On the Diophantine equation $a x^{2}-b y^{2}=c$

By A. GRELAK (Zielona Góra) and A. GRYTCZUK (Zielona Góra)

1. Introduction

In the paper [3] there has been given a matrix method for the study of some properties of the solutions in integers x, y of the Diophantine equation

$$
\begin{equation*}
a x^{2}-b y^{2}=c \tag{1.1}
\end{equation*}
$$

The study of (1.1) was begun by Lagrange and continued by several authors, see C. U. Jensen [5], P. Kaplan [6], J. C. Lagarias [7], H. Lienen [8], T. Nagell [9], [10], [11] and many others.

From Theorems 2 and 3 of our paper [3] we get the following solvability criteria in integers x, y for (1.1) when $c=1$ or $c=2$:

Criterion 1. Let $a>1, b$ be positive integers such that $(a, b)=1$ and $d=a b$ is not a square of a natural number. Moreover let $\left\langle u_{0}, v_{0}\right\rangle$ denote the least positive integer solution of Pell's equation

$$
\begin{equation*}
u^{2}-d v^{2}=1 \tag{1.2}
\end{equation*}
$$

Then equation (1.1) with $c=1$ has a solution in positive integers x, y iff

$$
\begin{equation*}
2 a \mid u_{0}+1 \quad \text { and } \quad 2 b \mid u_{0}-1 \tag{1.3}
\end{equation*}
$$

We note that this result has been proved also by W. Górzny [2], but in another way.

Criterion 2. Let a, b be positive integers such that $(a, b)=(a, 2)=$ $(b, 2)=1$ and $d=a b$ is not a square of a natural number and let $\left\langle u_{0}, v_{0}\right\rangle$ denote the least positive integer solution of (1.2). Then the equation (1.1) with $c=2$ has a solution in positive integers x, y iff

$$
\begin{equation*}
a \mid u_{0}+1 \quad \text { and } \quad b \mid v_{0}-1 \tag{1.4}
\end{equation*}
$$

By using an idea contained in [3] we give in this paper a solvability criterion for (1.1) when $c>2$. Namely, we reduce the problem of the solvability of (1.1) in integers x, y to the investigation of the integer solutions of the following Diophantine equation

$$
u^{2}-a b v^{2}=c^{2} .
$$

We conclude the introduction by expressing our thanks to referee for the remarks incorporated in the present version of the paper.

2. Notations and Lemmas

Let $d=a b$ and suppose that $(a, b)=(b, c)=(c, a)=1$. In a similar way as in [3] we introduce the matrix

$$
S=\left[\begin{array}{cc}
\sqrt{a} x & \frac{d}{\sqrt{a}} y \tag{2.1}\\
\frac{1}{\sqrt{a}} y & \sqrt{a} x
\end{array}\right]
$$

associated with the Diophantine equation (1.1). The matrix S will be called a solvable matrix if x, y are integers such that $(x, c)=1$ and

$$
\begin{equation*}
\operatorname{det} S=a x^{2}-b y^{2}=c . \tag{2.2}
\end{equation*}
$$

In the case $a=c=1$ the solvable matrix S will be called Pell's solvable matrix. Hence

$$
P=\left[\begin{array}{cc}
u & d v \tag{2.3}\\
v & u
\end{array}\right]
$$

and

$$
\begin{equation*}
\operatorname{det} P=u^{2}-d v^{2}=1 \tag{2.4}
\end{equation*}
$$

Let $\left\langle u_{0}, v_{0}\right\rangle$ denote the least positive integer solution of (2.4), such a solution we will be called a primitive Pell's solution. Now we can define the primitive solution of (1.1).

The solution $\left\langle x_{0}, y_{0}\right\rangle$ of (1.1) will be called primitive solution, if $a x_{0}^{2}-$ $b y_{0}^{2}=c$ and $x_{0} \leq x$ for any positive integer x satisfying (1.1). Let S_{0}, P_{0} be matrices associated with a primitive solution of (1.1) and a primitive Pell's solution, respectively.

$$
\text { On the Diophantine equation } a x^{2}-b y^{2}=c
$$

By (2.1) and (2.3) we have

$$
\begin{align*}
& S_{0}=\left[\begin{array}{cc}
\sqrt{a} x_{0} & \frac{d}{\sqrt{a}} y_{0} \\
\frac{1}{\sqrt{a}} y_{0} & \sqrt{a} x_{0}
\end{array}\right] \tag{2.5}\\
& P_{0}=\left[\begin{array}{cc}
u_{0} & d v_{0} \\
v_{0} & u_{0}
\end{array}\right] \tag{2.6}
\end{align*}
$$

From (2.5) and (2.6) we obtain

$$
S_{1}=S_{0} P_{0}=P_{0} S_{0}=\left[\begin{array}{ll}
\sqrt{a} x_{1} & \frac{d}{\sqrt{a}} y_{1} \tag{2.7}\\
\frac{1}{\sqrt{a}} y_{1} & \sqrt{a} x_{1}
\end{array}\right]
$$

where

$$
\begin{equation*}
x_{1}=x_{0} u_{0}+b y_{0} v_{0}, \quad y_{1}=y_{0} u_{0}+a x_{0} v_{0} . \tag{2.8}
\end{equation*}
$$

From (2.7) and Cauchy's Theorem on the product of determinants we get

$$
\begin{equation*}
\operatorname{det} S_{1}=\operatorname{det} S_{0} \cdot \operatorname{det} P_{0}=\operatorname{det} P_{0} \cdot \operatorname{det} S_{0}=a x_{1}^{2}-b y_{1}^{2}=c, \tag{2.9}
\end{equation*}
$$

because $\operatorname{det} S_{0}=c$ and $\operatorname{det} P_{0}=1$. From (2.9) it follows that the numbers x_{1}, y_{1} given in (2.8) are solutions of (1.1).

Now we define the singular solution of (1.1).
Definition 1. The solution $\langle u, v\rangle$ of (1.1) will be called a singular solution of (1.1) if

$$
\begin{equation*}
x_{0}<u<x_{1} \tag{2.10}
\end{equation*}
$$

where x_{1} is given by (2.8) and $\left\langle x_{0}, y_{0}\right\rangle$ is the primitive solution of (1.1).
We can prove the following
Lemma 1. Let $c>2$ not be a square of a natural number and suppose that equation (1.1) has a primitive solution in positive integers x_{0}, y_{0} such that $\left(x_{0}, c\right)=1$. Then there exists a singular solution $\langle u, v\rangle$ of (1.1).

Proof. Let $d=a b$ and

$$
\begin{equation*}
u=x_{0} u_{0}-b y_{0} v_{0}, \quad v=y_{0} u_{0}-a x_{0} v_{0} . \tag{2.11}
\end{equation*}
$$

It is easy to see that by (2.6) we have

$$
P_{0}^{-1}=\left[\begin{array}{cc}
u_{0} & -d v_{0} \tag{2.12}\\
-v_{0} & u_{0}
\end{array}\right]
$$

and $\operatorname{det} P^{-1}=1$, thus by (2.7) and (2.8) it follows that the $\langle u| v,\rangle$ given by (2.11) is a solution of (1.1).

Since $u_{0}^{2}-a b v_{0}^{2}=1$ then $u_{0}>\sqrt{a b} v_{0}$ and

$$
u=x_{0} u_{0}-b y_{0} v_{0}>\sqrt{a b} v_{0} x_{0}-b y_{0} v_{0}=v_{0} \sqrt{b}\left(\sqrt{a} x_{0}-\sqrt{b} y_{0}\right)
$$

On the other hand from the $a x_{0}^{2}-b y_{0}^{2}=c, c>2$ follows that $\sqrt{a} x_{0}-$ $\sqrt{b} y_{0}>0$ and we obtain $u>0$. Then from (2.11) and (2.8) we have

$$
\begin{equation*}
0<u<x_{1} \tag{2.13}
\end{equation*}
$$

We remark that $v \neq 0$. Indeed, suppose that $v=0$ then by (1.1) we have $a u^{2}=c$. Since $(a, c)=1$ thus $a=1$ and $u^{2}=c$ concradicting our assumption that c is not a square of a positive integer. Since $\left\langle x_{0}, y_{0}\right\rangle$ is a primitive solution of (1.1), by (2.13) and the definition of a primitive solution we obtain

$$
\begin{equation*}
x_{0} \leq u<x_{1} \tag{2.14}
\end{equation*}
$$

Suppose that in (2.14) we have $u=x_{0}$. Then by (2.11) it follows that

$$
\begin{equation*}
x_{0}\left(u_{0}-1\right)=b y_{0} v_{0} \tag{2.15}
\end{equation*}
$$

On the other hand, since $\langle u| v,\left\rangle\right.$ is a solution of $a x^{2}-b y^{2}=c$ by (2.11) we have

$$
a x^{2}-b\left(a x_{0} v_{0}-y_{0} u_{0}\right)^{2}=c
$$

From the last equality we obtain

$$
\begin{equation*}
a x_{0}^{2}-a x_{0}^{2}\left(a b v_{0}^{2}\right)+2 a u_{0} x_{0}\left(b y_{0} v_{0}\right)-u_{0}^{2}\left(b y_{0}^{2}\right)=c \tag{2.16}
\end{equation*}
$$

From the assumptions we have $a x_{0}^{2}-b y_{0}^{2}=c$ and $u_{0}^{2}-a b v_{0}^{2}=1$ and therefore $b y_{0}^{2}=a x_{0}^{2}-c$ and $a b v_{0}^{2}=u_{0}^{2}-1$.

Substituting the last equality and (2.15) in to (2.16) we obtain

$$
\begin{equation*}
a x_{0}^{2}-a x_{0}^{2}\left(u_{0}^{2}-1\right)+2 a u_{0} x_{0}^{2}\left(u_{0}-1\right)-u_{0}^{2}\left(a x_{0}^{2}-c\right)=c \tag{2.17}
\end{equation*}
$$

From (2.17) we get

$$
2 a x_{0}^{2}-2 a x_{0}^{2} u_{0}=c\left(1-u_{0}^{2}\right)
$$

and consequently

$$
2 a x_{0}^{2}\left(1-u_{0}\right)=c\left(1-u_{0}\right)\left(1+u_{0}\right)
$$

Since $u_{0} \neq 1$, the last equality implies

$$
\begin{equation*}
2 a x_{0}^{2}=c\left(u_{0}+1\right) \tag{2.18}
\end{equation*}
$$

Since $(a, c)=1$ and $\left(x_{0}, c\right)=1$, by (2.18) we get $c \mid 2$, thus $c \leq 2$, and this is impossible, because $c>2$. Therefore $u \neq x_{0}$ and by (2.14) and the Definition 1 our Lemma follows.

Lemma 2. Let S_{1}, S_{2} be the matrices associated with the solutions $\left\langle x_{1}, y_{1}\right\rangle$ and $\left\langle x_{2}, y_{2}\right\rangle$ of (1.1). Then the matrix $R=S_{1} S_{2}=S_{2} S_{1}$ has the form

$$
R=\left[\begin{array}{ll}
x_{3} & d y_{3} \\
y_{3} & x_{3}
\end{array}\right]
$$

where

$$
x_{3}=a x_{1} x_{2}+b y_{1} y_{2}, \quad y_{3}=x_{1} y_{2}+y_{1} x_{2}
$$

and R is associated with the solution $\left\langle x_{3}, y_{3}\right\rangle$ of the Diophantine equation

$$
u^{2}-d v^{2}=c^{2}
$$

where $d=a b$.
Proof. We have

$$
R=S_{1} S_{2}=S_{2} S_{1}=\left[\begin{array}{cc}
\sqrt{a} x_{1} & \frac{d}{\sqrt{a}} y_{1} \tag{2.19}\\
\frac{1}{\sqrt{a}} y_{1} & \sqrt{a} x_{1}
\end{array}\right] \cdot\left[\begin{array}{cc}
\sqrt{a} x_{2} & \frac{d}{\sqrt{a}} y_{2} \\
\frac{1}{\sqrt{a}} y_{2} & \sqrt{a} x_{2}
\end{array}\right] .
$$

From (2.19) we get

$$
R=\left[\begin{array}{cc}
a x_{1} x_{2}+b y_{1} y_{2} & d\left(x_{1} y_{2}+y_{1} x_{2}\right) \tag{2.20}\\
x_{1} y_{2}+y_{1} x_{2} & a x_{1} x_{2}+b y_{1} y_{2}
\end{array}\right] .
$$

Putting in (2.20)

$$
\begin{equation*}
x_{3}=a x_{1} x_{2}+b y_{1} y_{2}, \quad y_{3}=x_{1} y_{2}+y_{1} x_{2} \tag{2.21}
\end{equation*}
$$

we get

$$
R=\left[\begin{array}{cc}
x_{3} & d y_{3} \tag{2.22}\\
y_{3} & x_{3}
\end{array}\right]
$$

From (2.19) and the assumptions of our Lemma we get $\operatorname{det} S_{1}=\operatorname{det} S_{2}=c$ and therefore by Cauchy's theorem on the product of determinants we obtain

$$
\begin{equation*}
\operatorname{det} R=\operatorname{det} S_{1} \cdot \operatorname{det} S_{2}=c^{2} \tag{2.23}
\end{equation*}
$$

On the other hand by (2.22) it follows that $\operatorname{det} R=x_{3}^{2}-d y_{3}^{2}$ and therefore by (2.23) we get

$$
x_{3}^{2}-d y_{3}^{2}=c^{2}, \quad \text { where } d=a b
$$

and the proof is complete.

Lemma 3. All positive integral solutions of the equation

$$
x^{2}-d y^{2}=z^{2}
$$

are given by the formulas

$$
x=\left(a m^{2}+b n^{2}\right) \varrho, \quad y=2 m n \varrho, \quad z=\left(a m^{2}-b n^{2}\right) \varrho
$$

if $d=a b$ is even, or

$$
x=\frac{1}{2}\left(a m^{2}+b n^{2}\right) \varrho, \quad y=m n \varrho, \quad z=\frac{1}{2}\left(a m^{2}-b n^{2}\right) \varrho
$$

if $d=a b$ is odd and ϱ is any integer when m and n are odd, but ϱ is even when one of m and n is even and the other is odd. In all cases m, n are positive integers and relatively prime.

For the proof see [1], Th. 40, p. 41.

3. Result

In this part of our paper we prove the following
Theorem. Let a, b and $c>2$ be positive integers such that $(a, b)=$ $(b, c)=(c, a)=1$ and $d=a b$ is not a square of an integer.

Then the equation

$$
\begin{equation*}
a x^{2}-b y^{2}=c \tag{3.1}
\end{equation*}
$$

has a solution in positive integers x, y with $(x, y)=1$ iff there exists an integer solution $\langle u, v\rangle$ of the equation

$$
\begin{equation*}
u^{2}-d v^{2}=c^{2} \tag{3.2}
\end{equation*}
$$

Proof. Suppose that the assumptions of our Theorem are fulfilled and let the equation (3.2) have an integer solution $\langle u, v\rangle$. By Lemma 3 it follows that all positive integer solutions of (3.2) are given by the formulae

$$
\begin{equation*}
u=\left(a m^{2}+b n^{2}\right) \varrho, \quad v=2 m n \varrho, \quad c=\left(a m^{2}-b n^{2}\right) \varrho \tag{3.3}
\end{equation*}
$$

if $d=a b$ is even, or

$$
\begin{equation*}
u=\frac{1}{2}\left(a m^{2}+b n^{2}\right) \varrho, \quad v=m n \varrho, \quad c=\frac{1}{2}\left(a m^{2}-b n^{2}\right) \varrho \tag{3.4}
\end{equation*}
$$

if $d=a b$ is odd, where ϱ is any integer when m and n are odd, but ϱ is even when one of m and n is even and the other is odd. In all cases $(m, n)=1$.

Let $d=a b$ be even. Then by (3.3) in the case $\varrho=1$ we obtain

$$
u=a m^{2}+b n^{2}, \quad c=a m^{2}-b n^{2}
$$

and consequently

$$
\frac{u+c}{2}-\frac{u-c}{2}=a m^{2}-b n^{2}=c
$$

so denote that the equation $a x^{2}-b y^{2}=c$, has a solution in positive integers m, n such that $(m, n)=1$.

Let $d=a b$ be odd. Then by (3.4) in the case $\varrho=2 \varrho_{1}$ we have

$$
u=\left(a m^{2}+b n^{2}\right) \varrho_{1}, \quad c=\left(a m^{2}-b n^{2}\right) \varrho_{1}
$$

where $(m, n)=1$ and m, n are different parity. Thus for $\varrho_{1}=1$ we obtain

$$
\frac{u+c}{2}-\frac{u-c}{2}=a m^{2}-b n^{2}=c
$$

and we get a solution in positive integers m, n of the equation $a x^{2}-b y^{2}=c$. Now we can assume that the equation (3.1) has a primitive solution $\left\langle x_{0}, y_{0}\right\rangle$ such that $\left(x_{0}, y_{0}\right)=1$ and $\left(x_{0}, c\right)=1$. Then there exists a solution $\left\langle x_{1}, y_{1}\right\rangle$ given by (2.8). Since $\left(x_{0}, c\right)=1$ then by Lemma 1 we obtain that there exists a singular solution $\langle u, v\rangle$ of (3.1).

By Lemma 2 it follows that there exists a solution in positive integers of the equation (3.2). The proof is complete.

4. Application

Let $K=Q(\sqrt{d}), d>0$ be a given quadratic number field and let h denote the class-number of this field. Then from well-known results of C. S. Herz [4], (Cf. [12], p. 483) it follows that if $h=1$ then

$$
\begin{equation*}
d=p, 2 q, q r \tag{4.1}
\end{equation*}
$$

where p is a prime and $q \equiv r \equiv 3(\bmod 4)$ are primes
From this results follows that for the investigation of the famous Gauss problem concerning the existence of infinitely many real quadratic number fields with class-number $h=1$ it suffices to consider one of the cases given in (4.1). Consider the case $d=p \equiv 3(\bmod 4)$. Then if R_{K} is the ring of all integers of $K=Q(\sqrt{p})$ and if $\alpha \in R$ then for some rational integers x, y we have

$$
\begin{equation*}
\alpha=x+y \sqrt{p} \quad \text { and } \quad N(\alpha)=x^{2}-p y^{2} . \tag{4.2}
\end{equation*}
$$

On the other hand it is well-known that if D_{K} is the discriminant of K then for every rational prime q we have

$$
\begin{equation*}
(q)=P^{2}, \quad N(P)=q \text { if } q \mid D_{K} \tag{4.3}
\end{equation*}
$$

and if $q \nmid D_{K}$ then

$$
\begin{gather*}
(q)=P_{1} P_{2}, \quad P_{1} \neq P_{2}, \quad N\left(P_{1}\right)=N\left(P_{2}\right)=q \text { if }\left(\frac{D_{K}}{q}\right)=+1 \tag{4.4}\\
(q)=P, \quad N(P)=q^{2} \text { if }\left(\frac{D_{K}}{q}\right)=-1 \tag{4.5}
\end{gather*}
$$

where P, P_{1}, P_{2} are prime ideals in R_{K} and $\left(\frac{a}{b}\right)$ denotes the Legendre symbol. In the case $d=p \equiv 3(\bmod 4)$ we have $D=4 d=4 p$. From (4.3) we have $q=2$ or p and if $P=(\alpha)$ then $N(P)=N((\alpha))=|N(\alpha)|$ and conversely. By (4.2) we obtain that this condition is equivalent to the condition that the equation $\left|x^{2}-p y^{2}\right|=2$ or p has a solution in integers x, y. But it is easy to see that the equation $\left|x^{2}-p y^{2}\right|=p$ has always the solution $x=0, y= \pm 1$ and it remains to investigate the equations

$$
\begin{equation*}
x^{2}-p y^{2}=2, \quad x^{2}-p y^{2}=-2 \tag{4.6}
\end{equation*}
$$

Let $\left\langle u_{0}, v_{0}\right\rangle$ be the primitive solutions of Pell's equation $u^{2}-p v^{2}=1$, then we have $\left(u_{0}-1\right)\left(u_{0}+1\right)=p v_{0}^{2}$ and we obtain

$$
\begin{equation*}
p \mid u_{0}-1 \quad \text { or } \quad p \mid u_{0}+1 \tag{4.7}
\end{equation*}
$$

From (4.7) and Criterion 2 we get that one of the equations (4.6) has a solution in integers x, y. Therefore we can investigate the cases (4.4) and (4.5). Similarly as in the above case we obtain that if one of the equations

$$
\begin{equation*}
x^{2}-p y^{2}=q, \quad x^{2}-p y^{2}=-q \tag{4.8}
\end{equation*}
$$

has a solution in integers x, y for every odd prime $q \neq p$ such that $\left(\frac{D_{K}}{q}\right)=$ $\left(\frac{p}{q}\right)=+1$ then every prime ideal P of R_{K} is principal and consequently any integer ideal is also principal and we get that in this case $h=1$.

Applying our Theorem to (4.8) we get the following
Corollary. Let $K=Q(\sqrt{p})$, where $p \equiv 3(\bmod 4)$ is a prime. If the equation

$$
u^{2}-p v^{2}=q^{2}
$$

has an integer solution $\langle u, v\rangle$ for every odd prime $q \neq p$, such that $\left(\frac{q}{p}\right)=$ +1 , then $h=1$.

References

[1] L. E. Dickson, Introduction to the Theory of Numbers, New York, 1957.
[2] W. Górzny, On the equation $D_{1} x^{2}-D_{2} y^{2}=1$, Discuss. Math. 4 (1981), 109-111.
[3] A. Grelak and A. Grytczuk, Some remarks on matrices and Diophantine equation $A^{2}-B y^{2}=C$, Discuss. Math. 10 (1990), 13-27.
[4] C. S. Herz, Construction of class fields, Seminar on Complex Multiplication, Lectures Notes in Math. 21, Springer- Verlag, 1966.
[5] C. U. Jensen, On the solvability of a certain class of non-Pellian equations, Math. Scand. 10 (1962), 71-84.
[6] P. Kaplan, A propos des équations antipelliennes, Enseign. Math. (1983), 323-328.
[7] J. C. Lagarias, On the computational complexity of determining the solvability or unsolvability of the equation $X^{2}-D Y^{2}=-1$, Trans. Amer. Math. Soc. 260 (1980), 485-508.
[8] H. Lienen, The quadratic form $x^{2}-2 p y^{2}$, J. Number Theory (1978), 10-15.
[9] T. Nagell, On a special class of Diophantine equations of the second degree, Arkiv. Math. (1954), 51-65.
[10] T. Nagell, Contributions to the theory of a category of Diophantine equations of the second degree with two unknowns, Nova Acta Soc. Sci. Uppsala (1955), 1-38.
[11] T. Nagell, Sur la solubilité en nombres entiers des équations du second degré a deux inderterminées, Acta Arith. (1971), 105-114.
[12] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, PWN, Warszawa, 1990.

```
A. GRELAK
DEPARTMENT OF MATHEMATICS
PEDAGOGICAL UNIVERSITY
ZIELONA GÓRA
POLAND
A. GRYTCZUK
DEPARTMENT OF MATHEMATICS
PEDAGOGICAL UNIVERSITY
ZIELONA GÓRA
POLAND
```

(Received November 10, 1992; revised March 26, 1993)

