
Publ. Math. Debrecen

78/3-4 (2011), 709–721

DOI: 10.5486/PMD.2011.4992

On natural Riemann extensions

By OLDŘICH KOWALSKI (Praha) and MASAMI SEKIZAWA (Tokyo)

Abstract. A natural Riemann extension is a natural lift of a manifold with a

symmetric affine connection to its cotangent bundle. The corresponding structure on

the cotangent bundle is a pseudo-Riemannian metric. The classical Riemann extension

has been studied by many authors. The broader (two-parameter) family of all natural

Riemann extensions was found by the second author in 1987. We prove the equivariance

property for the natural Riemann extensions. We also prove some theorems for Ricci

curvature and scalar curvature.

Introduction

Riemann extensions of a manifold with a symmetric affine connection to its

cotangent bundle in the form of a pseudo-Riemannian metric of type (n, n) have

been studied by many authors. See e.g. (in the chronological order) [9], [15], [10],

[17], [16], [12], [14]. From the more recent time, see also [1], [2], [3], [4], [5], [6], [7],

and [13]. In [2], [7], the Riemann extension is related to the Osserman problem,

in [9] to the so-called Walker manifolds, and in [4], [6] to the theory of differential

equations. In [10], general Riemann extensions and in [2] modified Riemann ex-

tensions were defined. In this paper we study natural Riemann extensions which

form a geometrically significant two-parameter subclass of both previous classes

and still contain the“classical” Riemann extension ([9], [10]) as a special case (See

[8] for the general concept of naturality). These Riemann extensions have been

Mathematics Subject Classification: 53C07, 53C50, 53B05.
Key words and phrases: Riemannian manifold, cotangent bundle, Riemann extension, natural

extension, affine map, isometry, Ricci curvature, scalar curvature.
The first author was supported by the research project MSM 0021620839 of the Czech Ministry
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710 Oldřich Kowalski and Masami Sekizawa

described by the second author in 1987 ([11]). For the natural Riemann exten-

sions we prove an equivariance theorem as the main theorem. Further, we prove

some results about Ricci tensor and scalar curvature. As a consequence we obtain

a one-parameter family of Einstein spaces as natural Riemann extensions.

The authors would like to thank the referee for sending them critical com-

ments to Section 4. According to these comments, we revised Sections 4 and 5.

1. Preliminaries

Let M be a smooth and connected manifold of dimension n ≥ 2. Then the

cotangent bundle T ∗M over M consists of all pairs (x,w), where x is a point

of M and w is a covector of M at x. We denote by p the natural projection of

T ∗M to M defined by p(x,w) = x. Let (U;x1, x2, . . . , xn) be a local coordinate

system of M , and let wi, i = 1, 2, . . . , n, be real valued functions of p−1(U)

which attain w((∂/∂xi)x) to each point (x,w) ∈ p−1(U) ⊂ T ∗M . Identifying

the function xi ◦ p, on p−1(U) with xi on U, we define a local coordinate system

(p−1(U);x1, x2, . . . , xn, x1∗, x2∗, . . . , xn∗) of T ∗M , where xi∗ = wi, i = 1, 2, . . . , n.

A set

{(∂1)(x,w), (∂2)(x,w), . . . , (∂n)(x,w), (∂1∗)(x,w), (∂2∗)(x,w), . . . , (∂n∗)(x,w)}

at each point (x,w) ∈ T ∗M is a basis for the tangent space (T ∗M)(x,w), where

∂i = ∂/∂xi and ∂i∗ = ∂/∂wi, i = 1, 2, . . . , n.

The canonical vertical vector field on T ∗M is a vector field W defined, in

terms of local coordinate systems, by

W =

n∑

i=1

wi∂i∗.

This vector field does not depend on the choice of a local coordinate system and

it is defined globally on T ∗M . We denote by F(M) and X(M) the set of all

smooth functions of M and the set of all smooth vector fields tangent to M ,

respectively. The vertical lift of f ∈ F(M) to T ∗M is a function fv of T ∗M
defined by fv = f ◦ p. The vertical lift of X ∈ X(M) to T ∗M is a function Xv of

T ∗M whose value at each point (x,w) ∈ T ∗M is

Xv(x,w) = w(Xx). (1.1)

In terms of local coordinate systems, we have Xv(x,w) =
∑

wiξ
i(x), where we

put X =
∑

ξi∂i. One can easily prove a very useful proposition saying that each
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vector field tangent to T ∗M is determined by its effect on the functions of the

form Zv for all Z ∈ X(M). More precisely, we have

Proposition 1.1 ([17]). Let X and Y be vector fields on T ∗M . If X(Zv) =

Y (Zv) holds for all Z ∈ X(M), then X = Y .

The vertical lift of a differential one-form α of M is a vector field αv tangent

to T ∗M defined by

αv(Zv) = (α(Z))v (1.2)

for all Z ∈ X(Z). In terms of local coordinate systems, identifying fv = f ◦ p ∈
F(T ∗M) with f ∈ F(M), we have

αv =

n∑

i=1

αi∂i∗. (1.3)

for all one-forms α =
∑

αidx
i. We have αv(fv) = 0 for all f ∈ F(M).

The complete lift of a vector field X tangent to M is a vector field Xc tangent

to T ∗M defined by

Xc(Zv) = [X,Z]v (1.4)

for all Z ∈ X(M), where [X,Z] is the Lie bracket of X and Z. In terms of local

coordinate systems, we have at each point (x,w) ∈ T ∗M

Xc
(x,w) =

n∑

i=1

ξi(x)(∂i)(x,w) −
n∑

h,i=1

wh(∂iξ
h)(x)(∂i∗)(x,w) (1.5)

for all X =
∑

ξi∂i. We also have Xc(fv) = (Xf)v for all f ∈ F(M).

The Lie bracket of T ∗M is given by

[Xc, Y c] = [X,Y ]c, [Xc, αv] = (LXα)v, [αv, βv] = 0,

[Xc,W ] = 0, [αv,W ] = αv (1.6)

for allX,Y ∈ X(M) and one-forms α, β ofM , where LX denotes the Lie derivative

with respect to X.

2. Natural Riemann extensions and the invariance theorem

Let ∇ be a symmetric affine connection of M . Then the metrics ḡ on T ∗M
naturally lifted from ∇ have been described by the second author in 1987. (See [11]
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for the classification theorem and [8] for the general theory of naturality.) Each

such metric ḡ is defined at (x,w) ∈ T ∗M , in terms of classical lifts, by

ḡ(x,w)(X
c, Y c) = −aw(∇XxY +∇YxX) + bw(Xx)w(Yx),

ḡ(x,w)(X
c, βv) = aβx(Xx),

ḡ(x,w)(α
v, βv) = 0 (2.1)

for all vector fields X, Y and all one-forms α, β on M , where a and b are arbitrary

constants. We can assume a > 0 without loss of generality. Equivalently, ḡ is

given, in terms of local coordinate systems, by

ḡij = −2a

n∑

h=1

whΓ
h
ij + bwiwj ,

ḡij∗ = ḡj∗i = aδji ,

ḡi∗j∗ = 0, (2.2)

where a and b are arbitrary constants, ḡIJ = ḡ(∂xI , ∂xJ) for I, J = 1, 2, . . . , n,

1∗, 2∗, . . . , n∗, and Γh
ij , h, i, j = 1, 2 . . . , n, are the local components of ∇ defined

by ∇∂i(∂j) =
∑n

h=1 Γ
h
ij∂h. We call (T ∗M, ḡ) the natural Riemann extension of

(M,∇). We shall show in Section 4 that the signature of ḡ is (n, n). If a = 1

and b = 0, then (T ∗M, ḡ) is the classical Riemann extension of (M,∇) (see for

example [9], [15]). On the other hand, the class of natural extensions is a special

subclass of general Riemann extensions as defined in [10, p. 202].

Let φ be a (local) diffeomorphism of M . Then we define a lift Φ of φ to T ∗M
by

Φ(x,wx) = (φ(x),
(
φ−1

)∗
(wx)) (2.3)

for all (x,wx) ∈ T ∗M , where, for the sake of more explicit notation, we denote

(x,w) ∈ T ∗M as (x,wx) ∈ T ∗M .

In the rest of this section, after proving some preliminary facts, we shall

prove that, if φ is an affine diffeomorphism (or, a local affine diffeomorphism,

respectively) of (M,∇), then Φ is an isometry (or, a local isometry, respectively)

of (T ∗M, ḡ).

Proposition 2.1. We have Zv ◦ Φ = (
(
φ−1

)
∗Z)v for all Z ∈ X(M).

Proof. Evaluating Zv ◦ Φ at (x,wx) ∈ T ∗M , we have

(Zv◦Φ)(x,wx) = Zv(Φ(x,wx))=Zv((φ(x),
(
φ−1

)∗
(wx))= (

(
φ−1

)∗
(wx))(Z

v
φ(x))

= wx((
(
φ−1

)
∗(Z

v)φ(x))) = wx(
(
φ−1

)
∗Z)x) = (

(
φ−1

)v
)(x,wx).

This implies the assertion. ¤
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Proposition 2.2. We have Φ∗(Xc) = (φ∗X)c for all X ∈ X(M).

Proof. Let (x,wx) be an arbitrary point of T ∗M . Then, using Proposit-

ion 2.1, (1.4) and (1.1) we have for all Z ∈ X(M)

(Φ∗(Xc))Φ(x,wx)(Z
v)

= Xc
(x,wx)(Z

v ◦ Φ) = Xc
(x,wx)(

(
φ−1

)
∗Z)v)

= [X,
(
φ−1

)
∗Z]v(x,wx) = wx([X,

(
φ−1

)
∗Z]x). (2.4)

On the other hand, using (1.4) and (1.1), we have

(φ∗X)cΦ(x,wx)(Z
v)

= (φ∗X)c
(φ(x),

(
φ−1

)∗
(wx))

(Zv) = [φ∗X,Z]v(φ(x),
(
φ−1

)∗
(wx))

= (
(
φ−1

)∗
(wx))([φ∗X,Z]φ(x)) = wx(

(
φ−1

)
∗φ(x)([φ∗X,Z]φ(x))). (2.5)

Since, in general,
(
φ−1

)
∗([φ∗X,Z]) = [X,

(
φ−1

)
∗Z] holds on M , using Proposit-

ion 1.1, (1.1) and (1.4), we have the assertion. ¤

Proposition 2.3. We have Φ∗(αv) = (
(
φ−1

)∗
α)v for all one-forms α on M .

Proof. Let (x,wx) be an arbitrary point of T ∗M . Then, using Proposit-

ion 2.1, (1.2) and (1.1), we have for all Z ∈ X(M)

Φ∗(αv)(Zv)(Φ(x,wx))

= αv
(x,wx)(Z

v ◦ Φ) = αv
(x,wx)(

(
φ−1

)
∗Z)v) = (α(

(
φ−1

)
∗Z))v(x,wx)

= αx(
(
φ−1

)
∗Z)x) = (

(
φ−1

)∗
α)φ(x)(Zφ(x)) = (

(
φ−1

)∗
α)(Z)(φ(x))

= (
(
φ−1

)∗
α)v(Zv))(Φ(x,wx)).

This implies the assertion. ¤

Now we shall prove the main theorem of this Section.

Theorem 2.4. Let φ be an affine diffeomorphism (or, a local affine diffeo-

morphism, respectively) of a manifold M with a symmetric affine connection ∇.

Then the metric ḡ of the natural Riemann extension (T ∗M, ḡ) of (M,∇) is inva-

riant by the lift Φ of φ defined by (2.3). In other words, Φ is an isometry (or, a

local isometry, respectively) of (T ∗M, ḡ).
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Proof. Firstly, because φ is an affine diffeomorphism (or, a local one) of

(M,∇), we have φ∗(∇XY ) = ∇φ∗X(φ∗Y ) for all X,Y ∈ X(M). We have, at each

point (x,wx) ∈ T ∗M ,

ḡΦ(x,wx)(Φ∗(Xc),Φ∗(Y c)) = ḡ(x,wx)(X
c, Y c) (2.6)

for all X,Y ∈ X(M). In fact, using Proposition 2.2 and the first formula of (2.1),

we have

ḡΦ(x,wx)(Φ∗(Xc),Φ∗(Y c)) = ḡ(φ(x),(φ−1)∗(wx))((φ∗X)c, (φ∗Y )c)

= −a(
(
φ−1

)∗
(wx))((∇φ∗X(φ∗Y ) +∇φ∗Y (φ∗X))φ(x))

+ b(
(
φ−1

)∗
(wx))((φ∗X)φ(x))(

(
φ−1

)∗
(wx))((φ∗Y )φ(x))

= −a(
(
φ−1

)∗
(wx))(φ∗x((∇XY +∇Y X)x))

+ b(
(
φ−1

) ∗ (wx))(φ∗x(Xx))(
(
φ−1

)∗
(wx))(φ∗x(Yx))

= −awx((∇XY +∇Y X)x) + bwx(Xx)wx(Yx)

= ḡ(x,wx)(X
c, Y c).

Secondly we have, at each point (x,wx) ∈ T ∗M ,

ḡΦ(x,wx)(Φ∗(Xc),Φ∗(βv)) = ḡ(x,wx)(X
c, βv) (2.7)

for all X ∈ X(M) and all one-forms α of M . In fact, by Propositions 2.2 and 2.3

and the second formula of (2.1), we have

ḡΦ(x,wx)(Φ∗(Xc),Φ∗(βv))

= ḡ
(φ(x),

(
φ−1

)∗
(wx))

((φ∗X)c, ((φ−1)∗α)v) = a(
(
φ−1

)∗
β)φ(x)((φ∗X)φ(x))

= a(
(
φ−1

)∗
(βx))(φ∗x(Xx)) = aβx(Xx) = ḡ(x,wx)(X

c, βv).

Finally we notice that, by definition (2.1), ḡ(x,w)(α
v, βv) = 0 for all one-forms

α and β of M .

Thus we proved the assertion. ¤
Remark. If we start with a Riemannian metric g on M (and its Levi-Civita

connection ∇) then there is the canonical isomorphism of T ∗M onto TM induced

by g. In this situation, the classical Riemann extension, say (T ∗M, g̃), determines

a unique pseudo-Riemannian metric of signature (n, n) on TM . According to [12]

this new metric is the complete lift gc of g to the tangent bundle (see [16] for

the definition of gc). If (M, g) is homogeneous with the isometry group G then

(TM, gc) is homogeneous with respect to the tangent group TG (see [16]). Hence,

(T ∗M, g̃) is also homogeneous with respect to TG. But it is never homogeneous

with respect to the isometry group I(T ∗M, g̃).
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3. The Riemannian curvature

In the subsequent sections we shall need additional conventions and formulas.

Let T be a (1, 1)-tensor field onM and (x,w) a point of T ∗M . Then the contracted

vector field Cw(T ) is a vector field tangent to T ∗M and given, at each point

(x,w) ∈ T ∗M , by its value on any vertical lift (cf. Proposition 1.1) as follows:

(Cw(T ))(X
v)(x,w) = (TX)v(x,w) = w((TX)x) (3.1)

for all X ∈ X(M). In terms of local coordinate systems, we have

(Cw(T ))(x,w) =

n∑

h,i=1

whT
h
i (x)(∂i∗)(x,w) (3.2)

at each point (x,w) ∈ T ∗M , where we put T =
∑

Th
i ∂h ⊗ dxi. For the Lie

bracket, we have

[Xc, Cw(T )] = Cw(LXT ), [Cw(S), Cw(T )] = Cw([S, T ]) (3.3)

for all X ∈ X(M) and (1, 1)-tensor fields S, T of M .

We assume that a > 0 in (2.1) and the n × n-matrix [ḡij ] is nonsingular.

Then the (2n)× (2n)-matrix [ḡIJ ] has the inverse matrix [ḡIJ ], which is given by

ḡij = 0,

ḡij∗ = ḡj∗i =
1

a
δij ,

ḡi∗j∗
(
= − 1

a2
ḡij

)
=

2

a

n∑

h=1

whΓ
h
ij −

b

a2
wiwj , (3.4)

where δij is the Kronecker’s delta. Using (2.2) and (3.4), we obtain easily the

Christoffel symbols Γ̄H
IJ , H, I, J = 1, 2, . . . , n, 1∗, 2∗, . . . , n∗, of the Levi-Civita

connection ∇̄ of ḡ as follows:

Γ̄h
ij = Γh

ij −
c

2
(δhi wj + wiδ

h
j ),

Γ̄h∗
ij =

n∑

l=1

wl

(
− ∂Γl

jh

∂xi
− ∂Γl

ih

∂xj
+

∂Γl
ij

∂xh
+ 2

n∑

k=1

Γl
hkΓ

k
ij

)

− c

n∑

l=1

wl

(
Γl
hiwj + Γl

hjwi + Γl
ijwh

)
+ c2whwiwj ,
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Γ̄h
i∗j = 0, Γ̄h∗

i∗j = −Γi
jh +

c

2
(δijwh + δihwj),

Γ̄h
i∗j∗ = 0, Γ̄h∗

i∗j∗ = 0 (3.5)

for h, i, j = 1, 2, . . . , n, where c = b/a. Using (1.3), (1.5) and (3.5), we have the

formulas for the Levi-Civita connection ∇̄ of ḡ given in terms of lifts:

(∇̄XcY c)(x,w) = (∇XY )c(x,w) + Cw

(
(∇X)(∇Y ) + (∇Y )(∇X)

)
(x,w)

+ Cw

(
Rx(·, X)Y +Rx(·, Y )X

)
(x,w)

,

− c

2

{
w(Y )Xc + w(X)Y c + 2w(Y )Cw(∇X) + 2w(X)Cw(∇Y )

+ w(∇XY +∇Y X)W
}
(x,w)

+ c2w(X)w(Y )W (x,w),

(∇̄Xcβv)(x,w) = (∇Xβ)v(x,w) +
c

2

{
w(X)βv + β(X)W

}
(x,w)

,

(∇̄αvY c)(x,w) = −(ια(∇Y ))v(x,w) +
c

2

{
w(Y )αv + α(Y )W

}
(x,w)

,

(∇̄αvβv)(x,w) = 0 (3.6)

for all X,Y ∈ X(M) and all one-forms α, β of M . Here, for a (1, 1)-tensor field T

and a one-form α onM , ια(T ) is a one-form ofM defined by (ια(T ))(X) = α(TX)

for all X ∈ X(M). Moreover, for X ∈ X(M), ∇X is a (1, 1)-tensor field of M

defined by (∇X)Y = ∇Y X for all Y ∈ X((M). In particular, ((∇X)(∇Y ))Z =

∇∇ZY X for all X,Y, Z ∈ X(M).

In addition we have

(∇̄XcW )(x,w) = −Cw(∇X)(x,w) + cw(X)W (x,w), (∇̄αvW )(x,w) = αv
(x,w),

(∇̄Xc(Cw(T )))(x,w) = Cw

(
LXT − T (∇X)

)
(x,w)

+
c

2

{
w(TX)W + w(X)Cw(T )

}
(x,w)

,

(∇̄αv (Cw(T )))(x,w) =
(
ια(T )

)v
(x,w)

,

(∇̄WW )(x,w) = W (x,w), (∇̄Cw(T )W )(x,w) = Cw(T )(x,w),

(∇̄W (Cw(T )))(x,w) = Cw(T )(x,w),

(∇̄Cw(S)(Cw(T )))(x,w) = Cw(ST )(x,w). (3.7)
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After long calculations using (3.6) and (3.7), we obtain the Riemannian cur-

vature tensor R̄ of (T ∗M, ḡ). It is given in terms of lifts as follows:

R̄(x,w)(X
c, Y c)Zc = (R(X,Y )Z)c(x,w) +

c

2

{(
w(∇ZY ) +

c

2
w(Y )w(Z)

)
Xc

− (
w(∇ZX) +

c

2
w(X)w(Z)

)
Y c − w([X,Y ])Zc

}
(x,w)

+ Cw

(
(∇XR)(·, Y )Z + (∇XR)(·, Z)Y − (∇Y R)(·, X)Z − (∇Y R)(·, Z)X

− [∇X,R(·, Z)Y ] + [∇Y,R(·, Z)X]− (∇Z)R(·, X)Y + (∇Z)R(·, Y )X

− (R(·, X)Y )(∇Z) + (R(·, Y )X)(∇Z)
)
(x,w)

+ cw(Xx)Cw

(
R(·, Z)Y − (∇Y )(∇Z)− (∇Z)(∇Y )

)
(x,w)

− cw(Yx)Cw

(
R(·, Z)X − (∇X)(∇Z)− (∇Z)(∇X)

)
(x,w)

− cw(Zx)Cw

(
R(X, ·)Y −R(Y, ·)X − 2[∇X, ∇Y ]

)
(x,w)

− c

2

{
w(X)w([Y, Z])− w(Y )w([X,Z])− 2w([X,Y ])w(Z)

}
W (x,w), (3.8)

R̄(x,w)(X
c, Y c)γv = −(ιγ(R(X,Y )))v(x,w) +

c

2
w([X,Y ])γv

(x,w)

− c

2

{
γ(Y )Cw(∇X)− γ(X)Cw(∇Y )

}
(x,w)

,

+
c2

4

{
γ(Y )w(X)− γ(X)w(Y )

}
W (x,w), (3.9)

R̄(x,w)(X
c, βv)Zc = −(ιβ(R(·, Z)X))v(x,w) +

c

2

{
β(Z)Xc + β(X)Zc

}
(x,w)

+
c

2

{
w(∇XZ)− c

2
w(X)w(Z)

}
βv

(x,w)

+
c

2

{
β(Z)Cw(∇X) + 2β(X)Cw(∇Z)

}
(x,w)

− c2

2

{
β(X)w(Z) +

1

2
β(Z)w(X)

}
W (x,w), (3.10)

R̄(x,w)(X
c, βv)γv = − c

2

{
γ(X)βv + β(X)γv

}
(x,w)

, (3.11)

R̄(x,w)(α
v, βv)Zc = 0, (3.12)

R̄(x,w)(α
v, βv)γv = 0 (3.13)

for all X,Y, Z ∈ X(M) and one-forms α, β, γ of M .

Remark. For classical Riemann extension, the formula for covariant derivati-

ves and the curvature tensor coincides with those of [16, pp. 269–270]. Yet, there

is a sign misprint in the fourth formula of Proposition 10.2 of [16].
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4. The Ricci curvature

We choose a point (x,w) of T ∗M and fix it. Let {α1, α2, . . . , αn} be a basis

for the space M∗
x of covectors at x such that α1 = w, and let {E1, E2, . . . , En}

be the basis for Mx dual to {α1, α2, . . . , αn}. We denote the parallel extension

of each Ei (along geodesics starting at x) to a normal neighborhood of x in M

by the same symbol Ei, i = 1, 2, . . . , n. In this case, the first formula of (2.1) is

reduced to the form ḡ(x,w)(Ei
c, Ej

c) = bw(Ei(x))w(Ej(x)), i, j = 1, 2, . . . , n.

Now we put at (x,w) ∈ T ∗M that

E1 =
1√

s(s+ b)

(
(s+ b)E1

c + 2aα1
v
)

Ek =
1√
2a

(
Ek

c + αk
v
)
, k = 2, 3, . . . , n,

E1∗ =
1√

s(s− b)

(
(s− b)E1

c − 2aα1
v
)

Ek∗ =
1√
2a

(
Ek

c − αk
v
)
, k = 2, 3, . . . , n, (4.1)

where s =
√
4a2 + b2. Then, {E1,E2, . . . ,En,E1∗,E2∗, . . . ,En∗} is an orthonor-

mal basis for the tangent space (T ∗M)(x,w) such that ḡ(Ei,Ei) = 1, ḡ(Ei∗,Ei∗) =
−1, i = 1, 2, . . . , n. Thus, the signature of ḡ is (n, n).

Let Ric be the Ricci tensor of ḡ. Then we have

Ric(X,Y ) =
∑

I

εI ḡ(R̄(EI ,X)Y ,EI)

=
1

a

n∑

i=1

{
ḡ(R̄(Ei

c,X)Y , αi
v) + ḡ(R̄(αi

v,X)Y , Ei
c)
}

− c

a
ḡ(R̄(α1

v,X)Y , α1
v).

for all X,Y ∈ X(T ∗M), where εI = ḡ(EI ,EI), I = 1, 2, . . . , n, 1∗, 2∗, . . . , n∗.
After long calculations using (4.1) and (3.8)–(3.13), we obtain

Ric(x,w)(X
c, Y c) = Ricx(X,Y ) + Ricx(Y,X)

+
1

2
·
(
4a+ (n− 1)b

)
b

a2
w(Xx)w(Yx), (4.2)

Ric(x,w)(X
c, γv) =

1

2
· (n+ 1)b

a
γx(Xx), (4.3)
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Ric(x,w)(β
v, γv) = 0. (4.4)

First we have

Theorem 4.1. Let M be a manifold of dimension n with a symmetric af-

fine connection ∇ whose Ricci tensor is skew-symmetric. Then, there is a one-

parameter family of Einstein metrics

ḡ = ag̃ + 2aθ2, a > 0,

as natural Riemann extensions (T ∗M, ḡ). The Ricci tensor of each ḡ is

Ric =
n+ 1

a
ḡ

and the scalar curvature is 2n(n+ 1)/a.

Proof. If the Ricci tensor Ric of ∇ is skew-symmetric, then (4.2)–(4.4) can

be written as

Ric(Xc, Y c) =
1

2
· 4a+ (n− 1)b

a2
ḡ(Xc, Y c),

Ric(Xc, γv) =
1

2
· (n+ 1)b

a2
ḡ(Xc, γv),

Ric(βv, γv) = 0 = ḡ(βv, γv)

for all vector fields X, Y and one-forms β, γ of M . The metric ḡ is Einstein if

and only if b = 2a. As concerns the scalar curvature, see the formula (5.1) in the

next Section. ¤

Next we have

Theorem 4.2. Let M be a manifold with a symmetric affine connection

∇, and let (T ∗M, ḡ) be its cotangent bundle with a natural Riemann extension

ḡ = ag̃ + bθ2 where a > 0 and b are constants. Then, (T ∗M, ḡ) is never Ricci flat

if b 6= 0.

For the Riemann extension, that is, a natural Riemann extension with a = 1

and b = 0, we have a well-known result (see for example Paterson–Walker [9]):

Theorem 4.3. The Riemann extension of a manifold with symmetric affine

connection ∇ is Ricci flat if and only if the Ricci tensor of ∇ is skew symmetric.
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5. The scalar curvature

Let Sc(ḡ) be the scalar curvature of ḡ. Then we have

Sc(ḡ) =
∑

I

εIRic(EI ,EI) =
2

a

n∑

i=1

Ric(Ei
c, αi

v),

where εI = ḡ(EI ,EI), I = 1, 2, . . . , n, 1∗, 2∗, . . . , n∗. Now, using (4.3), we obtain

Sc(ḡ) =
n(n+ 1)b

a2
. (5.1)

Hence we obtain

Theorem 5.1. Let (M,∇) be a manifold with a symmetric affine connec-

tion ∇, and let (T ∗M, ḡ) be its cotangent bundle with a natural Riemann exten-

sion ḡ = ag̃ + bθ2 where a > 0 and b are constants. Then, the scalar curvature

Sc(ḡ) of ḡ is constant.

For the Riemann extension, that is, a natural Riemann extension with a = 1

and b = 0, we have a well-known result (see for example Paterson-Walker [9]):

Theorem 5.2. The Riemann extension of a manifold with a symmetric affine

connection ∇ is a space of constant scalar curvature 0.

Since b/a can take arbitrary constant, we have

Theorem 5.3. Let M be a manifold with a symmetric affine connection ∇.

Then, there exists a natural Riemann extension (T ∗M, ḡ) of (M,∇) whose scalar

curvature is a preassigned constant.

References
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