
Publ. Math. Debrecen

78/3-4 (2011), 691–707

DOI: 10.5486/PMD.2011.4980

Homogeneous quaternionic Kähler structures
on rank-three Alekseevsky spaces

By WAFAA BATAT (Oran), PEDRO M. GADEA (Madrid)

and JOSÉ A. OUBIÑA (Santiago de Compostela)

Abstract. The homogeneous quaternionic Kähler structures on the rank-three

Alekseevsky spaces with their natural quaternionic structures, when each of them is

described as a solvable Lie group, and their types in Fino’s classification, are found.

1. Introduction

As is well known, symmetric quaternion-Kähler spaces were classified by

Wolf [21] and homogeneous quaternion-Kähler spaces admitting a simply tran-

sitive real solvable group of isometries were classified by Alekseevsky [2] (see

also de Wit and van Proeyen [20] and Cortés [11]). No more homogeneous

quaternion-Kähler spaces are known. Alekseevsky proved in [1] that compact

homogeneous quaternion-Kähler manifolds are Wolf spaces, and conjectured in [2,

p. 300] that the only homogeneous quaternion-Kähler manifolds are either Wolf

spaces or Alekseevsky spaces. A quaternion-Kähler manifold is said to be positive

(resp. negative) if it is complete and has positive (resp. negative) scalar curvature.

LeBrun and Salamon’s Conjecture [16] says that a positive quaternion-Kähler

manifold must be isometric to a Wolf space. This was settled by Hitchin [13]

and Poon and Salamon [17] for dimensions four and eight, respectively.
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In turn, homogeneous quaternionic Kähler structures, that is, the Sp(n)Sp(1)

case of the Ambrose and Singer [4] and Tricerri and Vanhecke [19] homo-

geneous Riemannian structures, have been studied in [12], [9], [7], [8]. Fino

gave in [12] a representation-theoretical classification of homogeneous quater-

nionic Kähler structures, which has five basic geometric types QK1, . . . ,QK5.

(In the sequel we shall denote simply the type QKi ⊕ QKj by QKij , the type

QKi ⊕QKj ⊕QKk by QKijk, and so on.) A classification of these structures in

terms of real tensors was then given in [9] (see Theorem 2.1 below), where it was

moreover proved that a connected, simply-connected and complete homogeneous

quaternion-Kähler manifold of real dimension greater than or equal to eight, ad-

mitting a nonvanishing structure in QK123 with nonzero projection to QK3, is

necessarily the quaternionic hyperbolic space HH(n). Furthermore, a structure of

type QK134 on HH(n), corresponding to its description as a solvable group, has

been given in [9]. Then, in [7], [8] it has been shown that the quaternion-Kähler

symmetric spaces of dimension either 8 or 12 (they also are Alekseevsky spaces)

furnish proper realisations of the types QK134,QK135, QK1345 and the generic

type QK12345.

On the other hand, quaternion-Kähler spaces appear in the formulation of

the coupling of matter fields in N = 2 supergravity. Each multiplet consists of

4n real scalars and two Majorana spinor fields. The 4n real scalars parameterise

a 4n-dimensional Riemannian manifold M . If the gravity is considered as a dy-

namical field, the holonomy group of M is a subgroup of Sp(n)Sp(1), and M is

a negative quaternion-Kähler manifold (Bagger and Witten [5], see also [10],

[20]), so these spaces are target spaces of nonlinear σ-models in N = 2, d = 4,

supergravity. Later, Cecotti [10] studied the relation of those spaces with the

c-map, and proved that Alekseevsky spaces naturally appear in this context and,

furthermore, that the nonsymmetric ones are related to Vinberg T -algebras as

the symmetric ones are related to Jordan algebras. In turn, de Wit and Van

Proeyen [20] studied those spaces, completing Alekseevsky’s classification, and

specifically adding the spaces T (p), p ≥ 1, by using supergravity considerations.

That Alekseevsky spaces actually appear in three series, T -, W-, and V-spaces
(which include symmetric and nonsymmetric manifolds), was then proved by

Cortés [11] by using geometric arguments. Further, the authors of [20] gave an

explanation of the presence of nonsymmetric spaces in terms of (certain extra)

dimensions of the isometry groups.

The aim of the present paper is to find the explicit homogeneous quaternio-

nic Kähler structures carried by the rank-three Alekseevsky spaces T (p), p ≥ 0,

when each of them is described as a solvable Lie group, and then to determine
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the type of such structures in Fino’s classification, so seeing in particular whether

the structure is or not special, in the sense of having or not nonzero components

in each basic type QKi, i = 1, . . . , 5. To this end, we make calculations which

are crucially based on the explicit description by Cortés ([11]) of the spaces

T (p) as completely solvable Lie groups with a left-invariant quaternionic Kähler

structure.

As for the contents, after some preliminaries in §2, we obtain in §3 Theo-

rem 3.1, giving the homogeneous quaternionic Kähler structure corresponding to

the description as a Lie group of each space T (p). In §4 we give Theorem 4.1,

with the type of such structure in Fino’s classification. We prove that it has

components in each subspace QKi, for i = 1, . . . , 5.

2. Preliminaries

2.1. Homogeneous quaternionic Kähler structures. As is well known,

Ambrose and Singer [4] proved that a connected, simply-connected and comp-

lete Riemannian manifold (M, g) is Riemannian homogeneous if and only if it

admits a homogeneous Riemannian structure, i.e., a (1, 2) tensor field S satis-

fying

∇̃g = 0, ∇̃R = 0, ∇̃S = 0,

where ∇̃ = ∇ − S, ∇ denotes the Levi–Civita connection and R the curvature

tensor of ∇. We write as usual SXY Z = g(SXY, Z). Then, from ∇g = 0 it follows

that the condition ∇̃g = 0 is equivalent to SXZY = −SXY Z .

Let (M, g, υ3) be an almost quaternion-Hermitian manifold, υ3 being the

structure subbundle of the bundle of (1, 1) tensors on M . That is, there locally

exists a basis J1, J2, J3 of υ3 satisfying the conditions

J2
a = −I, J1J2 = −J2J1 = J3, g(JaX,JaY ) = g(X,Y ), (2.1)

for a = 1, 2, 3. Such a basis is called a standard local basis of υ3 in its domain of

definition. Such an M has dimension 4n, with n ≥ 1. It is known that M admits

an almost quaternion-Hermitian structure if and only if the structure group of its

tangent bundle TM is reducible to Sp(n)Sp(1).

Let J1, J2, J3 be a standard local basis of υ3 and let ωa(X,Y ) = g(JaX,Y ),

a = 1, 2, 3. The differential 4-form Ω =
∑3

a=1 ωa∧ωa is known to be globally defi-

ned. The manifold is said to be quaternion-Kähler if one has locally (cf. Ishihara

[14]) that

∇XJ1 = τ3(X)J2 − τ2(X)J3, etc., (2.2)
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for certain differential 1-forms τ1, τ2, τ3 (here and in the sequel, ‘etc.’ denotes the

equations obtained by cyclically permuting the indices 1, 2, 3); or, equivalently, if

∇Ω = 0. The holonomy group is contained in Sp(n)Sp(1).

In the present paper we shall consider quaternion-Kähler manifolds of dim≥8

and negative scalar curvature (see [6], [18]). We have (cf. Alekseevsky and

Cortés [3, p. 218], and see also [9, Rem. 2.2]) the next

Definition 2.1. A quaternion-Kähler manifold (M, g, υ3) is said to be a homo-

geneous quaternion-Kähler manifold if it admits a transitive group of isometries.

Moreover, as a Corollary to Kiričenco’s Theorem [15] one has that a con-

nected, simply-connected and complete quaternion-Kähler manifold (M, g, υ3) is

homogeneous if and only if there exists a tensor field S of type (1, 2) on M satis-

fying

∇̃g = 0, ∇̃R = 0, ∇̃S = 0, ∇̃Ω = 0, (2.3)

where ∇̃ = ∇− S. Such a tensor S is called a homogeneous quaternionic Kähler

structure on M . The equation ∇̃Ω = 0 is equivalent, under ∇̃g = 0, to the

existence of three differential 1-forms τ̃1, τ̃2, τ̃3 such that

∇̃XJ1 = τ̃3(X)J2 − τ̃2(X)J3, etc. (2.4)

Formulas (2.2) and (2.4) yield

SXJ1Y − J1SXY = θ3(X)J2Y − θ2(X)J3Y, etc.,

for θa = τa − τ̃a, a = 1, 2, 3. We then have that

SXJ1Y J1Z − SXY Z = θ3(X)g(J2Y, J1Z)− θ2(X)g(J3Y, J1Z), etc., (2.5)

which together with the condition SXY Z = −SXZY , are the symmetries satisfied

by a homogeneous quaternionic Kähler structure S.

Fino gave a representation-theoretical classification of homogeneous quater-

nionic Kähler structures: With the usual notation E,H (and K for the module

with highest weight (2, 1, 0, . . . , 0)) for quaternion-Kähler manifolds (see for ins-

tance [18]) one has

Theorem (Fino [12, Lemma 5.1]). A homogeneous quaternionic Kähler

structure S belongs pointwise to the module

[EH]⊗ (
sp(1)⊕ sp(n)

) ∼= [EH] + [ES3H] + [EH] + [S3EH] + [KH].
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We shall writeQK1, . . . ,QK5 for the five Fino basic types, in the above order.

Let (V, 〈 , 〉, q) be a quaternion-Hermitian vector space, i.e., a 4n-dimensional

real vector space endowed with an inner product 〈 , 〉 and a quaternionic structure

q generated by operators J1, J2, J3 satisfying (2.1). Consider the space of tensors

T (V ) = {S ∈ ⊗3V ∗ : SXY Z = −SXZY }
and its vector subspace

QK(V ) = {S ∈ ⊗3V ∗ : SXY Z = −SXZY , ∃ θa ∈ V ∗ s.t. S satisfies (2.5)}.

Any homogeneous Riemannian structure on M belongs to T (TpM) pointwise, but

homogeneous quaternionic Kähler structures are pointwise in QK(TpM).

Consider the subspaces V̌ and V̂ of QK(V ) defined by

V̌ =
{
Θ ∈ QK(V ) : ΘXY Z =

3∑
a=1

θa(X)〈JaY, Z〉, θa ∈ V ∗
}
,

V̂ = {A ∈ QK(V ) : AXJaY JaZ = AXY Z , a = 1, 2, 3} .

Then one has QK(V ) = V̌ ⊕ V̂, and each element S ∈ QK(V ) decomposes as

SXY Z = ΘXY Z +AXY Z ,

where

ΘXY Z =
1

2

3∑
a=1

θa(X)〈JaY, Z〉, (2.6)

θa being the 1-forms corresponding to S as in (2.5). Moreover, the classification

by real tensors is ([9, Th. 3.15]) as follows.

Theorem 2.1. If n ≥ 2, the space QK(V ) decomposes into the direct sum

of the following Sp(n)Sp(1)-invariant and irreducible subspaces:

QK1 =
{
Θ ∈ V̌ : ΘXY Z =

3∑
a=1

θ(JaX)〈JaY, Z〉, θ ∈ V ∗
}
,

QK2 =
{
Θ ∈ V̌ : ΘXY Z =

3∑
a=1

θa(X)〈JaY,Z〉,
3∑

a=1

θa ◦ Ja = 0, θa ∈ V ∗
}
,

QK3 =
{
A ∈ V̂ : AXY Z = 〈X,Y 〉ϑ(Z)− 〈X,Z〉ϑ(Y )

+

3∑
a=1

(〈X,JaY 〉ϑ(JaZ)− 〈X, JaZ〉ϑ(JaY )
)
, ϑ ∈ V ∗

}
,
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QK4 =
{
A ∈ V̂ : AXY Z =

1

6

(
S

XY Z
AXY Z +

3∑
a=1

S
XJaY JaZ

AXJaY JaZ

)
,

c12(A) = 0

}
,

QK5 =
{
A ∈ V̂ : S

XY Z
AXY Z = 0

}
,

where c12(A)(Z) =
∑4n

i=1 AeieiZ , for any local orthonormal basis {ei} of V .

Note that with the previous notations we have that

V̌ = QK12, V̂ = QK345.

2.2. Alekseevsky spaces. We recall here some definitions and results byAlek-

seevsky [2] (see also [3], [11]). A solvable Lie algebra s is said to be real (or

completely) solvable, if the endomorphisms adX , X ∈ s, have only real eigenva-

lues. A Lie group is said to be real solvable if its Lie algebra is real solvable. A

quaternion-Kähler manifold of nonzero scalar curvature is said to be an Alekse-

evsky space if it admits a simply transitive, real solvable group of isometries.

A metric Lie algebra is a pair (s, 〈 , 〉) consisting of a Lie algebra s and an

inner product 〈 , 〉 on s. An Alekseevsky space is simply-connected and it can be

regarded as a real solvable Lie group with a left-invariant metric. The corres-

ponding metric Lie algebra with the quaternionic structure inherited from that

of the manifold is a quaternion-Hermitian vector space (s, 〈 , 〉, q) which is called

a quaternionic or Alekseevskian Lie algebra. A metric Lie algebra f with an ort-

honormal basis {G,H} and complex structure J is said to be a key algebra with

root µ, if

G = JH, [H,G] = µG, µ > 0.

A metric Lie algebra f + x with complex structure J is said to be an elementary

Kählerian Lie algebra with root µ if f = Span{G,H} is a key subalgebra with

root µ and

adH |x = 1

2
µI, adG|x = 0, [X,Y ] = µ〈JX, Y 〉G, X, Y ∈ x. (2.7)

A representation U 7→ TU of a Lie algebra u with complex structure J on a

Euclidean space (x, 〈 , 〉) with a complex structure J1 is said to be symplectic if:

(1) J1TUJ1 = T ′
U (where T ′

U is the endomorphism of x adjoint to TU ), i.e.,

TU annihilates the Kähler form ω1 = 〈J1·, ·〉: ω1(TUX,Y ) + ω1(X,TUY ) = 0 for

all U ∈ u, X,Y ∈ x.

(2) T sym
JU = J1T

sym
U for all U ∈ u, where T sym

U = 1
2 (TU + T ′

U ) denotes the

symmetric part of TU .
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If Tux = x, T is called nondegenerate. If T is a nondegenerate symplectic

representation of a key algebra f = Span{G,H} with root µ on a space (x, 〈 , 〉, J1),
then x admits a weight decomposition x = x+ + x− such that

x− = J1x+, TG|x+ = 0, TG|x− = −µJ1, TH |x± = ±1

2
µI. (2.8)

Any Alekseevskian algebra (s, 〈 , 〉, q), with q = Span{Ja : a = 1, 2, 3}, conta-
ins one (up to scaling) 1-dimensional quaternionic subalgebra s′ (i.e., a subalgebra

s′ such that qs′ ⊂ s′), corresponding either to the complex hyperbolic plane CH(2)
or to the quaternionic hyperbolic line HH(1). In the former case it is of the form

s = u + J2u (orthogonal sum), and (u, J1|u) is the so-called principal Kählerian

subalgebra of s. The Lie algebra u contains a key subalgebra f0 = Span{G0,H0}
with root 1 such that f0 + J2f0 is the canonical 1-dimensional quaternionic subal-

gebra of s, and the adjoint representation of s induces a representation of u on

u⊥ = J2u, which furnishes the model for the next definition.

A Kählerian Lie algebra (u, J), that is, a metric Lie algebra which corresponds

to a Kählerian homogeneous space, is said to be admissible if u = f0 + u0 is a

direct orthogonal sum of a key algebra f0 = Span{G0,H0} with root 1 and a

real solvable Kählerian Lie algebra u0. A representation U 7→ TU of such a Lie

algebra u on a Euclidean space ũ together with a vector space isometry ϕ : u → ũ

is said to be a Q-representation if it satisfies the following eight conditions (Q1–8),

given in Alekseevsky [2, Lemma 5.5 and Definition 5.3] (cf. also Cortés [11,

Definition 1.8]), where we denote Ũ = ϕ(U) for each U ∈ u, and J1 and Ĵ are the

complex structures on ũ given by

J1 = −ϕJϕ−1, Ĵ |̃f0 = −J1 |̃f0, Ĵ |ũ0 = J1|ũ0 : (2.9)

(Q1) TH0 = 1
2I, TG0 = 0,

(Q2) TU0H̃0 = 1
2 Ũ0 − 2α(U0)G̃0, TU0G̃0 = 1

2 J̃U0 + 2α(U0)H̃0,

(Q3) TU0 Ṽ0 ≡ 1
2 〈U0, V0〉H̃0 +

1
2 〈JU0, V0〉G̃0 mod ũ0,

(Q4) T sk
U0

= ϕ∇U0ϕ
−1 + 2α(U0)J1,

(Q5) T sym
JU0

|ũ0
= J1T

sym
U0

|ũ0
,

(Q6) T sym
U0

Ṽ0 − T sym
V0

Ũ0 = 〈JU0, V0〉G̃0,

(Q7) TU0 annihilates the Kähler form ω̂ = 〈Ĵ ·, ·〉,
for some linear form α on u0, where U0, V0 ∈ u0, ∇ is the covariant derivative of u,

and T sk
U0

and T sym
U0

denote the skew and symmetric parts of TU0 , respectively; and

(Q8) for each U ∈ u, the endomorphism TU has only real eigenvalues.
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Then Alekseevsky proved in [2] the following facts: Q-representations of

an admissible Kählerian Lie algebra (u, J) and Alekseevskian Lie algebras with

principal Kählerian subalgebra (u, J) are related by the following natural corres-

pondence. If s is an Alekseevskian Lie algebra with principal Kählerian subalgebra

(u, J), then the representation of u on J2u induced by the adjoint representation

of s is a Q-representation with ϕ = J2|u : u → u⊥. Conversely, let (T, ϕ) be a

Q-representation of an admissible Kählerian Lie algebra (u, J) on the Euclidean

vector space

ũ = ϕ(u) = f̃0 + ũ0.

A quaternionic structure q = Span{Ja : a = 1, 2, 3} on the Euclidean vector space

s = u+ ũ (orthogonal sum) is defined by

J1|u = J, J1|ũ = −ϕJϕ−1, J2|u = ϕ, J2|ũ = −ϕ−1, J3 = J1J2. (2.10)

Let Ĵ be the complex structure on ũ defined as in (2.9), and let ω̂ denote the

Kähler form on ũ given by ω̂(Ũ , Ṽ ) = 〈Ĵ Ũ , Ṽ 〉. Then the following conditions

define the structure of Lie algebra of s:

u is a subalgebra of s, adU |ũ = TU , [Ũ , Ṽ ] = ω̂(Ũ , Ṽ )G0, (2.11)

for all U, V ∈ u.

The rank of a solvable Lie algebra s is the dimension of a Cartan subalgebra

of s. The rank of an Alekseevsky space S is the rank of its Alekseevskian Lie

algebra s, which is proved to be at most 4. An admissible Kählerian Lie algebra

u = f0 + u0 which admits a Q-representation decomposes as a semidirect sum of

elementary Kählerian Lie algebras, with u0 =
∑

i≥1(fi + xi), that is,

[fi + xi, fj + xj ] ⊂ fj + xj , i ≥ j,

with symplectic representation adfi |xj for i > j and commuting key algebras,

[fi, fj ] = 0, for i 6= j (see [11, p. 134]).

The rank of u = f0+
∑

i≥1(fi+ xi) coincides with the number of key algebras

of u. There are only three types (type 1, 2 or 3) of admissible Kählerian Lie

algebras, corresponding to the cases where the smallest root is 1, 1/
√
2 or 1/

√
3,

respectively.

3. Homogeneous quaternionic Kähler structures on the spaces T (p)

Now we focus on the rank-three case and we will make calculations essentially

based on the explicit description of the spaces T (p) as completely solvable Lie

groups with a left-invariant quaternionic Kähler structure found by Cortés [11].
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Kählerian Lie algebras of type 2 which admit a Q-representation have rank 3.

Now, (see [2, Sect. 8] and [11, Sect. 2.1]) every Kählerian Lie algebra (u, J) of

type 2 which admits a Q-representation is a direct (orthogonal) sum of the form

u = f0 + u0, where f0 = Span{G0,H0} is a key algebra with root 1 and u0 is

a semidirect sum of two elementary Kählerian Lie algebras f1 + x1 and f2 with

roots 1 and 1/
√
2, respectively, the key algebras fi = Span{Gi,Hi}, i = 1, 2,

commute and adf2 |x1 is a nondegenerate symplectic representation with weight

decomposition

x1 = x+ + x−, x− = Jx+.

Then, by (2.7) and (2.8) respectively, we have

adH1 |x1 =
1

2
I, adG1 |x1 = 0, [X,Y ] = 〈JX, Y 〉G1, X, Y ∈ x1,

and

adG2 |x+ = 0, adG2 |x− = −
√
2

2
J, adH2 |x± = ±

√
2

4
I.

Thus we have the following Lie brackets on u (where we put X− = JX+ ∈ x− for

each X+ ∈ x+):

[H0, G0] = G0, [H1, G1] = G1, [H2, G2] =

√
2

2
G2,

[H1, X] =
1

2
X, [G1, X] = 0, for X ∈ x1,

[X+, Y+] = [X−, Y−] = 0, [X+, Y−] = 〈X+, Y+〉G1,

[G2, X+] = 0, [G2, X−] =

√
2

2
X+,

[H2, X+] =

√
2

4
X+, [H2, X−] = −

√
2

4
X−, (3.1)

for all X+, Y+ ∈ x+. These, together with [f0, u0] = 0 and [f1, f2] = 0, give the

structure of Lie algebra of u.

Furthermore, the Kählerian Lie algebra (u, J) has a unique Q-representation

on the Euclidean vector space ũ = f̃0 + ũ0,

T : u → End(ũ),

where ˜ : u → ũ denotes the corresponding isometry of Euclidean vector spaces.

If p = dimC x1 = dimR x+ ∈ {0, 1, 2, . . .}, we consider the quaternion-Hermi-

tian vector space (t(p), 〈 , 〉, q), where t(p) = u+ ũ is a direct orthogonal sum, and

q = Span{Ja : a = 1, 2, 3} is the quaternionic structure on t(p) defined by (2.10).
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Let {Xi+ : 1 ≤ i ≤ p} be an orthonormal basis of x+, and Xi− = JXi+.

Then

B = {Gj ,Hj , Xi+, Xi−, G̃j , H̃j , X̃i+, X̃i− : 0 ≤ j ≤ 2, 1 ≤ i ≤ p}

is an orthonormal basis of t(p).

The action of Ja, a = 1, 2, 3, on t(p) = u+ ũ is given in Table 1.

G0 H0 G1 H1 G2 H2 Xi+ Xi− G̃0 H̃0 G̃1 H̃1 G̃2 H̃2 X̃i+ X̃i−

J1 −H0 G0 −H1 G1 −H2 G2 Xi− −Xi+ H̃0 −G̃0 H̃1 −G̃1 H̃2 −G̃2 −X̃i− X̃i+

J2 G̃0 H̃0 G̃1 H̃1 G̃2 H̃2 X̃i+ X̃i− −G0 −H0 −G1 −H1 −G2 −H2 −Xi+ −Xi−

J3 H̃0 −G̃0 H̃1 −G̃1 H̃2 −G̃2 −X̃i− X̃i+ H0 −G0 H1 −G1 H2 −G2 −Xi− Xi+

Table 1. The action of Ja, a = 1, 2, 3, on t(p)

The vector space t(p) has a structure of Lie algebra given by (2.11), with

s = t(p), where the complex structure Ĵ on ũ is defined by

G̃0 H̃0 G̃1 H̃1 G̃2 H̃2 X̃i+ X̃i−

Ĵ −H̃0 G̃0 H̃1 −G̃1 H̃2 −G̃2 −X̃i− X̃i+

Then, by the third condition in (2.11), we have the brackets of the elements of ũ.

The nonnull brackets are given by

[H̃0, G̃0] = −[H̃1, G̃1] = −[H̃2, G̃2] = −[X̃i+, X̃i−] = G0. (3.2)

If U ∈ u and Ṽ ∈ ũ, by the second condition in (2.11), [U, Ṽ ] = TU Ṽ , and

it is exhibited in Table 2, where T : u → End(ũ) is expressed in terms of the

orthonormal basis {G̃j , H̃j , X̃i+, X̃i−} of ũ, from the conditions (Q1-8) of a Q-

representation (cf. Cortés [11, Prop. 2.1]).

The Lie algebra t(p) is 4-step solvable, dim t(p) = 12 + 4p, and the corres-

ponding simply-connected Lie group with left-invariant metric is the Alekseevsky

space T (p).

Consider now, for any p ≥ 0, the Alekseevsky space T (p), and the tensor

field S on T (p) given by

2〈SXY,Z〉 = 〈[X,Y ], Z〉 − 〈[X,Z], Y 〉 − 〈[Y,Z], X〉, (3.3)

for X,Y, Z ∈ t(p). Let ∇ be the Levi–Civita connection of (T (p), 〈 , 〉). Then
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G̃0 H̃0 G̃1 H̃1

G0 0 0 0 0

H0
1
2 G̃0

1
2 H̃0

1
2 G̃1

1
2 H̃1

G1
−1
2 (H̃0 + H̃1)

1
2 (G̃0 + G̃1)

1
2 (H̃0 + H̃1)

−1
2 (G̃0 + G̃1)

H1
1
2 G̃1

1
2 H̃1

1
2 G̃0

1
2 H̃0

G2
−1
2 (

√
2H̃0 + H̃2)

1
2 (

√
2G̃0 + G̃2)

−1
2 (

√
2H̃1 + H̃2)

1
2 (

√
2G̃1 − G̃2)

H2
1
2 G̃2

1
2 H̃2

−1
2 G̃2

1
2 H̃2

Xj+
1
2 X̃j−

1
2 X̃j+

−1
2 X̃j−

−1
2 X̃j+

Xj− −1
2 X̃j+

1
2 X̃j−

1
2 X̃j+

−1
2 X̃j−

G̃2 H̃2 X̃i+ X̃i−

G0 0 0 0 0

H0
1
2 G̃2

1
2 H̃2

1
2 X̃i+

1
2 X̃i−

G1 −H̃2 0 0 0

H1
−1
2 G̃2

1
2 H̃2 0 0

G2
1
2 (H̃0 − H̃1)

−1
2 (G̃0 + G̃1) 0 −

√
2

2 X̃i+

H2
1
2 (G̃0 − G̃1)

1
2 (H̃0 + H̃1)

√
2

4 X̃i+
−√

2
4 X̃i−

Xj+
−√

2
2 X̃j− 0

δij
2 (H̃0 + H̃1 +

√
2H̃2)

δij
2 (G̃0 + G̃1)

Xj− −√
2

2 X̃j+ 0
−δij

2 (G̃0 + G̃1)
δij
2 (H̃0 + H̃1 − √

2H̃2)

Table 2. The Q-representation T : u → End(ũ)

∇̃ = ∇−S is the connection on the Lie group T (p) for which every left-invariant

vector field is parallel. Thus, conditions (2.3) are satisfied and S is a homogeneous

quaternionic Kähler structure. Moreover, the holonomy algebra of the connection

∇̃ is trivial, and then S provides the description of T (p) as a Lie group (see [19,

p. 32, Eqs. (1.79)]).

Since [u, u] ⊂ u, [u, ũ] ⊂ ũ, [ũ, ũ] ⊂ u, and u and ũ are orthogonal, from (3.3)

we have

S
UV W̃

= 0, SŨV W = 0, SUṼ W = 0, S
ŨṼ W̃

= 0. (3.4)

We have t(p)∗ = u∗ + ũ∗. Let

B∗ = {γj , ηj , ξi+, ξi−, γ̃j , η̃j , ξ̃i+, ξ̃i− : 0 ≤ j ≤ 2, 1 ≤ i ≤ p}

be the basis of t(p)∗ dual to the basis B= {Gj ,Hj , Xi+, Xi−, G̃j , H̃j , X̃i+, X̃i−}
of t(p). Then, if we denote by SX the 2-form defined by SX(Y, Z) = SXY Z , we

have

Theorem 3.1. The homogeneous quaternionic Kähler structure S on each

rank-three Alekseevsky space T (p), p ≥ 0, which gives its description as the
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simply-connected solvable Lie group with Lie algebra t(p), is given, in terms of

the basis B∗ of t(p)∗, by

S|u∗⊗∧2 u∗ = γ0 ⊗ (γ0 ∧ η0) + γ1 ⊗ (γ1 ∧ η1)

+

√
2

2
γ2 ⊗ (γ2 ∧ η2)− 1

2

(
γ1 +

√
2

2
γ2

)
⊗
∑

i

(ξi+ ∧ ξi−)

+
1

2

∑

i

(
ξi+ ⊗

(
ξi− ∧

(
γ1 +

√
2

2
γ2

))
+ ξi+ ⊗

(
ξi+ ∧

(
η1 +

√
2

2
η2
))

− ξi− ⊗
(
ξi+ ∧

(
γ1 −

√
2

2
γ2

))
+ ξi− ⊗

(
ξi− ∧

(
η1 −

√
2

2
η2
)))

,

S|u∗⊗∧2 ũ∗ =
1

2
(γ0 − γ1 −

√
2γ2)⊗ (γ̃0 ∧ η̃0)− 1

2
(γ0 − γ1 +

√
2γ2)⊗ (γ̃1 ∧ η̃1)

− 1

2
(γ0 + γ1)⊗ (γ̃2 ∧ η̃2) +

1

2

(
γ0 +

√
2

2
γ2

)
⊗
∑

i

(ξ̃i+ ∧ ξ̃i−)

+
1

2

∑

i

(
ξi+ ⊗

(
ξ̃i− ∧

(
γ̃1 +

√
2

2
γ̃2

))
+ ξi+ ⊗

(
ξ̃i+ ∧

(
η̃1 +

√
2

2
η̃2
))

− ξi− ⊗
(
ξ̃i+ ∧

(
γ̃1 −

√
2

2
γ̃2

))
+ ξi− ⊗

(
ξ̃i− ∧

(
η̃1 −

√
2

2
η̃2
)))

,

SG̃0
=

1

2

(
2∑

j=0

(γ̃j ∧ ηj − η̃j ∧ γj) +
∑

i

(ξ̃i− ∧ ξi+ − ξ̃i+ ∧ ξi−)

)
,

SH̃0
=

1

2

(
2∑

j=0

(γ̃j ∧ γj + η̃j ∧ ηj) +
∑

i

(ξ̃i+ ∧ ξi+ + ξ̃i− ∧ ξi−)

)
,

SG̃1
=

1

2
(γ̃0 ∧ η1 + η̃0 ∧ γ1 + γ̃1 ∧ η0 + η̃1 ∧ γ0 − γ̃2 ∧ η2 − η̃2 ∧ γ2),

SH̃1
=

1

2
(−γ̃0 ∧ γ1 + η̃0 ∧ η1 − γ̃1 ∧ γ0 + η̃1 ∧ η0 − γ̃2 ∧ γ2 + η̃2 ∧ η2),

SG̃2
=

1

2

(
(γ̃0− γ̃1) ∧ η2+(η̃0− η̃1) ∧ γ2+ γ̃2 ∧ (η0 − η1)+ η̃2 ∧ (γ0 − γ1)

)

−
√
2

4

∑

i

(ξ̃i+ ∧ ξi− + ξ̃i− ∧ ξi+),

SH̃2
=

1

2

(
−(γ̃0+ γ̃1) ∧ γ2+(η̃0+ η̃1) ∧ η2− γ̃2 ∧ (γ0+ γ1)+ η̃2 ∧ (η0+ η1)

)

+

√
2

4

∑

i

(ξ̃i+ ∧ ξi+ − ξ̃i− ∧ ξi−),
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S
X̃i+

=
1

2
(−γ̃0 ∧ ξi− + η̃0 ∧ ξi+) +

√
2

4
(−γ̃2 ∧ ξi− + η̃2 ∧ ξi+)

+
1

2

(
ξ̃i+ ∧

(
η0 +

√
2

2
η2
)
− ξ̃i− ∧

(
γ0 +

√
2

2
γ2

))
,

S
X̃i−

=
1

2
(γ̃0 ∧ ξi+ + η̃0 ∧ ξi−)−

√
2

4
(γ̃2 ∧ ξi+ + η̃2 ∧ ξi−)

+
1

2

(
ξ̃i+ ∧

(
γ0 −

√
2

2
γ2

)
+ ξ̃i− ∧

(
η0 −

√
2

2
η2
))

.

Proof. Let U, V,W ∈ u. By (3.3),

SUVW =
1

2

(〈[U, V ],W 〉 − 〈[U,W ], V 〉 − 〈[V,W ], U〉). (3.5)

On account of (3.1), and by the equation S
UV W̃

= 0 in (3.4), from (3.5) one

obtains the values of SUVW for U , V and W in the orthonormal basis B, and
hence we get the expression of S|u∗⊗∧2 u∗ . In order to get S|u∗⊗∧2 ũ∗ , we use (3.3),

(3.2), the equation SUṼ W = 0 in (3.4) and Table 2, since [U, Ṽ ] = TU Ṽ . Now,

from (3.3), by using (3.2), Table 2, and the equations SŨV W = S
ŨṼ W̃

= 0 in (3.4),

we get SŨ for each Ũ = G̃j , H̃j , X̃i+, X̃i−. ¤

4. Types of homogeneous quaternionic Kähler structures

on the spaces T (p)

We now determine the type of the previously obtained structure S on each

T (p). To begin with, from the expression of S in Theorem 3.1 and from Table 1

we get

Lemma 4.1. The forms θa, a = 1, 2, 3, in (2.5) corresponding to the homo-

geneous quaternionic Kähler structure S in Theorem 3.1 are given by

θ1 = −1

2
(γ0 + γ1 +

√
2 γ2), θ2 = −η̃0, θ3 = γ̃0.

We have S = Θ + A, where Θ is given by (2.6). Then, by Lemma 4.1 we

have

ΘG0Y Z = ΘG1Y Z = −1

4
〈J1Y,Z〉, ΘG2Y Z = −

√
2

4
〈J1Y,Z〉

ΘG̃0Y Z =
1

2
〈J3Y,Z〉, ΘH̃0Y Z = −1

2
〈J2Y, Z〉,

and ΘHj = ΘG̃1
= ΘG̃2

= ΘH̃1
= ΘH̃2

= ΘXi+ = ΘXi− = Θ
X̃i+

= Θ
X̃i−

= 0, for

0 ≤ j ≤ 2 and 1 ≤ i ≤ p, where ΘX(Y, Z) = ΘXY Z . Then, by using Table 1, we
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obtain

Proposition 4.1. The tensor field Θ on T (p) corresponding to the homo-

geneous quaternionic Kähler structure S in Theorem 3.1 is given by

ΘG0 =
1

4

(
2∑

j=0

(γj ∧ ηj − γ̃j ∧ η̃j) +
∑

i

(ξ̃i+ ∧ ξ̃i− − ξi+ ∧ ξi−)

)
,

ΘG̃0
=

1

2

(
2∑

j=0

(γj ∧ η̃j − ηj ∧ γ̃j) +
∑

i

(ξi− ∧ ξ̃i+ − ξi+ ∧ ξ̃i−)

)
,

ΘH̃0
= −1

2

(
2∑

j=0

(γj ∧ γ̃j + ηj ∧ η̃j) +
∑

i

(ξi+ ∧ ξ̃i+ + ξi− ∧ ξ̃i−)

)
,

ΘG1 = ΘG0 , ΘG2 =
√
2ΘG0 ,

ΘHj = ΘG̃1
= ΘG̃2

= ΘH̃1
= ΘH̃2

= ΘXi+ = ΘXi− = Θ
X̃i+

= Θ
X̃i−

= 0,

0 ≤ j ≤ 2, 1 ≤ i ≤ p.

We then have

Theorem 4.1. The homogeneous quaternionic Kähler structure on each

rank-three Alekseevsky space T (p), p ≥ 0, given in Theorem 3.1, has a nonzero

component in QKi, for i = 1, . . . , 5.

Proof. The structure is given as S = Θ+A, and the values of the 1-forms

θa are given in Lemma 4.1. Then we firstly have that, as for instance,

3∑
a=1

θa(JaH1) = −1

2
6= 0,

the component Θ of the structure S does not belong to QK2.

Moreover, from Proposition 4.1, one has that the nonzero values of ΘXY Z

are those with

X = G0, G1, G2, G̃0, H̃0.

In particular one has the next nonzero values of ΘXXY .

ΘG0G0H0 = ΘG1G1H1 =
1

4
, ΘG2G2H2 =

√
2

4
,

ΘG̃0G̃0H0
= ΘH̃0H̃0H0

=
1

2
. (4.1)
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Suppose that Θ ∈ QK1, so there would be a 1-form θ as that in Theorem 2.1,

and in particular we would have

1

4
= ΘG0G0H0 = θ(H0),

1

2
= ΘG̃0G̃0H0

= θ(H0),

which is absurd. Whence Θ ∈ QK12 \ {QK1 ∪QK2}.
Further, as dim T (p) = 12 + 4p and on account of (4.1), the form ϑ defining

the QK3-component (see Theorem 2.1), that is,

ϑ =
1

2 + dim t(p)
c12(A) =

1

14 + 4p
c12(A),

is given by

ϑ =
1

8(7 + 2p)
〈(11 + 4p)H0 + (3 + 4p)H1 +

√
2H2, ·〉. (4.2)

Hence the structure S has nonzero component in QK3 for any p ≥ 0.

Consider now the operator Φ : V̂ → V̂ defined by

Φ(A)XY Z = AY ZX +AZXY +

3∑
a=1

(
AJaY JaZX +AJaZXJaY

)
,

having eigenvalues 2 and −4, with corresponding eigenspaces QK34 and QK5,

respectively (see Theorem 2.1). Consider Aϑ ∈ QK3, given by

Aϑ
XY Z=〈X,Y 〉ϑ(Z)− 〈X,Z〉ϑ(Y ) +

3∑
a=1

(〈X,JaY 〉ϑ(JaZ)− 〈X,JaZ〉ϑ(JaY )
)
,

where ϑ stands for the 1-form (4.2). Then A−Aϑ ∈ QK45, so that

Φ(A−Aϑ)XY Z = Φ(A)XY Z − 2Aϑ
XY Z .

Taking then for instance the vectors X = Y = G0, Z = H0, we get

(
A−Aϑ

)
G0G0H0

=
5 + p

2(7 + 2p)
, Φ

(
A−Aϑ

)
G0G0H0

= −16 + 5p

7 + 2p
,

hence A − Aϑ ∈ QK45 \ {QK4 ∪ QK5} for all p ≥ 0. That is, S has a nonzero

component in each basic type. ¤
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