ′) + (b2 − s2)φ′′]
− sΨ, (2.8)

Ψ : =
φ′′

2[(φ− sφ′) + (b2 − s2)φ′′]
, (2.9)

here bi := aijbj and b2 := aijbibj = bjb
j .



On a class of locally dually flat Finsler metrics. . . 173

From (1.2), we can prove the following

Lemma 2.2. An (α, β)-metric F = αφ(s), where s = β
α , is dually flat on an

open subset U ⊂ Rn if and only if

2α2amlG
m
α +Q(3sl0 − rl0)α

3−α2

(
ym

∂Gm
α

∂yl
+αQbm

∂Gm
α

∂yl

)
+Qα(r00 + 2bmGm

α )yl

+

[
2Q(ymGm

α )+
φ′2+φφ′′

φ(φ− sφ′)
(αr00+2(bmα− sym)Gm

α )

]
(αbl− syl)= 0, (2.10)

where ri0 := rijy
j , si0 := sijy

j and yi := aijy
j .

Proof. By direct computation, F is dually flat on U if and only if

αφ2(αxkylyk − 2αxl) + φ2αyl
(αxkyk) + α2φφ′(sxkylyk − 2sxl

)

+ 2αφφ′(αylsxkyk + sylαxk
yk) + α2(φ′2 + φφ′′)(sxkyk)syl = 0. (2.11)

On the other hand,

αxl =
1

α

∂Gm
α

∂yl
ym, αxkyk =

2

α
Gm

α ym, αl =
yl
α
, (2.12)

sxl =
1

α
bm;ly

m +
1

α2
(αbm − sym)

∂Gm
α

∂yl
, syl =

αbl − syl
α2

, (2.13)

sxkyk =
r00
α

+
2

α2
(αbm − sym)Gm

α , (2.14)

αxkylyk − 2αxl =
2

α3
(amlα

2 − ymyl)G
m
α − 1

α

∂Gm
α

∂yl
ym, (2.15)

sxkylyk − 2sxl = −r00
α3

yl +
2

α
sl0 − 4yl

α4
(αbm − sym)Gm

α

+
2

α2

(
yl
α
bm − αbl − syl

α2
ym − saml

)
Gm

α

− 1

α
bm;ly

m − 1

α2
(αbm − sym)

∂Gm
α

∂yl
. (2.16)

Putting (2.12)–(2.16) into (2.11) and noting bm;ly
m = r0l + s0l yields

2φ(φ− sφ′)α2amlG
m
α + φφ′(3sl0 − rl0)α

3

−α2φ

[
(φ− sφ′)ym

∂Gm
α

∂yl
+ αφ′bm

∂Gm
α

∂yl

]
+ φφ′α(r00 + 2bmGm

α )yl

+[2φφ′ymGm
α + (φ′2 + φφ′′)(αr00 + 2(αbm − sym)Gm

α )](αbl − syl) = 0.

This completes the proof. ¤



174 Qiaoling Xia

3. Locally dually flat Finsler metrics F = α + εβ + kβ2

α

In the following, we consider a class of special (α, β)-metrics on a manifold

Mn defined by the following form

F = αφ(s), φ(s) = 1 + εs+ ks2, (3.1)
that is,

F = α+ εβ + k
β2

α
, (3.2)

where ε, k are constants, α=
√
aij(x)yiyj is a Riemannian metric and β = bi(x)y

i

is a 1-form on M . From (2.2), we have

1 + εs+ ks2 > 0, 1 + 2kb2 − 3ks2 > 0, |s| ≤ b < b0. (3.3)

F is a Finsler metric if and only if β satisfies that b = ‖β(x)‖α < b0 for any

x ∈ M . From (3.1) and Lemma 2.2, we can prove the following

Theorem 3.1. Let F = α+ εβ + k β2

α be a Finsler metric on a manifold M ,

where α =
√
aij(x)yiyj is a Riemannian metric, β = bi(x)y

i is a non-zero 1-form

and ε, k are non-zero constants. Then F is locally dually flat if and only if in an

adapted coordinate system, α and β satisfy

r00 =
2

3
[θβ − (θlb

l)α2], (3.4)

sl0 =
1

3
(βθl − θbl), (3.5)

Gl
α =

1

3
(α2θl + 2θyl), (3.6)

where θ := θi(x)y
i is a 1-form on M and θl := almθm.

Proof. If (3.4)–(3.6) hold, the locally dually flatness of F follows from

Lemma 2.2 directly. Conversely, since φ(s) = 1 + εs + ks2, equation (2.10) is

reduced to the following equation:

2Aα2amlG
m + 2Bα(bmGm

α )yl +Bα3(3sl0 − rl0)−Aα2ym
∂Gm

α

∂yl
−Bα3bm

∂Gm
α

∂yl

+Bαr00yl+{2BymGm
α +C[αr00+2(bmα− sym)Gm

α ]}(αbl − syl)= 0, (3.7)

where
A(s) := φ(φ− sφ′) = 1 + εs− εks3 − k2s4,

B(s) := φφ′ = ε+ (ε2 + 2k)s+ 3kεs2 + 2k2s3,

C(s) := φ′2 + φφ′′ = ε2 + 2k + 6εks+ 6k2s2.

Multiplying (3.7) by α4 and rewriting this equation as a polynomial in α, noting
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ε 6= 0, then the sum of odd power and even power of α are zero respectively.

Dividing both sides of the former by α, one get

(
3sl0 − rl0 − bm

∂Gm
α

∂yl

)
α6 +

[
(6kβbl + yl)(r00 + 2bmGm

α )

+ 3kβ2

(
3sl0 − rl0 − bm

∂Gm
α

∂yl

)
+ 2(ymGm

α )bl + 2βamlG
m
α − βym

∂Gm
α

∂yl

]
α4

+

[
− 3kβ2(r00 + 2bmGm

α )yl − 2β(3kβbl + yl)(ymGm
α )− 2kβ3amlG

m
α

+ kβ3ym
∂Gm

α

∂yl

]
α2 + 6kβ3ymGm

α yl = 0, (3.8)

[
(ε2 + 2k)(r00 + 2bmGm

α )bl + (ε2 + 2k)β

(
3sl0 − rl0 − bm

∂Gm
α

∂yl

)
+ 2amlG

m
α

− ym
∂Gm

α

∂yl

]
α6 +

[
6k2β2(r00 + 2bmGm

α )bl + 2k2β3

(
3sl0 − rl0 − bm

∂Gm
α

∂yl

)]
α4

+

[
− 4k2β3(r00 + 2bmGm

α )yl − 8k2β3(ymGm
α )bl − 2k2β4amlG

m
α

+ k2β4ym
∂Gm

α

∂yl

]
α2 + 8k2β4(ymGm

α )yl = 0. (3.9)

Contracting (3.8) and (3.9) with bl yield

(
3s0 − r0 − ∂(bmGm

α )

∂yl
bl

)
α6 +

[
β(12kb2 + 5)bmGm

α + β(6kb2 + 1)r00

+ 3kβ2

(
3s0 − r0 − ∂(bmGm

α )

∂yl
bl

)
+ 2b2ymGm

α − β
∂(ymGm

α )

∂yl
bl
]
α4

+

[
− 3kβ3r00 − 9kβ3bmGm

α − 2β2(3kb2 + 1)ymGm
α + kβ3 ∂(ymGm

α )

∂yl
bl
]
α2

+ 6kβ4ymGm
α = 0, (3.10)

[
(2ε2b2 + 4kb2 + 3)bmGm

α + (ε2 + 2k)b2r00

+ (ε2 + 2k)β

(
3s0 − r0 − ∂(bmGm

α )

∂yl
bl
)
− ∂(ymGm

α )

∂yl
bl
]
α6

+

[
6k2β2b2(r00 + 2bmGm

α ) + 2k2β3

(
3s0 − r0 − ∂(bmGm

α )

∂yl
bl
)]

α4
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+

[
− 4k2β4r00 − 11k2β4bmGm

α − 8k2β3b2ymGm
α + k2β4 ∂(ymGm

α )

∂yl
bl
]
α2

+ 8k2β5ymGm
α = 0. (3.11)

(3.10)× 4kβ − (3.11)× 3 and dividing by α2 on both sides yields

(α2 − kβ2)(3α2 − kβ2)
∂(ymGm

α )

∂yl
bl + α2β[(3ε2 + 2k)α2 − 6k2β2]

∂(bmGm
α )

∂yl
bl

= [(3ε2 + 2k)β(3s0 − r0) + 3(2ε2b2 + 4kb2 + 3)bmGm
α + 3(ε2 + 2k)b2r00]α

4

− [4kβ2(3kb2 + 5)bmGm
α + 8kb2βymGm

α + 2kβ2(3kb2 + 2)r00

+ 6k2β3(3s0 − r0)]α
2 + [3k2β4bmGm

α + 8kβ3ymGm
α ]. (3.12)

From (3.10),we get

βα2(α2 − kβ2)
∂(ymGm

α )

∂yl
bl + α4(α2 + 3kβ2)

∂(bmGm
α )

∂yl
bl = (3s0 − r0)α

6

+ [(12kb2 + 5)βbmGm
α + 2b2ymGm

α + (6kb2 + 1)βr00 + 3kβ2(3s0 − r0)]α
4

[−3kβ3r00 − 9kβ3bmGm
α − 2(3kb2 + 1)β2ymGm

α ]α2 + 6kβ4ymGm
α . (3.13)

Since F is non-Riemannian, α2 + 3kβ2 6= 0 and (3ε2 + 2k)α2 − 6k2β2 6= 0,

(3.12)× α2(α2 + 3kβ2)− (3.13)× β[(3ε2 + 2k)α2 − 6k2β2] yields

α2(α2 − kβ2)[(α2 + kβ2)2 − ε2α2β2]

[
∂(ymGm

α )

∂yl
bl − 3bmGm

α

]

= D(b2α2 − β2)[α2r00 + 2α2bmGm
α − 2βymGm

α ], (3.14)

where D := (ε2 + 2k)α4 − 3kε2α2β2 + 6k3β4. Noting that

D = (ε2 + 2k)[(α2 + kβ2)2 − ε2α2β2] + (ε2 − 4k)[(ε2 + k)α2β2 − kβ4]. (3.15)

Case I : ε2 = 4k.

In this case, D = 6k[(α2 + kβ2)2 − 4kα2β2] = 6k(α2 − kβ2)2 6= 0 and (3.14)

is reduced to the following

α2(α2 − kβ2)

[
∂(ymGm

α )

∂yl
bl − 3bmGm

α

]

= 6k(b2α2 − β2)[α2r00 + 2α2bmGm
α − 2βymGm

α ]. (3.16)
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(1) If b2 is not identically equal to 1
k , then (b2α2 − β2), (α2 − kβ2) and α2

are all irreducible polynomials of (yi) and one of them is not divisible by another

one. Thus, there is a function σ = σ(x) on M such that

∂(ymGm
α )

∂yl
bl − 3bmGm

α = σ(b2α2 − β2), (3.17)

α2r00 + 2α2bmGm
α − 2βymGm

α =
σ

6k
α2(α2 − kβ2). (3.18)

From (3.18), we have

2βymGm
α =

[
r00 + 2bmGm

α − σ

6k
(α2 − kβ2)

]
α2. (3.19)

Since α2 does not contain the factor β, there exist a 1-form θ := θiy
i on M such

that

ymGm
α = θα2, (3.20)

bmGm
α = θβ − 1

2
r00 +

σ

12k
(α2 − kβ2). (3.21)

From (3.17), (3.20) and (3.21), we obtain

r00 =
2

3
θβ − 5

6
σβ2 +

2

3
(σb2 +

σ

4k
− θlb

l)α2, (3.22)

∂(ymGm
α )

∂yl
= θlα

2 + 2θyl, (3.23)

∂(bmGm
α )

∂yl
= θlβ + θbl − rl0 +

σ

6k
(yl − kβbl). (3.24)

Using (3.20)–(3.24), (3.8)–(3.9) become

3β(α2 − kβ2)amlG
m
α + 3α2(α2 + 3kβ2)sl0

+ β

(
2kθβ2 − 2θα2 − 7

6
σα2β +

1

2
kσβ3

)
yl − 2α2β(α2 + kβ2)θl

+
1

2
α2

(
2θα2 + 6kθβ2 − kσβ3 +

7

3
σα2β

)
bl = 0, (3.25)

3(α2 + kβ2)(α2 − kβ2)amlG
m
α + 6kα2β(3α2 + kβ2)sl0

+

(
2k2θβ4 − σα4β +

2

3
k2σβ5 − 2θα4 − kσα2β3

)
yl

− α2(α4 + 6kα2β2 + k2β4)θl

+ α2

(
2k2θβ3 + 6kθα2β + σα4 − 2

3
k2σβ4 + kσα2β2

)
bl = 0. (3.26)
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Solving equations (3.25)–(3.26), we get

amlG
m
α =

1

3
(2θ + σβ)yl +

1

3
(θl − σbl)α

2, (3.27)

sl0 =
1

3
(βθl − θbl) +

1

18α2
σβ2yl − 1

18
σβbl. (3.28)

(3.28) implies

slk =
1

3
(bkθl − θkbl) +

σ

18α4
(−α4bkbl + 2α2βbkyl − 2β2ykyl + alkα

2β2). (3.29)

Since slk is anti-symmetric with respect to l and k, we have

σ[α4bkbl − α2β(bkyl + blyk) + 2β2ykyl − alkα
2β2] = 0. (3.30)

Contracting (3.30) with bk yields

σ(b2α2 − 2β2)(α2bl − βyl) = 0. (3.31)

(3.31) implies

σα2bl = σβyl, (3.32)

because of (b2α2 − 2β2) 6= 0. From (3.32), we have σb2α2 = σβ2, which implies

σ = 0, because of α not including the factor β. Thus (3.22), (3.27) and (3.28)

imply (3.4),(3.5) and (3.6).

(2) If b2 is equal to 1
k everywhere, then (3.16) is reduced to the following

α2

[
∂(ymGm

α )

∂yl
bl − 3bmGm

α

]
= 6k[α2r00 + 2α2bmGm

α − 2βymGm
α ]. (3.33)

From (3.33), ymGm
α must be divisible by α2. Consequently, there is a 1-from

θ = θiy
i on M , such that

ymGm
α = θα2. (3.34)

Plugging (3.34) into (3.33) yields

bmGm
α =

1

15
(θ0α

2 + 14θβ − 6r00), (3.35)

where θ0 = θib
i. Using (3.34)–(3.35), (3.8)–(3.9) are reduced to

3β(α2 − kβ2)amlG
m
α + 3α2(α2 + 3kβ2)sl0 − 1

5
α2(α2 + 3kβ2)rl0
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+
1

15
[3(α2 − 3kβ2)r00 − 4β(8α2 − 9kβ2)θ − 12kα2β2θ0]yl

− 1

15
α2β(29α2 + 27kβ2)θl +

2

15
[9kα2βr00 + 2α2(4α2 + 9kβ2)θ

+ 6kα4βθ0]bl = 0, (3.36)

3(α2 + kβ2)(α2 − kβ2)amlG
m
α + 6kα2β(3α2 + kβ2)sl0

− 2

5
kα2β(3α2 + kβ2)rl0 − 2

15
[6k2β3r00 + (15α4 − 19k2β4)θ

+ 6kα2β(α2 + kβ2)θ0]yl − 1

15
α2(15α4 + 84kα2β2 + 13k2β4)θl

+
2

5

[
3kα2(α2 + kβ2)r00 +

2

3
kα2β(21α2 + 5kβ2)θ

+ 2kα4(α2 + kβ2)θ0

]
bl = 0. (3.37)

Solving (3.36) and (3.37), we get

amlG
m
α =

α2

3
θl +

2

15(α2 − kβ2)
[(3kβr00 + 5α2θ − 7kβ2θ + 2kα2βθ0)yl

− kα2(3r00 + 2α2θ0 + 2βθ)bl]; (3.38)

sl0 =
1

15
rl0 − 16

45
θbl +

14

45
βθl +

2βθ − 3r00
45α2

yl. (3.39)

From (3.39), we have

slk =
1

45α4

{
α4(3rlk + 14bkθl − 16θkbl) + α2[(2βθ − 3r00)alk − 6rk0yl

+ 2θbkyl + 2βθkyl]− 2(2βθ − 3r00)ykyl
}
. (3.40)

Using slk = −skl, we obtain

α4(3rlk − θkbl − θlbk) + α2[(2βθ − 3r00)alk − 3(rk0yl + rl0yk)

+ θ(bkyl + blyk) + β(θkyl + θlyk)]− 2(2βθ − 3r00)ykyl = 0. (3.41)

Since the first and second term in (3.41) include the factor α2 respectively, there

is a function σ(x) on M such that

r00 =
2

3
(θβ − σα2). (3.42)
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Plugging (3.42) into (3.39), we get

sl0 =
1

3
(βθl − θbl). (3.43)

By assumption that b2 = 1
k , we have

(bj)xkbj + bj(b
j)xk = 0. (3.44)

Noting that (bj)xk = bj;k +
∂2Gi

α

∂yj∂yk bi and (bj)xk = bj ;k − ∂2Gj
α

∂yi∂yk b
i. Thus, (3.44) is

equivalent to

bj;kb
j = 0 ⇐⇒ (rjk + sjk)b

j = 0. (3.45)

From (3.42) and (3.43), we obtain 4
3 (θ0bk−σbk) = 0, which implies σ = θ0. Thus,

(3.4)–(3.6) follow from σ = θ0, (3.42)–(3.43) and (3.38).

Case II : ε2 6= 4k.

From the definition of D, we have

D = (α2 − kβ2)[(ε2 + 2k)α2 − 2k(ε2 − k)β2]− 2k2(ε2 − 4k)β4. (3.46)

Thus D is not divisible by (α2 − kβ2). D is also not divisible by [(α2 + kβ2)2 −
ε2α2β2] from (3.15) and α2. On the other hand, if b2 is not identity equal to 1

k ,

then (b2α2 − β2) can not divisible by α2, (α2 − kβ2) and [(α2 + kβ2)2 − ε2α2β2].

Thus from (3.14), we have

∂(ymGm
α )

∂yl
bl − 3bmGm

α = 0, (3.47)

α2r00 + 2α2bmGm
α − 2βymGm

α = 0. (3.48)

If b2 = 1
k everywhere, then by the same discussion as above, we still obtain (3.47)

and (3.48) from (3.14). Similarly, it follows from (3.47) and (3.48) that there exist

a 1-form τ := τiy
i such that

ymGm
α = τα2, (3.49)

bmGm
α =

1

3
[2τβ + (τlb

l)α2], (3.50)

r00 =
2

3
[τβ − (τlb

l)α2]. (3.51)

Similar to case I, we have

amlG
m
α =

1

3
(α2τl + 2τyl), (3.52)

sl0 =
1

3
(βτl − τbl). (3.53)

This completes the proof of theorem. ¤
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Corollary 3.1. Let F = α + εβ + k β2

α be a Finsler metric on M as The-

orem 3.1. If β is parallel with respect to α, then F is locally dually flat if

and only if α is flat. In this case, F is locally isometric to a Minkowski metric

F̃ (y) = |y|+ εbiy
i + k (biy

i)2

|y| with zero flag curvature, where | · | is the Euclidean

metric on Rn and bi(1 ≤ i ≤ n) are constants.

Proof. It is trivial for the proof of sufficient condition of locally dually flat

metric F from Lemma 2.2. Conversely, assume β is parallel with respect to α

and F is dually flat. Then bi;j = 0. Thus sl0 = rl0 = 0. By Theorem 3.1, we have

βθl = θbl = (biθ
i)yl, (3.54)

which implies βθ = (biθ
i)α2 and

Gi = Gi
α =

1

3
α2θi +

2

3
θyi =

1

3β
α2(biθ

i)yi +
2

3
θyi = θyi. (3.55)

Hence F is both projectively flat metric and dually flat metric. By Proposition 2.6

in [CSZ], F is of constant flag curvature λ. On the other hand, the flag curvature

of F is given by

K = λ =
θ2 − θxkyk

F 2
. (3.56)

Thus (3.56) is equivalent to

[λα4 + (ελβ2 + 2kλβ2 − θ2 + θxkyk)α2 + k2λβ4] + 2ελ(α2 + kβ2)αβ = 0. (3.57)

We must have 2ελ(α2 + kβ2)β = 0. Noting ε 6= 0 and β 6= 0, So λ = 0. Thus, it

follows θxkyk = θ2 from (3.56).

Since F is a projectively flat metric with zero flag curvature, α is also pro-

jectively flat and of constant sectional curvature µ by Beltrami theorem. We can

set

α =

√
(1 + µ|x|2)|y|2 − µ〈x, y〉2

1 + µ|x|2 , (3.58)

where 〈 , 〉 is the standard Euclidean inner product on Rn and | · | is a norm with

respect to 〈 , 〉. By direct computation, we have

Gi
α = − µ〈x, y〉

1 + µ|x|2 y
i. (3.59)

From (3.55), we get

θ = − µ〈x, y〉
1 + µ|x|2 . (3.60)

Using θxkyk = θ2, we have µ = 0 which implies α = |y|2 is flat and bi is constant

because of bi;j = 0. ¤
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Before we give another corollary, we recall the following theorem.

Theorem 3.2 ([ChS]). Let F = αφ(s), s = β
α be an (α, β) metric on M .

Suppose that φ 6= k1
√
1 + k2s2 + k3s for any constants k1 > 0, k2 and k3. Then

F is of isotropic S-curvature, S = (n+1)c(x)F , if and only if one of the following

holds

(1) β satisfies rj + sj = 0 and φ satisfies Φ = 0, where rj := rjkb
k, sj := skjb

k

and Φ is defined by

Φ = −(Q− sQ′)(n∆+ 1 + sQ)− (b2 − s2)(1 + sQ)Q′′, (3.61)

here ∆ = 1 + sQ+ (b2 − s2)Q′. In this case, S = 0.

(2) β satisfies rij = µ(b2aij − bibj), sj = 0, where µ = µ(x) is a scalar function,

and φ satisfies

Φ = −2(n+ 1)a
φ∆2

b2 − s2
, (3.62)

where a is a constant. In this case, S = (n+ 1)cF with c = aµ.

(3) β satisfies rij = sj = 0. In this case, S = 0, regardless of the choice of a

particular φ.

For the metric F = α + εβ + k β2

α , where ε, k are non-zero constants and

β is a non-zero 1-form, that is, φ = 1 + εs + ks2, by direct computation, we

obtain that Φ = Φ
(1−ks2)4 , where Φ is a polynomial in s and b of degree 7 and 2

respectively, and the coefficient of s7 in Φ is −12nk4. Thus Φ = 0 is impossible

because of k 6= 0. On the other hand, we compute φ∆2 and φ∆2 = ∆
(1−ks2)4 .

where ∆ is also a polynomial in s and b of degree 10 and 4 respectively, and the

coefficient of s10 in ∆ is 9k5. Thus, it is impossible that (3.62) holds. Hence by

Theorem 3.2, we have that F = α + εβ + k β2

α (k 6= 0) is a Finsler metric with

isotropic S-curvature if and only if β satisfies rij = sj = 0. In this case, S = 0.

From this and Theorem 3.1, we know that F is locally dually flat with isotropic

S-curvature if and only if θ = 0, which implies rij = sij = 0 and Gi
α = 0. So

bi;j = 0, that is, β is parallel with respect to α and α is flat. Hence, we obtain

Corollary 3.2. Let F = α + εβ + k β2

α be a Finsler metric on M as The-

orem 3.1. Then it is locally dually flat with isotropic S-curvature if and only if α

is flat and β is parallel with respect to α. In this case, F is locally isometric to a

Minkowski metric F̃ (y) = |y|+ εbiy
i + k (biy

i)2

|y| with zero S-curvature.
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4. Locally dually flat metrics F = α + εβ + kβ2

α

of isotropic flag curvature

In this section, we will classify the metrics F = α + εβ + k β2

α (ε 6= 0, k 6=0,

β 6= 0), which are locally dually flat metrics of isotropic flag curvature(esp. cons-

tant flag curvature). Firstly, from Lemma 2.1, the spray coefficients Gi of F are

given

Gi = Gi
α + αQsi0 +Θ(−2αQs0 + r00)

yi

α
+Ψ(−2αQs0 + r00)b

i, (4.1)

with

Q =
ε+ 2ks

1− ks2
, (4.2)

Θ =
ε− 3kεs2 − 4k2s3

2(1 + 2kb2 − 3ks2)(1 + εs+ ks2)
, (4.3)

Ψ =
k

1 + 2kb2 − 3ks2
. (4.4)

If F = α+ εβ + k β2

α is locally dually flat, then the spray coefficients of F can be

written as the following form by Theorem 3.1,

Gi = Pyi + Lθi + Tbi, (4.5)
where

P :=
2

3
{[1 + (s+ b2Q)Θ]θ − (1 + sQ)Θθ0α}, (4.6)

L :=
α2

3
(1 + sQ), (4.7)

T :=
α

3
[(2(s+ b2Q)Ψ−Q]θ − 2Ψ(1 + sQ)θ0α], (4.8)

and θ0 := θib
i. P is positively y-homogeneous of degree one and L, T are positi-

vely y-homogeneous of degree two respectively.

For any Finsler metric F and y ∈ TxM \ {0}, the Riemann curvature Ry :=

Ri
k(y)

∂
∂xi ⊗ dxk : TxM → TxM is defined as a linear map with the property

Ry(y) = 0 and gy(Ry(u), v) = gy(u,Ry(v)) for u, v ∈ TxM (cf. [CS]), where

Ri
k(y) := 2

∂Gi

∂xk
− yj

∂2Gi

∂xj∂xk
+ 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
. (4.9)

For a flag Π = span{y, u} ⊂ Tx(M) with flagpole y, the flag curvature K =

K(Π, y) is defined by

K(Π, y) :=
gy(u,Ry(u))

gy(y, y)gy(u, u)− gy(y, u)2
,
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where gy = gij(x, y)dx
i ⊗ dxj . It is the analogue of the sectional curvature in

Riemannian geometry. We say that a Finsler metric F is of scalar flag curvature,

if for any y ∈ Tx(M) \ {0}, the flag curvature K = K(x, y) is independent of Π

containing y ∈ TxM . If K = K(x) depends on x ∈ M only, then F is said to be of

isotropic flag curvature. F is said to be of constant flag curvature if K=constant.

A basic fact ([CS], [Sh4]) is that a Finsler metric F is of isotropic flag curvature

K = K(x) if and only if

Ri
k = KF 2

(
δik − yi

F
Fyk

)
. (4.10)

Since Ricci curvature is defined as the trace of the Riemannian curvature, that

is, Ric := Rm
m, thus if F is of isotropic flag curvature K = K(x), then we have

Ric = (n− 1)KF 2. (4.11)

Lemma 4.1. Let F = α + εβ + k β2

α be a dually flat Finsler metric on an

open subset U ⊂ Rn(n ≥ 2) of isotropic flag curvature λ = λ(x), where α is a

Riemannian metric, β is a non-zero 1-form and ε, k are non-zero contants. Then

(1) ε2 = 4k;

(2) θ = 0;

(3) F must be of constant flag curvature λ and λ = 0.

Proof. By assumption, F = α+ εβ+k β2

α is a dually flat metric of isotropic

flag curvature. we get from (4.5) and (4.9)

Ri
k(y) = Ξ(y)δik + τk(y)y

i + µk(y)θ
i + νk(y)b

i + χi
k(y), (4.12)

and

Ric = (n− 1)Ξ(y) + µi(y)θ
i + νi(y)b

i + χi
i(y), (4.13)

where

Ξ(y) : = P 2 − Pxjyj + 2LPyjθj + 2TPyj bj , (4.14)

τk(y) : = 3(Pxk − PPyk − LykPyjθj − TykPyj bj) + Ξyk , (4.15)

µk(y) : = 2Lxk − Lxjykyj + 2LLyjykθj + 2TLyjykbj − LyjLykθj

− LyjTykbj , (4.16)

νk(y) : = 2Txk − Txjykyj + 2LTyjykθj + 2TTyjykbj − TyjLykθj

− TyjTykbj , (4.17)

χi
k(y) : = 2L(θi)xk + 2T (bi)xk − Lyk(θi)xjyj − Tyk(bi)xjyj . (4.18)
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Hence by (4.11), we have

(n− 1)λF 2 = (n− 1)Ξ(y) + µi(y)θ
i + νi(y)b

i + χi
i(y). (4.19)

In order to formulate the equation (4.19) in α and θ, we need to compute all

terms on the right hand of (4.19). Firstly, from Theorem 3.1 and (2.11)–(2.13),

we get

αxkyk = 2θα, αxkθk =
2

3α
(|θ|2α2 + 2θ2), αxkbk =

2

3
(θ0α+ 2sθ), (4.20)

αykyk = α, αykθk =
θ

α
, αykbk = s, (4.21)

syk =
αbk − syk

α2
, sxk =

4(αbk − syk)

3α2
θ =

4θ

3
syk , (4.22)

sxkyk = sykyk = 0, sykθk =
θ0α− sθ

α2
, sykbk =

b2 − s2

α
. (4.23)

Let

p :=
2

3
(1 +AΘ), q := −2

3
BΘ;

l := 2B − sBs, h := Bs − sBss;

u :=
1

3
(2AΨ−Q), v := −2

3
BΨ,

where A := s+ b2Q and B := 1 + sQ. Then

P = pθ + qθ0α, L =
1

3
Bα2, T = uθα+ vθ0α

2. (4.24)

Using (4.20)–(4.24), by direct computation, we get

Pxjyj = (pbθ + qbθ0α)bxjyj + pθxjyj + qα(θ0)xjyj + 2qθ0θα, (4.25)

Pyjθj = p|θ|2 + (ps − sqs + q)
θ0θ

α
− sps

θ2

α2
+ qs(θ0)

2, (4.26)

Pyj bj = (p+ sq + qst)θ0 + pst
θ

α
, Lxjθj =

4

9
(B|θ|2α2 +Bsθ0θα+ lθ2), (4.27)

Lyjθj =
1

3
(lθ +Bsθ0α), Lyj bj =

1

3
(sl +Bsb

2)α, (4.28)

(Lyiθi)yjθj =
1

3

(
l|θ|2 + 2h

θ0θ

α
− sh

θ2

α2
+Bssθ

2
0

)
, (4.29)
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(Lyibi)yjθj =
1

3

[
ht

θ

α
+ (2B +Bsst)θ0

]
, (4.30)

(Lyiθi)xjyj =
1

3
[lθxjyj +Bsα(θ0)xjyj + 2Bsθ0θα], (4.31)

Tyjθj = u|θ|2α+ (u− sus)
θ2

α
+ (2v + us − svs)θ0θ + vsθ

2
0α, (4.32)

Tyj bj = (u+ 2sv + vst)θ0α+ (su+ ust)θ, (4.33)

(Tyiθi)yj bj = (us+ ust)|θ|2 + [2(u− sus) + (uss − svss + vs)t]
θ0θ

α

− s(u− sus + usst)
θ2

α2
+ (2v + us + vsst)θ

2
0, (4.34)

(Tyibi)yj bj = [2us+ 2b2v + (2us + svs + vsst)t]θ0 + (u− sus + usst)t
θ

α
, (4.35)

Txj bj =
2

3
[(u+ 4sv + 2vst)θ0θα+ 2(su+ ust)θ

2 + 2vθ20α
2]

uαθxj bj + vα2(θ0)xj bj + (ubθ + vbθ0α)αbxj bj , (4.36)

(Tyibi)xjyj = 2(u+ 2sv + vst)θ0θα+ (u+ 2sv + vst)α(θ0)xjyj

(ub + 2bvs + 2svb + vsbt)θ0αbxjyj + (sub + 2bus + usbt)θbxjyj

+ (su+ ust)θxjyj , (4.37)

where t = b2 − s2 and (·)s, (·)b or (·)sb are the first or second differential with

respect to s, b. Putting (4.24)–(4.37) into (4.19) yields

(n− 1)λF 2 = c1|θ|2α2 + c2θ
2 + c3θ0θα+ c4θ

2
0α

2 + c5(bxiyi)θ0α+ c6((θ0)xiyi)α

+ c7(θxibi)α+ c8(bxiyi)θ + c9α
2 + c10θα+ c11θxiyi, (4.38)

where ci(1 ≤ i ≤ 11) are defined as follows:

c1 :=
2

3

[
(n− 1)pB +

4

3
(lB +B) +B(su+ ust)− u(ls+Bsb

2)

]
; (4.39)

ci := ci1 + ci2(2 ≤ i ≤ 4); c21 :=
n− 1

3
(3p2 − 2spsB + 6upst); (4.40)

c22 := −1

9
(2shB − 6uht+ l2 − 8l) +

1

3

[− 2suB + 2s2usB − 3u2s2

− 2(6suus − 4us − 3u2 + sussB)t
]

+ (2uuss − u2
s)t

2 − 2

3
(ls+Bsb

2)(u− sus); (4.41)
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c31 :=
2(n− 1)

3

[
3pq − 3q +B(ps − sqs + q) + 3u(p+ sq + qst) + 3vpst

]
; (4.42)

c32 :=
2

9

[
2hB + 12uB + 3(uBss + vh)t− lBs +Bs

]
+

1

3

[− 2u+ 6u2s

+ 4sv − 4susB
]
+

2

3

[
vsB + vs + 9uv + 3uus − 9svus +Buss − sBvss

]
t

+ 2(uvss + vuss − usvs)t
2 − 2

3
(sl +Bsb

2)(us − svs + 2v); (4.43)

c41 :=
n− 1

3

[
3q2 + 2Bqs + 6v(p+ sq + qst)

]
; (4.44)

c42 :=
1

9
(2BBss −B

2

s + 6vBsst) +
1

3
(8v + 8vB + 2Bus − 3u2)

+ 2

(
2vus + 2v2 − svvs − uvs +

1

3
Bvss

)
t

− (v2s − 2vvss)t
2 − 2

3
vs(sl +Bsb

2); (4.45)

c5 := −(n− 1)qb − ub − 2bvs − 2svb − vsbt; (4.46)

c6 := −(n− 1)q − 1

3
Bs − 2sv − u− vst; (4.47)

c7 := 2u; c8 := −(n− 1)pb − sub − 2bus − usbt; (4.48)

c9 :=
2

3
B(θi)xi + 2v(θ0)xibi + 2θ0v(b

i)xi + 2vbθ0(bxibi); (4.49)

c10 := 2[ubbxibi + u(bi)xi ]; c11 := −(n− 1)p− 1

3
l − su− ust, (4.50)

By a long but direct computation, the equation (4.38) can be reduced into the

following

(n− 1)λF 2 =
c1

9A3
1A

2
2

|θ|2α2 +

[
c21

9A2
1φ(s)

2A3
2

+
c22

9A3
1A

4
2

]
θ2

+

[
c31

9A2
1φ(s)A

3
2

+
c32

9A3
1A

4
2

]
θ0θα+

[
c41

9A3
1A

2
2

+
c42

9A3
1A

4
2

]
θ20α

2

+
c5

A1A3
2

(bxiyi)θ0α+
c6

A1A2
2

((θ0)xiyi)α+
c7

A1A2
(θxibi)α

+
c8

A1φ(s)A3
2

(bxiyi)θ +
c9

A1A2
2

α2 +
c10

A1A2
2

θα

+
c11

A1φ(s)A2
2

θxiyi, (4.51)

here A1 := 1−ks2, A2 := 1+2kb2− 3ks2, ci(i = 1, or 5 ≤ i ≤ 11), ci1(2 ≤ i ≤ 4)

and ci2(2 ≤ i ≤ 4) are polynomials in s and b respectively, in particular, c21 =
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9A2
1φ(s)

2A3
2c21 and ci2 = 9A3

1A
4
2ci2 (2 ≤ i ≤ 4). From (4.51) and λ = λ(x), we

know that c21 must be divisible by φ(s). On the other hand, let

f1(b) :=
1

k6
[
2k6b6 + (8k − 7ε2)k4b4 + 2(5k2 − 13kε2 + 4ε4)k2b2

+ 4k3 − 21k2ε2 + 16kε4 − 3ε6
]
, (4.52)

and

f2(b) :=
ε

k6
[
2k6b6 + (15k − 7ε2)k4b4 + 2(14k2 − 17kε2 + 4ε4)k2b2

+ (15k3 − 34k2ε2 + 19kε4 − 3ε6)
]
. (4.53)

We compute c21 directly and get

c21 ≡ −3(n− 1)(ε2 − 4k)3f(s, b) mod φ(s), (4.54)

where f(s, b) := f1(b) + f2(b)s is a polynomial in s and b of degree 1 and 6

respectively. By assumption, n ≥ 2. Thus, either ε2 = 4k or f(s, b) = 0. But

f(s, b) = 0 implies f1(b) = f2(b) = 0, which is impossible unless ε = k = 0 because

of the arbitrary of s and b. The assumption of lemma implies ε2 = 4k. (1) holds.

In the case when ε2 = 4k, the coefficients c22, c32 and c42 in (4.51) satisfy

c22 = φ(s)c22, c32 = φ(s)2c32 and c42 = φ(s)2c42, where c22, c32 and c42 are

polynomials in s and b. Moreover, from (4.51) and λ = λ(x), we know that

c22θ
2 + c32θ0θα+ c42θ

2
0α

2 must be divisible by A2, i.e.,

c22θ
2 + φ(s)c32θ0θα+ φ(s)c42θ

2
0α

2 ≡ 0 mod A2. (4.55)

On the other hand, using ε2 = 4k, we compute by maple program

c22θ
2 + φ(s)c32θ0θα+ φ(s)c42θ

2
0α

2 ≡ g(s, b) mod A2, (4.56)

where g(s, b) := [(g1(b) + g2(b)s]θ
2 + [g3(b) + g4(b)s]θ0θα + [g5(b) + g6(b)s]θ

2
0α

2

and

g1(b) := −1

9

(
1

12
ε12b12 − 7

8
ε10b10 +

11

4
ε8b8 − 5

3
ε6b6 − 4ε4b4

+ 16ε2b2 − 128

3

)
; (4.57)

g2(b) := − ε

9

(
1

4
ε10b10 − 11

4
ε8b8 +

17

2
ε6b6 + 2ε4b4 − 40ε2b2 + 32

)
; (4.58)

g3(b) :=
ε3b2

3

(
1

8
ε8b8 − 5

4
ε6b6 + 3ε4b4 + 4ε2b2 − 16

)
; (4.59)
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g4(b) :=
ε2

9

(
1

8
ε10b10 − ε8b8 +

1

2
ε6b6 + 10ε4b4 − 8ε2b2 − 32

)
; (4.60)

g5(b) := −ε2

9

(
1

32
ε10b10 − 1

16
ε8b8 − 7

4
ε6b6 + 7ε4b4 + 4ε2b2 + 32

)
; (4.61)

g6(b) := −ε3

3

(
1

16
ε8b8 − 5

8
ε6b6 +

3

2
ε4b4 + 2ε2b2 − 8

)
. (4.62)

From (4.55) and (4.56), we get g(s, b) = 0, which implies θ is divisible by α.

Noting that α is irrational and θ is a 1-form. Hence θ ≡ 0. Thus from (4.51), we

obtain λ = 0. This completes the proof of lemma. ¤

By Theorem 4.6 in [Zh], the metric F = (α±
√
kβ)2

α with constant flag cur-

vature must be projectively flat. Combining Lemma 4.1 and Proposition 2.6 in

[CSZ], we have

Theorem 4.1. Let F = α + εβ + k β2

α be a locally dually flat metric on

Mn(n ≥ 2), where α is a Riemannian metric, β is a non-zero 1-form and ε, k

are non-zero constants. Then it is locally projectively flat if and only if it is of

constant flag curvature.

Theorem 4.2. Let F = α + εβ + k β2

α be a Finsler metric on Mn(n ≥ 2),

where α is a Riemannian metric, β is a non-zero 1-form and ε, k are non-zero

constants. Then F is a locally dually flat Finsler metric of isotropic flag curvature

if and only if ε2 = 4k, α is flat and β is parallel with respect to α. In this case, F

is locally isometric to F = (|y|+
√
kbiy

i)2

|y| , which is a Minkowski metric with zero

flag curvature, where | · | is the Euclidean metric on Rn and bi(1 ≤ i ≤ n) are

non-zero constants.

Proof. It is obvious that the Minkowski metric F = (|y|+
√
kbiy

i)2

|y| is dually

flat metric with constant curvature from Lemma 2.2. Conversely, assume that F is

a locally dually flat Finsler metric of isotropic flag curvature. From Lemma 4.1,

we have ε2 = 4k, θ = 0 and F is of zero flag curvature. By Theorem 3.1, we

conclude that rjk = sjk = Gi
α = 0. We have completed the proof of theorem. ¤

Remark 4.1. The another proof of necessity of Theorem 4.2 may follow

from the conclusion (1), (3) in Lemma 4.1, Theorem 4.6 in [Zh] and Theorem 1.2

in [SY] directly.

Remark 4.2. Theorem 4.2 shows that there exists no locally dually flat

metric in the form F = α + εβ + k β2

α (ε 6= 0, k 6= 0, β 6= 0) of isotropic flag

curvature unless it is Minkowskian.
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Remark 4.3. Theorem 4.2 implies that locally dually flat metrics F =

α+ εβ+k β2

α (ε 6= 0, k 6= 0, β 6= 0) of isotropic flag curvature K are equivalent to

locally dually flat metrics F = α+ εβ + k β2

α (ε 6= 0, k 6= 0, β 6= 0) with constant

flag curvature K. In both cases, we have K = 0.
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