Bilinear character sums over norm groups

By SU HU (Beijing) and YAN LI (Beijing)

Abstract

Let k be a finite field with q elements. Let k_{n} be the extension of k with degree n. Let N_{n} be the kernel of the norm map $N_{k_{n} / k}: k_{n}^{\times} \rightarrow k^{\times}$. In this paper we estimate the bilinear character sum $$
W_{\rho, \theta}(\psi, \mathcal{U}, \mathcal{V})=\sum_{U \in \mathcal{U}} \sum_{V \in \mathcal{V}} \rho(U) \theta(V) \psi(U V),
$$ where U and \mathcal{V} are arbitrary subsets of $N_{n}, \rho(U)$ and $\theta(V)$ are arbitrary bounded complex functions supported on \mathcal{U} and \mathcal{V} and ψ is a nontrivial additive character of k_{n}. We apply this bound to two problems. (1) If $\mathcal{S}, \mathcal{T}, \mathcal{U}, \mathcal{V}$ are subsets of N_{n}, we study the equation $S+T=U V$, where $S \in \mathcal{S}$, $T \in \mathcal{T}, U \in \mathcal{U}, V \in \mathcal{V}$. (2) We study the N_{n} analogy of the sum-product problem.

1. Introduction

Character sums over finite fields are very important and have many useful applications. Recently, Gyarmati and SÁRkÖZy [2] estimated certain character sums over finite fields and they used their results to show that if $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ are "large" subsets of a finite field \mathbb{F}_{q}, then the equations $a+b=c d$, resp., $a b+1=c d$ can be solved with $a \in \mathcal{A}, b \in \mathcal{B}, c \in \mathcal{C}, d \in \mathcal{D}$ [3]. Shparlinski [9] estimated bilinear character sums over elliptic curves and he also gave various applications in two papers [9], [10].

Mathematics Subject Classification: 11T23, 11T24.
Key words and phrases: finite field, equation, character sum, sum-product problem.

Let k be a finite field with q elements. Let k_{n} be the extension of k with degree n. Let N_{n} be the kernel of the norm map

$$
N_{k_{n} / k}: k_{n}^{\times} \rightarrow k^{\times} .
$$

In this paper, we estimate the bilinear character sum

$$
W_{\rho, \theta}(\psi, \mathcal{U}, \mathcal{V})=\sum_{U \in \mathcal{U}} \sum_{V \in \mathcal{V}} \rho(U) \theta(V) \psi(U V)
$$

where \mathcal{U} and \mathcal{V} are arbitrary subsets of $N_{n}, \rho(U)$ and $\theta(V)$ are arbitrary bounded complex functions supported on \mathcal{U} and \mathcal{V}, ψ is a nontrivial additive character of k_{n}. We apply this bound to the following two problems.
(1) If $\mathcal{S}, \mathcal{T}, \mathcal{U}, \mathcal{V}$ are subsets of N_{n}, we study the equation $S+T=U V$, where $S \in \mathcal{S}, T \in \mathcal{T}, U \in \mathcal{U}, V \in \mathcal{V}$. This equation has been considered by SÁrközY [4], Gyarmati-Sárközy [3] over finite fields and Shparlinski [9] over elliptic curves.
(2) We study the N_{n} analogue of the sum-product problem which has been considered by Garaev [6], Katz-Sen [7], [8] over finite fields and Shparlinski [10] over elliptic curves (also see the survey of Terence Tao [16]).

Our main tool is the following result obtained by Deligne [13] (also see Chapter 6 Section 3 of [14]).

Lemma 1.1 (Deligne [13]). Let ψ be a nontrivial additive character over k_{n}, we have

$$
\left|\sum_{x \in N_{n}} \psi(x)\right| \leq n q^{(n-1) / 2}
$$

2. Bilinear sums

Theorem 2.1. Let ψ be a nontrivial additive character of k_{n}. Let \mathcal{U} and \mathcal{V} be arbitrary subsets of N_{n} such that

$$
|\rho(U)| \leq 1, U \in \mathcal{U}, \quad \text { and } \quad|\theta(V)| \leq 1, V \in \mathcal{V}
$$

We have

$$
\left|W_{\rho, \theta}(\psi, \mathcal{U}, \mathcal{V})\right| \ll \sqrt{\# \mathcal{U} \# \mathcal{V}} q^{(n-1) / 2}+\sqrt{\# \mathcal{U}} \# \mathcal{V} q^{(n-1) / 4}
$$

Remark 2.2. If $\# \mathcal{V} \leq q^{(n+1) / 2}$, we have

$$
\sqrt{\# U} \# v q^{(n-1) / 4} \leq \sqrt{\# U \# \mathcal{V} q^{n}}
$$

and our bound is stronger than the general proposed bound obtained by GyarmATI and SÁrkÖZY [2].

Proof. Writing

$$
\left|W_{\rho, \theta}(\psi, \mathcal{U}, \mathcal{V})\right| \leq \sum_{U \in \mathcal{U}}\left|\sum_{V \in \mathcal{V}} \rho(U) \theta(V) \psi(U V)\right|
$$

and applying the Cauchy's inequality, we obtain

$$
\begin{aligned}
\left|W_{\rho, \theta}(\psi, \mathcal{U}, \mathcal{V})\right|^{2} & \leq \# \mathcal{U} \sum_{U \in \mathcal{U}}\left|\sum_{V \in \mathcal{V}} \theta(V) \psi(U V)\right|^{2} \leq \# U \sum_{U \in N_{n}}\left|\sum_{V \in \mathcal{V}} \theta(V) \psi(U V)\right|^{2} \\
& =\# \mathcal{U} \sum_{V_{1} \in \mathcal{V}} \sum_{V_{2} \in \mathcal{V}} \theta\left(V_{1}\right) \bar{\theta}\left(V_{2}\right) \sum_{U \in N_{n}} \psi\left(U V_{1}-U V_{2}\right) .
\end{aligned}
$$

In the case $V_{1}=V_{2}$, we estimate the sum over U as $\# N_{n}=O\left(q^{n-1}\right)$. Otherwise $\tilde{\psi}(x)=\psi\left(x\left(V_{1}-V_{2}\right)\right)$ is also a nontrivial additive character over k_{n}. Using Lemma 1.1, we obtain

$$
\left|\sum_{U \in N_{n}} \psi\left(U V_{1}-U V_{2}\right)\right|=\left|\sum_{U \in N_{n}} \psi\left(U\left(V_{1}-V_{2}\right)\right)\right|=\left|\sum_{U \in N_{n}} \tilde{\psi}(U)\right| \leq n q^{(n-1) / 2}
$$

Therefore, we have the following estimate

$$
\left|W_{\rho, \theta}(\psi, \mathcal{U}, \mathcal{V})\right|^{2} \ll \# \mathcal{U}\left(\# \mathcal{V} q^{n-1}+(\# \mathcal{V})^{2} q^{(n-1) / 2}\right)
$$

3. Sums and products

SÁRKÖZY [4] shows that for any subsets $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ of \mathbb{F}_{q}, the number of solutions $N(\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D})$ of the equation

$$
a+b=c d, a \in \mathcal{A}, \quad b \in \mathcal{B}, c \in \mathcal{C}, d \in \mathcal{D}
$$

satisfies

$$
\left|N(\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D})-\frac{\# A \# B \# C \# D}{q}\right| \leq \sqrt{\# A \# B \# C \# D q}
$$

In particular,

$$
N(\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D})=\left(1+O\left(q^{-\epsilon / 2}\right)\right) \frac{\# \mathcal{A} \# \mathcal{B} \# \mathcal{C} \# \mathcal{D}}{q}
$$

where $\# \mathcal{A} \# \mathcal{B} \# \mathcal{C} \# \mathcal{D} \geq q^{3+\epsilon}$ for some fixed ϵ and sufficiently large q.
Here we estimate the number of solutions $M(\mathcal{S}, \mathcal{T}, \mathcal{U}, \mathcal{V})$ of the equation

$$
S+T=U V, \quad S \in \mathcal{S}, T \in \mathcal{T}, U \in \mathcal{U}, V \in \mathcal{V}
$$

for any subsets $\mathcal{S}, \mathcal{T}, \mathcal{U}, \mathcal{V}$ of N_{n}.
Theorem 3.1. For every $\epsilon>0$ and arbitrary subsets $\mathcal{S}, \mathcal{T}, \mathcal{U}, \mathcal{V}$ of N_{n} with

$$
\# \mathcal{S} \# \mathcal{T} \# \mathcal{U} \# \mathcal{V} \geq q^{(7 n-3) / 2+(n-1) \epsilon}
$$

we have

$$
M(\mathcal{S}, \mathcal{T}, \mathcal{U}, \mathcal{V})=\left(1+O\left(q^{-(n-1) \epsilon / 2}\right)\right) \frac{\# \mathcal{S} \# \mathcal{T} \# \mathcal{U} \# \mathcal{V}}{q^{n}}
$$

Remark 3.2. In fact, we show that when $\mathcal{S}, \mathcal{T}, \mathcal{U}, \mathcal{V}$ are subsets of N_{n}, the equation

$$
S+T=U V, \quad S \in \mathcal{S}, T \in \mathcal{T}, U \in \mathcal{U}, V \in \mathcal{V}
$$

has more solutions than the situation when $\mathcal{S}, \mathcal{T}, \mathcal{U}, \mathcal{V}$ are arbitrary subsets of $\mathbb{F}_{q^{n}}$. Since from the general proposed result of SÁRKÖZY [4], we have

$$
M(\mathcal{S}, \mathcal{T}, \mathcal{U}, \mathcal{V})=\left(1+O\left(q^{-n \epsilon / 2}\right)\right) \frac{\# \mathcal{S} \# \mathcal{T} \# \cup \cup \mathcal{V}}{q^{n}}
$$

Proof. Let Ψ be the set of all additive characters of k_{n} and Ψ^{*} be the set of nontrivial characters. Using the orthogonality property of the additive characters, we obtain
$M(\mathcal{S}, \mathcal{T}, \mathcal{U}, \mathcal{V})=\frac{1}{q^{n}} \sum_{S \in \mathcal{S}} \sum_{T \in \mathcal{T}} \sum_{U \in \mathcal{U}} \sum_{V \in \mathcal{V}} \sum_{\psi \in \Psi} \psi(S+T-U V)=\frac{\# \mathcal{S} \# \mathcal{T} \# \mathcal{U} \# \mathcal{V}}{q^{n}}+\Delta$,
where

$$
\begin{aligned}
& \left.|\Delta| \leq \frac{1}{q^{n}} \right\rvert\, \sum_{S \in \mathcal{S}} \sum_{T \in \mathcal{T}} \sum_{U \in \mathcal{U}} \sum_{V \in \mathcal{V}} \sum_{\psi \in \Psi^{*}} \psi(S+T-U V) \mid \\
& \leq \frac{1}{q^{n}} \sum_{\psi \in \Psi^{*}}\left|\sum_{S \in \mathcal{S}} \psi(S)\right|\left|\sum_{T \in \mathcal{T}} \psi(T)\right|\left|\sum_{U \in \mathcal{U}} \sum_{V \in \mathcal{V}} \psi(U V)\right| .
\end{aligned}
$$

Using Theorem 2.1 and the Cauchy's inequality, we obtain

$$
\begin{aligned}
|\Delta| & \ll \frac{1}{q^{n}}\left(\sqrt{\# \mathcal{U} \# \mathcal{V} q^{n-1}}+\sqrt{\# \mathfrak{U}} \# V q^{(n-1) / 4}\right) \sum_{\psi \in \Psi^{*}}\left|\sum_{S \in \mathcal{S}} \psi(S)\right|\left|\sum_{T \in \mathcal{T}} \psi(T)\right| \\
& \leq \frac{1}{q^{n}}\left(\sqrt{\# \mathcal{U} \# \mathcal{V} q^{n-1}}+\sqrt{\# \mathcal{U}} \# V q^{(n-1) / 4}\right) \\
& \times \sqrt{\sum_{\psi \in \Psi^{*}}\left|\sum_{S \in \mathcal{S}} \psi(S)\right|^{2}} \sqrt{\sum_{\psi \in \Psi^{*}}\left|\sum_{T \in \mathcal{T}} \psi(T)\right|^{2}} .
\end{aligned}
$$

Now we conclude that

$$
\sum_{\psi \in \Psi^{*}}\left|\sum_{S \in \mathcal{S}} \psi(S)\right|^{2} \leq \sum_{\psi \in \Psi}\left|\sum_{S \in \mathcal{S}} \psi(S)\right|^{2}=q^{n} \# S
$$

Using the same argument for the sum over $T \in \mathcal{T}$, we obtain the bound

$$
\begin{aligned}
&|\Delta| \ll\left(\sqrt{\# \mathcal{U} \# \mathcal{V} q^{n-1}}+\sqrt{\# \mathcal{U}} \# V q^{(n-1) / 4}\right) \sqrt{\# \mathcal{S} \# \mathcal{T}} \\
&=\sqrt{\# \mathcal{S} \# \mathcal{T} \# \mathcal{U} \# \mathcal{V} q^{n-1}}+\sqrt{\# \mathcal{S} \# \mathcal{T} \# \mathcal{U}} \# \mathcal{V} q^{(n-1) / 4}
\end{aligned}
$$

It is obvious that for $\# S \mathbb{S} \# \mathcal{U} \# \mathcal{V} \geq q^{(7 n-3) / 2+(n-1) \epsilon} \geq q^{(3 n-1)+(n-1) \epsilon}$, we have

$$
\frac{\sqrt{\# \mathcal{S} \# \mathcal{T} \# U \# \mathcal{V} q^{n-1}}}{\# \mathcal{S} \# \mathcal{T} \# \cup \mathcal{U} \# q^{-n}}=\frac{q^{(3 n-1) / 2}}{\sqrt{\# \mathcal{S} \# \mathcal{T} \# \mathcal{U} \# \mathcal{V}}} \leq q^{-(n-1) \epsilon / 2}
$$

Clearly, we can assume that $\# \mathcal{U} \geq \# \mathcal{V}$. Then

$$
\# \mathcal{S} \# \mathcal{T} \geq \frac{q^{(7 n-3) / 2+(n-1) \epsilon}}{\# \mathcal{U} \# \mathcal{V}} \geq \frac{q^{(7 n-3) / 2+(n-1) \epsilon}}{(\# \mathcal{U})^{2}}
$$

Therefore,

$$
\frac{\sqrt{\# \mathcal{S} \# \mathcal{T} \# U} \# \mathcal{V} q^{(n-1) / 4}}{\# \mathcal{S} \# \mathcal{T} \# \mathcal{U} \# \mathcal{V} q^{-n}}=\frac{q^{(5 n-1) / 4}}{\sqrt{\# \mathcal{S} \# \mathcal{T} \# \mathcal{U}}} \leq \frac{\sqrt{\# \mathcal{U}}}{q^{(n-1) / 2+(n-1) \epsilon / 2}} \ll q^{-(n-1) \epsilon / 2}
$$

which concludes the proof.

4. Sum-product problem

We study the N_{n} analogy of the sum-product problem by modifying the method of GaraEv [6]. This method has also been used by Shparlinski [11] to investigate the elliptic curve analogy of the sum-product problem.

Theorem 4.1. Let \mathcal{R} and \mathcal{S} be arbitrary subsets of N_{n}. Then for the subsets

$$
\mathcal{U}=\{S+T: S \in \mathcal{S}, T \in \mathcal{R}\} \quad \text { and } \quad \mathcal{V}=\{S T: S \in \mathcal{S}, T \in \mathcal{R}\}
$$

we have

$$
\# U \# \mathcal{V} \gg \min \left\{q^{n} \# \mathcal{R},(\# \mathcal{R} \# S)^{2} q^{1-n},(\# \mathcal{R})^{2} \# S q^{(1-n) / 2}\right\}
$$

Remark 4.2. If $\# \mathcal{S} \leq q^{(n+1) / 2}$, we have

$$
(\# \mathcal{R} \# \mathcal{S})^{2} q^{-n} \leq(\# \mathcal{R})^{2} \# \mathcal{S} q^{(1-n) / 2}
$$

and our bound is stronger than the general proposed bound obtained by Garaev [6].

Proof. We denote J the number of solutions $\left(S_{1}, S_{2}, V, U\right)$ to the equation

$$
V S_{1}^{-1}+S_{2}=U, \quad S_{1}, S_{2} \in \mathcal{S}, V \in \mathcal{V}, U \in \mathcal{U}
$$

Since obviously the vectors

$$
\left(S_{1}, S_{2}, R S_{1}, R+S_{2}\right), \quad R \in \mathcal{R}, S_{1}, S_{2} \in \mathcal{S}
$$

are all pairwise distinct solution of the above equation, we obtain

$$
J \geq \# R(\# S)^{2}
$$

To obtain an upper bound on J, we use Ψ to denote the set of all additive characters of k_{n} and write Ψ^{*} the set of nontrivial characters. Using the orthogonality property of the additive characters, we obtain

$$
\begin{aligned}
J & =\sum_{S_{1} \in \mathcal{S}} \sum_{S_{2} \in \mathcal{S}} \sum_{V \in \mathcal{V}} \sum_{U \in \mathcal{U}} \frac{1}{q^{n}} \sum_{\psi \in \Psi} \psi\left(V S_{1}^{-1}+S_{2}-U\right) \\
& =\frac{1}{q^{n}} \sum_{\psi \in \Psi} \sum_{S_{1} \in \mathcal{S}} \sum_{V \in \mathcal{V}} \psi\left(V S_{1}^{-1}\right) \sum_{S_{2} \in \mathcal{S}} \psi\left(S_{2}\right) \sum_{U \in \mathcal{U}} \psi(-U) .
\end{aligned}
$$

For ψ being nontrivial, Theorem 2.1 implies that

$$
\left|\sum_{S_{1} \in \mathcal{S}} \sum_{V \in \mathcal{V}} \psi\left(V S_{1}^{-1}\right)\right| \ll(\# \mathcal{V})^{1 / 2}(\# \mathcal{S})^{1 / 2} q^{(n-1) / 2}+(\# \mathcal{V})^{1 / 2} \# \mathcal{S} q^{(n-1) / 4}
$$

Therefore,

$$
\begin{gathered}
J-\frac{(\# \mathcal{S})^{2} \# \mathcal{U} \# \mathcal{V}}{q^{n}} \\
\ll\left((\# \mathcal{V})^{1 / 2}(\# \mathcal{S})^{1 / 2} q^{(n-1) / 2}+(\# \mathcal{V})^{1 / 2} \# \mathcal{S} q^{(n-1) / 4}\right) \frac{1}{q^{n}} \sum_{\psi \in \Psi^{*}}\left|\sum_{S \in \mathcal{S}} \psi(S)\right|\left|\sum_{U \in \mathcal{U}} \psi(U)\right| .
\end{gathered}
$$

Extending the summation over Ψ^{*} to the full set Ψ and using the Cauchy's inequality, we obtain

$$
\sum_{\psi \in \Psi^{*}}\left|\sum_{S \in \mathcal{S}} \psi(S)\right|\left|\sum_{U \in \mathcal{U}} \psi(U)\right| \leq \sqrt{\sum_{\psi \in \Psi}\left|\sum_{S \in \mathcal{S}} \psi(S)\right|^{2}} \sqrt{\sum_{\psi \in \Psi}\left|\sum_{U \in \mathcal{U}} \psi(U)\right|^{2}} .
$$

From the orthogonality property of the additive characters, we have

$$
\sum_{\psi \in \Psi}\left|\sum_{S \in \mathcal{S}} \psi(S)\right|^{2} \leq q^{n} \# \mathcal{S} .
$$

Similarly,

$$
\sum_{\psi \in \Psi}\left|\sum_{U \in \mathcal{U}} \psi(U)\right|^{2} \leq q^{n} \# \mathcal{U}
$$

Thus

$$
\sum_{\psi \in \Psi^{*}}\left|\sum_{S \in \mathcal{S}} \psi(S)\right|\left|\sum_{U \in \mathcal{U}} \psi(U)\right| \ll q^{n} \sqrt{\# \mathcal{S} \# \mathcal{U}}
$$

From the above inequalities, we have

$$
J-\frac{(\# \mathcal{S})^{2} \# \mathcal{V} \# \mathcal{U}}{q^{n}} \ll(\# \mathcal{V} \# \mathcal{U})^{1 / 2}\left(\# \mathcal{S} q^{(n-1) / 2}+(\# \mathcal{S})^{3 / 2} q^{(n-1) / 4}\right)
$$

Thus,

$$
\frac{(\# \mathcal{S})^{2} \# \mathcal{V} \# \mathcal{U}}{q^{n}}+(\# \mathcal{V} \# \mathcal{U})^{1 / 2}\left(\# \mathcal{S} q^{(n-1) / 2}+(\# \mathcal{S})^{3 / 2} q^{(n-1) / 4}\right) \gg \# \mathcal{R}(\# \mathcal{S})^{2}
$$

Hence

$$
\# U \# \mathcal{V} \gg \min \left\{q^{n} \# \mathcal{R},(\# \mathcal{R} \# S)^{2} q^{1-n},(\# \mathcal{R})^{2} \# \mathcal{S} q^{(1-n) / 2}\right\}
$$

Acknowledgements. The authors are grateful to the two anonymous referees for their valuable comments.

References

[1] K. Gyarmati, On a problem of Diophantus, Acta. Arith. 97 (2001), 53-65.
[2] K. Gyarmati and A. Sárközy, Equations in finite fields with restricted solution sets, I (character sums), Acta. Math Hungar. 118 (2008), 129-148.
[3] K. Gyarmati and A. Sárközy, Equations in finite fields with restricted solution sets, II (algebraic equations), Acta. Math Hungar. 119 (2008), 259-280.
[4] A. SÁrközy, On sums and product of residues modulo p, Acta. Arith. 118 (2005), 403-409.
[5] M. Z. Garaev, Double exponential sums related to Diffie-Hellman distributions, Int. Math. Res. Not. 17 (2005), 1005-1014.
[6] M. Z. Garaev, The sum-product estimate for large subsets of prime fields, Proc. Amerc. Math. Soc. 8 (2008), 2735-2739.
[7] N. H. Katz and C.-Y. Shen, Garaev's inequality in finite fields not of prime order, J. Anal. Combin. 3 (2008), Article\#3.
[8] N. H. Katz and C.-Y. Shen, A slight improvement to Garaev's sum product estimate, Proc. Amerc. Math. Soc 136 (2008), 499-2504.
[9] I. E. Shparlinski, Bilinear character sums over elliptic curves, Finite Fields Appl. 14 (2008), 132-141.
[10] I. E. Shparlinski, On the elliptic curve analogue of the sum-product problem, Finite Fields Appl. 15 (2008), 721-726.
[11] I. E. Shparlinski, On the slovability of bilinear equations in finite fields, Glasgow Math. J. 50 (2008), 523-529.
[12] W. D. Banks, J. B. Friedlander, M. Z. Garaev and I. E. Shparlinski, Double character sums over elliptic curves and finite fields, Pure Appl. Math. Q. 2 (2006), 179-197.
[13] P. Deligne, Cohomologie étale, Séminaire de Géométrie Algébrique du Bois-Marie SGA $4 \frac{1}{2}$, Lecture Notes in Math. 569, Springer-Verlag, New York, 1977.
[14] Wen-Ching Winine Li, Number theory with applications, World Scientific Publishing, 1996.
[15] Wen-Ching Winine Li, Character sums over norm groups, Finite Fields Appl. 12 (2006), 1-15.
[16] T. TAO, The sum-product phenomenon in arbitrary rings, arxiv:0806.2497V4.
SU HU
DEPARTMENT OF MATHEMATICAL SCIENCES
TSINGHUA UNIVERSITY
BEIJING 100084
CHINA
E-mail: hus04@mails.tsinghua.edu.cn
YAN LI
DEPARTMENT OF MATHEMATICAL SCIENCES
TSINGHUA UNIVERSITY
BEIJING 100084
CHINA
E-mail: liyan_00@mails.tsinghua.edu.cn
(Received December 15, 2009; revised April 19, 2010)

