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The properties of solutions of some linear differential equations

By BENHARRAT BELAÏDI

Abstract. In this paper, we study the growth and the oscillation of certain first

order nonhomogeneous linear differential polynomials generated by solutions of the dif-

ferential equation

f ′′ +A1(z)f
′ +A0(z)f = F,

where A1(z), A0(z) ( 6≡ 0), F are entire functions of finite order.

1. Introduction and main results

Throughout this paper, we assume that the reader is familiar with the funda-

mental results and the standard notations of the Nevanlinna’s value distribution

theory see [9], [13], [16]. In addition, we will use λ(f) (λ2(f)) and λ(f) (λ2(f)) to

denote respectively the exponents (hyper-exponents) of convergence of the zero-

sequence and the sequence of distinct zeros of a meromorphic function f , ρ(f) to

denote the order of f and ρ2(f) to denote the hyper-order of f .

To give the precise estimate of fixed points, we define:

Definition 1.1 ([6], [11], [15]). Let f be a meromorphic function and let

z1, z2, . . . (|zj | = rj , 0 < r1 ≤ r2 ≤ . . . ) be the sequence of the fixed points

of f , each point being repeated only once. The exponent of convergence of the

sequence of distinct fixed points of f(z) is defined by

τ(f) = inf

{
τ > 0 :

+∞∑

j=1

|zj |−τ < +∞
}
.

Mathematics Subject Classification: 34M10, 30D35.
Key words and phrases: linear differential equations, differential polynomials, entire solutions,

hyper order, hyper exponent of convergence of the sequence of distinct zeros.



318 Benharrat Beläıdi

Clearly,

τ(f) = λ(f − z) = lim
r→+∞

logN
(
r, 1

f−z

)

log r
, (1.1)

where N
(
r, 1

f−z

)
is the counting function of distinct fixed points of f(z) in {z :

|z| < r}.
Definition 1.2 ([6], [11], [15]). Let f be a meromorphic function. Then the

hyper exponent of convergence of the sequence of distinct fixed points τ2(f) of

f(z) is defined by

τ2(f) = λ2(f − z) = lim
r→+∞

log logN
(
r, 1

f−z

)

log r
. (1.2)

Consider the second order linear differential equation

f ′′ +A1(z)f
′ +A0(z)f = F, (1.3)

where A1(z), A0(z) ( 6≡ 0), F are transcendental entire functions with finite order.

It is well-known that all solutions of equation (1.3) are entire functions. Many

important results have been obtained on the fixed points of general transcendental

meromorphic functions for almost four decades (see [17]). However, there are few

studies on the fixed points of solutions of differential equations. In [6], Z. X. Chen

firstly studied the problem on the fixed points and hyper-order of solutions of

second order linear differential equations with entire coefficients.

We know that a differential equation bears a relation to all derivatives of its

solutions. Hence, linear differential polynomials generated by its solutions must

have special nature because of the control of differential equations.

The main purpose of this paper is to study the growth and the oscillation

of some differential polynomials generated by solutions of second order linear

differential equation (1.3). We obtain some estimates of their hyper order and

fixed points. Before we state our results, we denote by

α0 = d′0 − d1A0, α1 = d′1 + d0 − d1A1, h = d1α0 − d0α1 (1.4)

and

ψ =
d1(ϕ

′ − b′ − d1F )− α1(ϕ− b)

h
, (1.5)

where A1(z), A0(z), F , dj (j = 0, 1), b and ϕ are entire functions with finite

order.
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Theorem 1.3. Let A1(z), A0(z) 6≡ 0, F be entire functions of finite order.

Let d0(z), d1(z), b(z) be entire functions such that at least one of d0(z), d1(z)

does not vanish identically with ρ(dj) < ∞ (j = 0, 1), ρ(b) < ∞ and that h 6≡ 0.

Let ϕ be an entire function with finite order such that ψ(z) is not a solution

of (1.3). If f is an infinite order solution of (1.3) with ρ2(f) = ρ < +∞, then

the differential polynomial gf = d1f
′ + d0f + b satisfies

λ(gf − ϕ) = λ(gf − ϕ) = ρ(gf ) = ρ(f) = ∞, (1.6)

λ2(gf − ϕ) = λ2(gf − ϕ) = ρ2(gf ) = ρ2(f) = ρ. (1.7)

Theorem 1.4. Let A1(z), A0(z) ( 6≡ 0), F 6≡ 0 be entire functions of finite

order such that all solutions of equation (1.3) are of infinite order. Let d0(z),

d1(z), b(z) be entire functions such that at least one of d0(z), d1(z) does not vanish

identically with ρ(dj)<∞ (j=0, 1), ρ(b)<∞ and that h 6≡ 0. Let ϕ be a finite

order entire function. If f is a solution of equation (1.3) with ρ2(f) = ρ < +∞,

then the differential polynomial gf = d1f
′ + d0f + b satisfies (1.6) and (1.7).

Applying Theorem 1.4 for ϕ(z) = z, we obtain the following result.

Corollary 1.5. Under the assumptions of Theorem 1.4, if f is a solution

of equation (1.3) with ρ2(f) = ρ < +∞, then the differential polynomial gf =

d1f
′ + d0f + b has infinitely many fixed points and satisfies τ(gf ) = τ(gf ) =

ρ(gf ) = ρ(f) = ∞, τ2(gf ) = τ2(gf ) = ρ2(gf ) = ρ2(f) = ρ.

In the following, we obtain a result which is an example of Theorem 1.4.

Theorem 1.6. Let P (z) =
∑n

i=0 aiz
i and Q(z) =

∑n
i=0 biz

i be nonconstant

polynomials where ai, bi (i = 0, 1, . . . , n) are complex numbers, anbn 6= 0 such

that arg an 6= arg bn or an = cbn (0 < c < 1). Let Aj(z) (6≡ 0) (j = 0, 1) and

F 6≡ 0 be entire functions with max{ρ(Aj) (j = 0, 1), ρ(F )} < n. Let d0(z),

d1(z), b(z) be entire functions such that at least one of d0(z), d1(z) does not

vanish identically with ρ(dj) < n (j = 0, 1), ρ(b) < n, and let ϕ(z) be an entire

function with finite order. If f is a solution of the equation

f ′′ +A1(z)e
P (z)f ′ +A0(z)e

Q(z)f = F, (1.8)

then the differential polynomial gf = d1f
′ + d0f + b satisfies

λ(gf − ϕ) = λ(gf − ϕ) = ρ(gf ) = ρ(f) = ∞, (1.9)

λ2(gf − ϕ) = λ2(gf − ϕ) = ρ2(gf ) = ρ2(f) = n. (1.10)

In particular, if f is a solution of equation (1.8), then the differential polynomial

gf = d1f
′+ d0f + b has infinitely many fixed points and satisfies τ(gf ) = τ(gf ) =

ρ(gf ) = ρ(f) = ∞, τ2(gf ) = τ2(gf ) = ρ2(gf ) = ρ2(f) = n.
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2. Auxiliary lemmas

Our proofs depend mainly upon the following lemmas. Before starting these

lemmas, we recall the concepts of linear and logarithmic measure. For E ⊂
[0,+∞), we define the linear measure of a set E by m(E) =

∫ +∞
0

χE(t)dt and

the logarithmic measure of a set F ⊂ [1,+∞) by lm(F ) =
∫ +∞
1

χF (t)
t dt, where

χH is the characteristic function of a set H.

Lemma 2.1 ([7]). Let f(z) be a transcendental meromorphic function, and

let α > 1 be a given constant. Then there exist a set E1 ⊂ (1,+∞) of finite

logarithmic measure and a constant B > 0 that depends only on α and (m,n) (m,

n positive integers with m < n) such that for all z satisfying |z| = r /∈ [0, 1]∪E1,

we have ∣∣∣∣
f (n)(z)

f (m)(z)

∣∣∣∣ ≤ B

[
T (αr, f)

r
(logα r) log T (αr, f)

]n−m

. (2.1)

Lemma 2.2 ([5]). Let f(z) be an entire function of order ρ(f) = α < +∞.

Then for any given ε > 0, there exists a set E2 ⊂ [1,+∞) that has finite linear

measure and finite logarithmic measure, such that for all z satisfying |z| = r /∈
[0, 1] ∪ E2, we have

exp
{−rα+ε

} ≤ |f(z)| ≤ exp
{
rα+ε

}
. (2.2)

Lemma 2.3 ([12], pp. 253–255). Let P (z) =
∑n

i=0 aiz
i, where n is a positive

integer and an = αne
iθn , αn > 0, θn ∈ [0, 2π). For any given ε (0 < ε < π/4n),

we introduce 2n closed angles

Sj : −θn
n
+(2j−1)

π

2n
+ε ≤ θ ≤ −θn

n
+(2j+1)

π

2n
−ε (j = 0, 1, . . . , 2n−1). (2.3)

Then there exists a positive number R = R(ε) such that for |z| = r > R,

ReP(z ) > αnr
n (1 − ε) sin (nε) , (2.4)

if z = reiθ ∈ Sj , when j is even; while

ReP (z) < −αnr
n (1− ε) sin (nε) , (2.5)

if z = reiθ ∈ Sj , when j is odd.

Lemma 2.4 ([4]). Let A0, A1, . . . , Ak−1, F 6≡ 0 be finite order meromorphic

functions. If f is a meromorphic solution with ρ(f) = +∞ of the equation

f (k) +Ak−1f
(k−1) + · · ·+A1f

′ +A0f = F, (2.6)

then λ(f) = λ(f) = ρ(f) = +∞.
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Lemma 2.5 ([1]). Let A0, A1, . . . , Ak−1, F 6≡ 0 be finite order meromorphic

functions. If f is a meromorphic solution of equation (2.6) with ρ(f) = +∞ and

ρ2(f) = ρ < +∞, then f satisfies λ2(f) = λ2(f) = ρ2(f) = ρ.

Lemma 2.6. Suppose that A1(z), A0(z) ( 6≡ 0), F are entire functions of

finite order. Let d0(z), d1(z), b(z) be entire functions such that at least one of

d0(z), d1(z) does not vanish identically with ρ(dj) < ∞ (j = 0, 1), ρ(b) < ∞ and

that h 6≡ 0, where h is defined in (1.4). If f is an infinite order solution of (1.3)

with ρ2(f) = ρ < +∞, then the differential polynomial

gf = d1f
′ + d0f + b (2.7)

satisfies

ρ (gf ) = ρ(f) = ∞, ρ2 (gf ) = ρ2(f) = ρ. (2.8)

Proof. Suppose that f is a solution of equation (1.3) with ρ(f) = +∞ and

ρ2(f) = ρ < +∞. First we suppose that d1 6≡ 0. Differentiating both sides of

equation (2.7) and replacing f ′′ with f ′′ = F −A1f
′ −A0f , we obtain

g′f − b′ − d1F =
(
d′1 + d0 − d1A1

)
f ′ +

(
d′0 − d1A0

)
f. (2.9)

Then by (1.4), (2.7) and (2.9), we have

d1f
′ + d0f = gf − b, (2.10)

α1f
′ + α0f = g′f − b′ − d1F. (2.11)

Set

h = d1α0 − d0α1 = d1
(
d′0 − d1A0

)− d0
(
d′1 + d0 − d1A1

)
. (2.12)

By h 6≡ 0 and (2.10)–(2.12), we obtain

f =
d1
(
g′f − b′ − d1F

)− α1

(
gf − b

)

h
. (2.13)

If ρ(gf ) < ∞, then by (2.13), we get ρ(f) < ∞ and this is a contradiction. Hence

ρ(gf ) = ∞.

Finally, if d1 ≡ 0, d0 6≡ 0, then we have gf = d0f + b and by ρ(d0) < ∞,

ρ(b) < ∞, then we get ρ(gf ) = ∞.

Now, we prove that ρ2(gf ) = ρ2(f) = ρ. By (2.7), we get ρ2(gf ) ≤ ρ2(f) and

by (2.13) we have ρ2(f) ≤ ρ2(gf ). This yield ρ2(gf ) = ρ2(f) = ρ. ¤

Remark 2.7. In Lemma 2.6, if we don’t have the condition h 6≡ 0, then the

differential polynomial can be of finite order. For example, if d′0 − d1A0 ≡ 0
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and d′1 + d0 − d1A1 ≡ 0, then h ≡ 0 and g′f − b′ − d1F ≡ 0. It follows that

ρ(gf ) = ρ(g′f ) = ρ(b′ + d1F ) < +∞.

Lemma 2.8 ([3]). Let P (z) =
∑n

i=0 aiz
i and Q(z) =

∑n
i=0 biz

i be noncons-

tant polynomials where ai, bi (i = 0, 1, . . . , n) are complex numbers, anbn 6= 0

such that arg an 6= arg bn or an = cbn (0 < c < 1). Let Aj(z) ( 6≡ 0) (j = 0, 1) and

F 6≡ 0 be entire functions with max{ρ(Aj) (j = 0, 1), ρ(F )} < n. Then every

solution f of equation (1.8) has infinite order.

Lemma 2.9 ([8]). Let ϕ : [0,+∞) → R and ψ : [0,+∞) → R be monotone

non-decreasing functions such that ϕ(r) ≤ ψ(r) for all r /∈ E3 ∪ [0, 1], where

E3 ⊂ (1,+∞) is a set of finite logarithmic measure. Let γ > 1 be a given

constant. Then there exists an r1 = r1(γ) > 0 such that ϕ(r) ≤ ψ(γr) for all

r > r1.

By using Wiman–Valiron theory [5], [10], [14], we easily obtain the following

result which we omit the proof.

Lemma 2.10. Suppose that k ≥ 2 and A0, A1, . . . , Ak−1, F 6≡ 0 are en-

tire functions of finite order. If f is a solution of equation (2.6) then ρ2(f) ≤
max{ρ(Aj) : j = 0, . . . , k − 1, ρ(F )} = σ.

Lemma 2.11. Let P (z) =
∑n

i=0 aiz
i and Q(z) =

∑n
i=0 biz

i be nonconstant

polynomials where ai, bi (i = 0, 1, . . . , n) are complex numbers, anbn 6= 0 such

that arg an 6= arg bn or an = cbn (0 < c < 1). Let Aj(z) (6≡ 0) (j = 0, 1) and

F 6≡ 0 be entire functions with max{ρ(Aj) (j = 0, 1), ρ(F )} < n. Then every

solution f of equation (1.8) satisfies ρ(f) = ∞ and ρ2(f) = n.

Proof. Assume that f is a solution of (1.8). Then by Lemma 2.8, we have

ρ(f) = ∞. Now we prove that ρ2(f) = n. Suppose first that arg an 6= arg bn. By

Lemma 2.3, there exist real numbers b > 0, R1 > 0 and θ1 < θ2 such that for all

r > R1 and θ1 ≤ θ ≤ θ2, we have

ReP
(
reiθ

)
< 0, ReQ

(
reiθ

)
> brn. (2.14)

Set max{ρ(Aj) (j = 0, 1), ρ(F )} = β < n. Then by Lemma 2.2, there exists a set

E2 ⊂ [1,+∞) that has finite logarithmic measure, such that for all z satisfying

|z| = r /∈ [0, 1] ∪ E2, for any given ε (0 < ε < n− β), we have

exp
{− rβ+ε

} ≤ |Aj(z)| ≤ exp
{
rβ+ε

}
(j = 0, 1), |F (z)| ≤ exp{rβ+ε}. (2.15)

By Lemma 2.1, there exist a set E1 ⊂ (1,+∞) of finite logarithmic measure and

a constant B > 0 such that for all z satisfying |z| = r /∈ [0, 1] ∪ E1, we have
∣∣∣∣
f (j)(z)

f(z)

∣∣∣∣ ≤ B
[
T (2r, f)

]3
(j = 1, 2). (2.16)
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It follows from (1.8) that

∣∣A0(z)e
Q(z)

∣∣ ≤
∣∣∣∣
f ′′(z)
f(z)

∣∣∣∣+
∣∣A1(z)e

P (z)
∣∣
∣∣∣∣
f ′(z)
f(z)

∣∣∣∣+
∣∣∣∣
F (z)

f(z)

∣∣∣∣ . (2.17)

Since ρ(f) = +∞, we may assume that M(r, f) ≥ 1. Hence
∣∣∣∣
F (z)

f(z)

∣∣∣∣ =
|F (z)|
M(r, f)

≤ |F (z)| ≤ exp
{
rβ+ε

}
, (2.18)

where |z| = r and |f(z)| = M(r, f). Thus, by (2.14)–(2.18), we get for z = reiθ,

r > R1, θ1 ≤ θ ≤ θ2, |z| = r /∈ [0, 1] ∪ E1 ∪ E2, at which |f(z)| = M(r, f)

exp
{− rβ+ε

}
exp

{
brn

} ≤ (
1 + exp

{
rβ+ε

})
B[T (2r, f)]3 + exp

{
rβ+ε

}

≤ 3B exp
{
rβ+ε

}
[T (2r, f)]3. (2.19)

Hence by β + ε < n, Lemma 2.9 and (2.19) we get

ρ2(f) = lim
r→+∞

log logT (r, f)

log r
≥ n. (2.20)

Using Lemma 2.10, we obtain ρ2(f) = n.

Suppose now an = cbn (0 < c < 1). Since degQ > deg(P − cQ), by Lem-

ma 2.3, there exist real numbers d > 0, λ, R2 > 0 and θ3 < θ4 such that for all

r > R2 and θ3 ≤ θ ≤ θ4, we have

ReQ(reiθ) > drn, Re
(
P (reiθ)− cQ(reiθ)

)
< λ. (2.21)

It follows from (1.8) that

∣∣A0(z)e
(1−c)Q(z)

∣∣ ≤
∣∣e−cQ(z)

∣∣
∣∣∣∣
f ′′(z)
f(z)

∣∣∣∣+
∣∣A1(z)e

P (z)−cQ(z)
∣∣
∣∣∣∣
f ′(z)
f(z)

∣∣∣∣

+
∣∣e−cQ(z)

∣∣
∣∣∣∣
F (z)

f(z)

∣∣∣∣ . (2.22)

Hence by (2.15), (2.16), (2.18), (2.21) and (2.22), we get for z = reiθ, r > R2,

θ3 ≤ θ ≤ θ4, |z| = r /∈ [0, 1] ∪ E1 ∪ E2, at which |f(z)| = M(r, f)

exp
{− rβ+ε

}
exp {(1− c)drn}

≤ [
exp{−cdrn}+ exp{rβ+ε} exp{λ}]B[T (2r, f)]3

+ exp{−cdrn} exp{rβ+ε} ≤ K exp{rβ+ε}[T (2r, f)]3, (2.23)

where K > 0 is some constant. Thus, by β + ε < n, 0 < c < 1, Lemma 2.9 and

(2.23), we obtain

ρ2(f) = lim
r→+∞

log log T (r, f)

log r
≥ n. (2.24)

Using Lemma 2.10, we get ρ2(f) = n. ¤
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Lemma 2.12 ([2]). Let P (z) =
∑n

i=0 aiz
i andQ(z) =

∑n
i=0 biz

i be noncons-

tant polynomials where ai, bi (i = 0, 1, . . . , n) are complex numbers, anbn 6= 0

such that arg an 6= arg bn or an = cbn (0 < c < 1). We denote index set by

Λ1 = {0, P}. If Hj(j ∈ Λ1) and HQ 6≡ 0 are all meromorphic functions of orders

that are less than n, setting Ψ1(z) =
∑

j∈Λ1
Hj(z)e

j , then Ψ1(z) +HQe
Q 6≡ 0.

3. Proof of Theorem 1.3.

Suppose that f is a solution of equation (1.3) with ρ(f) = ∞ and ρ2(f) =

ρ < +∞. Set w(z) = d1f
′ + d0f + b − ϕ. Since ρ(ϕ) < ∞, then by Lemma 2.6

we have ρ(w) = ρ(gf ) = ρ(f) = ∞ and ρ2(w) = ρ2(gf ) = ρ2(f) = ρ. In order to

prove λ(gf − ϕ) = λ(gf − ϕ) = ∞ and λ2(gf − ϕ) = λ2(gf − ϕ) = ρ, we need to

prove only λ(w = λ(w) = ∞ and λ2(w) = λ2(w) = ρ. By gf = w + ϕ, we get

from (2.13)

f =
d1w

′ − α1w

h
+ ψ, (3.1)

where α1, h, ψ are defined in (1.4)–(1.5). Substituting (3.1) into equation (1.3),

we obtain

d1
h
w′′′ + φ2w

′′ + φ1w
′ + φ0w = F − (

ψ′′ +A1(z)ψ
′ +A0(z)ψ

)
= A, (3.2)

where φj (j = 0, 1, 2) are meromorphic functions with ρ(φj) < ∞ (j = 0, 1, 2).

Since ψ(z) is not a solution of (1.3), it follows that A 6≡ 0. Then by Lemma 2.4 and

Lemma 2.5, we obtain λ(w) = λ(w) = ρ(w) = ∞, λ2(w) = λ2(w) = ρ2(w) = ρ,

i.e., λ(gf − ϕ) = λ(gf − ϕ) = ρ(gf ) = ρ(f) = ∞ and λ2(gf − ϕ) = λ2(gf − ϕ) =

ρ2(gf ) = ρ2(f) = ρ.

Remark 3.1. From the proof of Theorem 1.3, we see that the condition ψ(z)

is not a solution of equation (1.3) is necessary.

4. Proof of Theorem 1.4.

By the hypotheses of Theorem 1.4 all solutions of equation (1.3) are of infinite

order. From (1.5), we see that ψ(z) is a meromorphic function of finite order, then

ψ(z) is not a solution of (1.3). By Theorem 1.3, we obtain Theorem 1.4.
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5. Proof of Theorem 1.6.

Suppose that f is a solution of equation (1.8). Then, by Lemma 2.11 we have

ρ(f) = ∞ and ρ2(f) = n. First we suppose that d1 6≡ 0. Set

α0 = d′0 − d1A0e
Q, α1 = d′1 + d0 − d1A1e

P , (5.1)

h = d1α0 − d0α1 = d1
(
d′0 − d1A0e

Q
)− d0

(
d′1 + d0 − d1A1e

P
)
. (5.2)

By (5.2) we can write h = Ψ1(z) − d21A0e
Q, where Ψ1(z) is defined as in Lem-

ma 2.12. By d1 6≡ 0, A0 6≡ 0 and Lemma 2.12, we see that h 6≡ 0. By Theorem 1.4

the differential polynomial gf = d1f
′ + d0f + b satisfies λ(gf − ϕ) = λ(gf − ϕ) =

ρ(gf ) = ρ(f) = ∞ and λ2(gf − ϕ) = λ2(gf − ϕ) = ρ2(gf ) = ρ2(f) = n.

Now suppose d1 ≡ 0, d0 6≡ 0. Then h = −d20 6≡ 0 and by Theorem 1.4 we

get λ(gf − ϕ) = λ(gf − ϕ) = ρ(gf ) = ρ(f) = ∞ and λ2(gf − ϕ) = λ2(gf − ϕ) =

ρ2(gf ) = ρ2(f) = n.

Setting now ϕ(z) = z, we obtain that τ(gf ) = τ(gf ) = ρ(gf ) = ρ(f) = ∞
and τ2(gf ) = τ2(gf ) = ρ2(gf ) = ρ2(f) = n.
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[1] B. Beläıdi, Growth and oscillation theory of solutions of some linear differential equations,
Mat. Vesnik 60, no. 4 (2008), 233–246.
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