A monotonicity property of Euler's gamma function

By JOSÉ A. ADELL (Zaragoza) and HORST ALZER (Waldbröl)

Abstract. Let

$$
\Delta(x)=\frac{\log \Gamma(x+1)}{x} \quad(-1<x \neq 0), \quad \Delta(0)=-\gamma .
$$

For all $n=0,1,2, \ldots$ and $x>-1$, we show that

$$
(-1)^{n} \Delta^{(n+1)}(x)=(n+1)!\int_{0}^{1} u^{n+1} \zeta(n+2, x u+1) d u
$$

where ζ denotes the Hurwitz zeta function. This representation implies that Δ^{\prime} is completely monotonic on $(-1, \infty)$. This extends a result published in 1996 by Grabner, Tichy, and Zimmermann, who proved that Δ is increasing and concave on $(-1, \infty)$.

1. Introduction and main results

In this note we are concerned with the function

$$
\Delta(x)=\frac{\log \Gamma(x+1)}{x} \quad(-1<x \neq 0), \quad \Delta(0)=-\gamma,
$$

where Γ denotes Euler's gamma function and γ is Euler's constant. In the recent past, several authors studied interesting monotonicity properties of Δ as well as

Mathematics Subject Classification: 26A48, 33B15.
Key words and phrases: gamma function, Hurwitz zeta function, digamma function, completely monotonic.
This work has been partially supported by research grants MTM2008-06281-C02-01/MTM, DGA E-64, UJA2009/12/07 (Universidad de Jaén and Caja Rural de Jaén), and by FEDER funds.
other functions defined in terms of Δ (see, for instance, [3], [4], [5], [7], [8], [9], [10]).

Grabner et al. [6] proved that Δ is increasing and concave on $(-1, \infty)$ and used their result to present an upper bound for the permanent of a $0-1$ matrix. Vogt and Voigt [11] showed that the function $x \mapsto \Delta(x)-\log (x+1)+1$ is completely monotonic on $(-1, \infty)$.

We recall that a function $f: I \rightarrow \mathbf{R}$ is said to be completely monotonic, if f has derivatives of all orders and

$$
0 \leq(-1)^{n} f^{(n)}(x) \quad(n=0,1,2, \ldots ; x \in I)
$$

Completely monotonic functions have important applications in probability and potential theory, in numerical and asymptotic analysis, and in other fields. The main properties of these functions are given in [12, Chapter IV]. In [2] one can find a detailed list of references on this subject.

The result of Grabner et al. yields

$$
\begin{equation*}
0 \leq(-1)^{n} \Delta^{(n+1)}(x) \quad(n=0,1 ; x>-1) \tag{1.1}
\end{equation*}
$$

whereas the monotonicity theorem of Vogt and Voigt leads to the inequality

$$
\begin{equation*}
(-1)^{n} \Delta^{(n+1)}(x) \leq \frac{n!}{(x+1)^{n+1}} \quad(n=0,1,2, \ldots ; x>-1) \tag{1.2}
\end{equation*}
$$

In view of (1.1), it is natural to ask whether Δ^{\prime} is completely monotonic on $(-1, \infty)$. A positive answer to this question is given in the following theorem which provides, in addition, a closed form expression for $(-1)^{n} \Delta^{(n+1)}(x)$ in terms of the classical Hurwitz zeta function

$$
\zeta(s, a)=\sum_{m=0}^{\infty} \frac{1}{(m+a)^{s}} \quad(s>1 ; a>0)
$$

Theorem 1.1. Let n be a nonnegative integer and let x be a real number with $x>-1$. Then,

$$
\begin{equation*}
(-1)^{n} \Delta^{(n+1)}(x)=(n+1)!\int_{0}^{1} u^{n+1} \zeta(n+2, x u+1) d u \tag{1.3}
\end{equation*}
$$

As a consequence, Δ^{\prime} is completely monotonic on $(-1, \infty)$.
Remark 1.1. From (1.3), we have for $n \geq 1$:

$$
\Delta^{(n)}(0)=(-1)^{n-1} \frac{n!}{n+1} \zeta(n+1)
$$

where ζ denotes the Riemann zeta function.

Remark 1.2. If h^{\prime} is completely monotonic on I, then $\exp (-h)$ is also completely monotonic on I. This result can be proved by applying the Leibniz rule and induction. Thus, setting $h=\Delta$ and $I=(-1, \infty)$, we conclude from Theorem 1.1 that the function

$$
\Theta(x)=\Gamma(x+1)^{-1 / x} \quad(-1<x \neq 0), \quad \Theta(0)=\exp (\gamma)
$$

is completely monotonic on $(-1, \infty)$.
A consequence of Theorem 1.1 is that the upper bound in (1.2) is asymptotically sharp, as stated in the following corollary.

Corollary 1.2. For any nonnegative integer n, we have

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{(x+1)^{n+1}}{n!}(-1)^{n} \Delta^{(n+1)}(x)=1 . \tag{1.4}
\end{equation*}
$$

In order to prove Theorem 1.1 we need a lemma. It states that a certain function, defined in terms of the exponential function, is completely monotonic on \mathbf{R}.

Lemma 1.3. Let $N \geq 0$ be an integer and

$$
\begin{equation*}
g_{N}(x)=\left[1-e^{-x} \sum_{m=0}^{N} \frac{x^{m}}{m!}\right] x^{-N-1} \quad(x \neq 0), \quad g_{N}(0)=\frac{1}{(N+1)!} \tag{1.5}
\end{equation*}
$$

Then we have for $n \geq 0$ and $x \in \mathbf{R}$:

$$
\begin{equation*}
(-1)^{n} g_{N}^{(n)}(x)=\frac{1}{N!} \int_{0}^{1} e^{-x u} u^{n+N} d u \tag{1.6}
\end{equation*}
$$

In particular, g_{N} is completely monotonic on \mathbf{R}.

2. The proofs

Proof of Lemma 1.3. We get

$$
g_{N}(x)=\frac{x^{-N-1}}{N!} \int_{0}^{x} e^{-t} t^{N} d t=\frac{1}{N!} \int_{0}^{1} e^{-x u} u^{N} d u
$$

Differentiation leads to (1.6).

Proof of Theorem 1.1. Let $x>-1, t>0$, and $n \geq 0$. We obtain

$$
\Delta^{\prime}(x)=\frac{\psi(x+1)}{x}-\frac{\log \Gamma(x+1)}{x^{2}} \quad(x \neq 0), \quad \Delta^{\prime}(0)=\frac{\pi^{2}}{12}
$$

where $\psi=\Gamma^{\prime} / \Gamma$ denotes the digamma function. Using the integral formulas

$$
\log \Gamma(z)=\int_{0}^{\infty}\left[(z-1) e^{-t}-\frac{e^{-t}-e^{-z t}}{1-e^{-t}}\right] \frac{d t}{t} \quad(z>0)
$$

and

$$
\psi(z)=\int_{0}^{\infty}\left[\frac{e^{-t}}{t}-\frac{e^{-z t}}{1-e^{-t}}\right] d t \quad(z>0)
$$

(see [1, pp. 258, 259]), we get

$$
\begin{equation*}
\Delta^{\prime}(x)=\int_{0}^{\infty} \frac{t e^{-t}}{1-e^{-t}} g_{1}(x t) d t \tag{2.1}
\end{equation*}
$$

where g_{1} is given in (1.5). Applying (1.6) with $N=1$ and

$$
\frac{1}{1-e^{-t}}=\sum_{m=0}^{\infty} e^{-m t}
$$

we obtain from (2.1) and Fubini's theorem

$$
\begin{aligned}
(-1)^{n} \Delta^{(n+1)}(x) & =\int_{0}^{\infty} \frac{t^{n+1} e^{-t}}{1-e^{-t}}(-1)^{n} g_{1}^{(n)}(x t) d t \\
& =\int_{0}^{\infty} t^{n+1} e^{-t} \sum_{m=0}^{\infty} e^{-m t} \int_{0}^{1} e^{-x t u} u^{n+1} d u d t \\
& =\int_{0}^{1} u^{n+1} \sum_{m=0}^{\infty} \int_{0}^{\infty} t^{n+1} e^{-t(m+x u+1)} d t d u \\
& =\int_{0}^{1} u^{n+1} \sum_{m=0}^{\infty} \frac{\Gamma(n+2)}{(m+x u+1)^{n+2}} d u \\
& =(n+1)!\int_{0}^{1} u^{n+1} \zeta(n+2, x u+1) d u
\end{aligned}
$$

This completes the proof of Theorem 1.1.

Proof of Corollary 1.2. Let $n \geq 0$ and $x>-1$. We make use of (1.3) and get

$$
\begin{align*}
(-1)^{n} \Delta^{(n+1)}(x) & =(n+1)!\int_{0}^{1} u^{n+1} \sum_{m=0}^{\infty} \frac{1}{(m+x u+1)^{n+2}} d u \\
& \geq(n+1)!\int_{0}^{1} u^{n+1} \int_{0}^{\infty} \frac{1}{(t+x u+1)^{n+2}} d t d u \\
& =n!\int_{0}^{1} \frac{u^{n+1}}{(x u+1)^{n+1}} d u \tag{2.2}
\end{align*}
$$

From (2.2) and (1.2) we obtain

$$
\int_{0}^{1}\left(\frac{x u+u}{x u+1}\right)^{n+1} d u \leq \frac{(x+1)^{n+1}}{n!}(-1)^{n} \Delta^{(n+1)}(x) \leq 1
$$

Applying the dominated convergence theorem we conclude that (1.4) holds.

References

[1] M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover, New York, 1965.
[2] H. Alzer and C. Berg, Some classes of completely monotonic functions, II, Ramanujan J. 11 (2006), 225-248.
[3] G. D. Anderson and S.-L. Qiu, A monotonicity property of the gamma function, Proc. Amer. Math. Soc. 125 (1997), 3355-3362.
[4] J. Bastero, F. Galve, A. Peña, and M. Romance, Inequalities for the gamma function and estimates for the volume of sections of B_{p}^{n}, Proc. Amer. Math. Soc. 130 (2001), 183-192.
[5] G. Bastien and M. Rogalski, Convexité, complète monotonie et inégalités sur les fonctions zêta et gamma, sur les fonctions des opérateurs de Baskakov et sur des fonctions arithmétiques, Canad. J. Math. 54 (2002), 916-944.
[6] P. J. Grabner, R. F. Tichy, and U. T. Zimmermann, Inequalities for the gamma function with applications to permanents, Discrete Math. 154 (1996), 53-62.
[7] D. Gronau and J. Matkowski, Another characterization of the gamma function, Publ. Math. Debrecen 63 (2003), 105-113.
[8] J. SÁndor, Sur la fonction Gamma, Publ. Cent. Rech. Math. Pures Neuchâtel, Sér. I 21 (1989), 4-7.
[9] J. SÁndor, On the gamma function, II, Publ. Cent. Rech. Math. Pures Neuchâtel, Sér. I 28 (1997), 10-12.
[10] G.W. Soules, New permanental upper bounds for nonnegative matrices, Linear Mult. Algebra 51 (2003), 319-337.
[11] H. Vogt and J. Voigt, A monotonicity property of the Γ-function, J. Inequal. Pure Appl. Math. 3, no. 5 (2002), Art. 73.
[12] D. V. Widder, The Laplace Transform, Princeton Univ. Press, Princeton, 1941.
JOSÉ A. ADELL
DEPARTAMENTO DE MÉTODOS ESTADÍSTICOS
FACULTAD DE CIENCIAS
UNIVERSIDAD DE ZARAGOZA
50009 ZARAGOZA
SPAIN
E-mail: adell@unizar.es
HORST ALZER
MORSBACHER STR. 10
51545 WALDBRÖL
GERMANY
E-mail: H.Alzer@gmx.de
(Received January 25, 2010)

