Publ. Math. Debrecen **79/1-2** (2011), 83–88 DOI: 10.5486/PMD.2011.5110

On the factors of Stern polynomials (Remarks on the preceding paper of M. Ulas)

By ANDRZEJ SCHINZEL (Warszawa)

Abstract. It is proved that the Stern polynomial with a prime index does not have a proper divisor over \mathbb{Q} of degree less than 4.

Stern polynomials $B_n(t)$ have been first introduced in [1] and then studied in [3]. The notation is the same as in [3]. In particular, $B_0(t) = 0$, $B_1(t) = 1$, $B_{2n}(t) = tB_n(t)$ and $B_{2n+1}(t) = B_n(t) + B_{n+1}(t)$. In connection with Conjecture 6.4 of [3] we shall prove the following theorems.

Theorem 1. For all integers $n \ge 0$ we have

$$B_n(1) \le n^{3/4}.$$

Theorem 2. For no prime p does the polynomial B_p have a proper divisor over \mathbb{Q} of degree 1, 2 or 3.

Theorem 3. For no prime p is the polynomial B_p a product over \mathbb{Q} of more than one polynomial of degree 4.

Corollary. Polynomials B_p are irreducible over \mathbb{Q} for all primes p < 2017.

The value of Theorem 1 for applications lies in its explicit form. If one allows estimates of the form $B_n(1) = O(n^{\alpha})$, the best value for α is $\left(\log \frac{1+\sqrt{5}}{2}\right)/\log 2 = 0.694...$ (see [4], Corollary 3).

The value of the Corollary lies in the fact that it is obtained without computation. With computation the results are much stronger (see [3], Remark 6.5). In connection with Conjecture 6.6 of [3] we shall prove

Mathematics Subject Classification: 11C08.

Key words and phrases: factor, Stern polynomial.

Andrzej Schinzel

Theorem 4. For every k there exists an index n with at least k prime factors such that B_n is irreducible over \mathbb{Q} .

The following lemma generalizes Lemmas 2.1 and 2.2 of [3].

Lemma 1. For all non-negative integers a, m and r such that $2^a \ge r \ge 0$ we have

$$B_{2^a m+r} = B_{2^a - r} B_m + B_r B_{m+1}.$$
 (1)

PROOF by induction on a. For a = 0 (1) is trivially true for r = 0 or 1. Assume that (1) holds for exponent a - 1 ($a \ge 1$). Then for r even $\le 2^a$

$$B_{2^{a}m+r} = tB_{2^{a-1}+r/2} = tB_{2^{a-1}-r/2}B_m + tB_{r/2}B_{m+1} = B_{2^{a}-r}B_m + B_rB_{m+1},$$

for $r \text{ odd} < 2^a$

$$B_{2^{a}m+r} = B_{2^{a-1}m+\frac{r-1}{2}} + B_{2^{a-1}m+\frac{r+1}{2}}$$

= $B_{2^{a-1}-\frac{r-1}{2}}B_m + B_{\frac{r-1}{2}}B_{m+1} + B_{2^{a-1}-\frac{r+1}{2}}B_m + B_{\frac{r+1}{2}}B_{m+1}$
= $B_{2^{a}-r}B_m + B_rB_{m+1}$.

PROOF OF THEOREM 1. We shall show the stronger inequality

$$B_n(1) \le (n-1)^{3/4}$$
 for $n \ne 0, 1, 3, 5.$ (2)

We consider n in the interval $[16^{k-1}, 16^k)$ and proceed by induction on k. For k = 1 we check directly (2) for $n \neq 1, 3, 5$ and also $B_n(1) \leq n^{3/4}$ for all n < 16. For k = 2 we have n = 16m + r, when $1 \leq m < 16, 0 \leq r < 16$ and from Lemma 1

$$B_n(1) = B_{16-r}(1)B_m(1) + B_r(1)B_{m+1}(1).$$
(3)

If $m \neq 2, 4$, then by the inductive assumption

$$B_m(1) \le m^{3/4}, \quad B_{m+1}(1) \le m^{3/4},$$

hence for $r \neq 0$

$$B_n(1) \le (B_{16-r}(1) + B_n(1))m^{3/4} \le 8m^{3/4} \le 8\left(\frac{n-1}{16}\right)^{3/4} = (n-1)^{3/4}.$$
 (4)

For r = 0, m arbitrary

$$B_n(1) = B_m(1) \le m^{3/4} < (n-1)^{3/4}.$$
(5)

On the factors of Stern polynomials

For $m = 2, r \neq 0$

$$B_n(1) = B_{16-r}(1)B_2(1) + B_r(1)B_3(1) = B_{16-r}(1) + 2B_r(1) \le 13 < 32^{3/4}.$$

Finally, for $m = 4, r \neq 0$

$$B_n(1) = B_{16-r}(1)B_4(1) + B_r(1)B_r(1) = B_{16-r}(1) + 3B_5(1) \le 18 < 64^{3/4}.$$

For k > 2 we have n = 16m + r, where $m \in [16^{k-2}, 16^{k-1}), 0 \le r < 16$ and, from Lemma 1, (3) holds. By the inductive assumption

$$B_m(1) \le (m-1)^{3/4}, \quad B_{m+1}(1) \le m^{3/4}$$

hence (4) or (5) holds for $r \neq 0$ and r = 0, respectively.

It follows that $B_n(1) \leq (n-1)^{3/4}$.

Lemma 2. If f is a polynomial of degree n, then its leading coefficient is $\frac{1}{n!}\Delta^n f(a)$ for arbitrary a, where $\Delta f(a) = f(a+1) - f(a)$.

PROOF. See [2], Satz 23. \Box

Lemma 3.
$$B_n(2) = n$$
, $B_n(0) = 2\left\{\frac{n}{2}\right\}$, $B_n(-1) = 3\left\{\frac{n}{3} + \frac{1}{2}\right\} - \frac{3}{2}$.
PROOF. See [3], Theorem 5.1.

Lemma 4. Every divisor of $B_n(t)$ over \mathbb{R} (n > 0) with the leading coefficient l satisfies $lf(0) \ge 0$ and $f(a)f(0) \ge 0$ for all a > 0.

PROOF. If f(a)f(0) < 0, then by the Darboux property of f, f has a zero in the interval (0, a), which is also a zero of B_n , a contradiction, since B_n has non-negative coefficients, not all 0. If lf(0) < 0, then for sufficiently large a: f(a)f(0) < 0, which has been shown impossible.

PROOF OF THEOREM 2. If B_p (p an odd prime) has over \mathbb{Q} a proper divisor f of degree 1, f could be normalized, by Lemmas 3 and 4, to the form lx + 1, l > 0. By Lemma 2, $l = \Delta f(1) = f(2) - f(1)$ and by Lemmas 3, 4 and, by Theorem 1, f(2) = 1 or $p, 1 \leq f(1) \leq B_p(1) \leq p^{3/4}$. Thus $l \geq p - p^{3/4}$, hence for $p \geq 5$, $B_p(2) > 4(p - p^{3/4}) > p$, a contradiction with Lemma 3.

If B_p had over \mathbb{Q} a proper divisor f of degree 2, f could be normalized to the form $lx^2 + mx + 1$, l > 0. From Lemmas 2, 3, 4 and by Theorem 1

$$l = \frac{1}{2}\Delta^2 f(0) = \frac{1}{2}\left(f(2) - 2f(1) + f(0)\right) \ge \frac{1}{2}\left(p - 2B_p(1) + 1\right) \ge \frac{1}{2}\left(p - 2p^{3/4} + 1\right)$$

85

Andrzej Schinzel

Let e(n) be degree of B_n , as in [2] and [3]. We have (see [1], Corollary 13)

$$e(2n) = e(n) + 1$$
, $e(4n + 1) = e(n) + 1$, $e(4n + 3) = e(n + 1) + 1$.

Hence for $e(p) \ge 4$, $p \ge 31$ and $B_p(2) > 16l \ge 8(p - 2p^{3/4} + 1) > p$, contrary to Lemma 3.

If B_p had over \mathbb{Q} a proper divisor f of degree 3, f could be normalized to the form $lx^3 + mx^2 + nx + 1$, where l > 0.

From Lemmas 2, 3, 4 and by Theorem 1

$$l = \frac{1}{6}\Delta^3 f(-1) = \frac{1}{6}\left(f(2) - 3f(1) + 3f(0) - f(-1)\right) \ge \frac{1}{6}\left(p - 3p^{3/4} + 2\right).$$

Hence for $e(p) \ge 6$, $p \ge 127$

$$B_p(2) > 64l \ge \frac{32}{3}(p - 3p^{3/4} + 2) > p,$$

contrary to Lemma 3.

Lemma 5. $|B_n(-2)| \le n$.

PROOF by induction on n. For n = 0 or 1 true, assume that it is true for all subscripts < n, then for n even $|B_n(-2)| = 2|B_{\frac{n}{2}}(-2)| \le n$, for n odd

$$|B_n(-2)| = 2\left|B_{\frac{n-1}{2}}(-2) + B_{\frac{n+1}{2}}(-2)\right| \le \frac{n-1}{2} + \frac{n+1}{2} = n.$$

PROOF OF THEOREM 3. Suppose that

$$B_p = \prod_{i=1}^k f_i,$$

where $k \ge 2$, $f_i \in \mathbb{Z}[x]$ of degree 4 and with the leading coefficient $l_i > 0$. By Lemma 3 for p > 2 we have

$$1 = B_p(0) = \prod_{i=1}^k f_i(0)$$

and, by Lemma 4, $f_i(0) = 1$. Also

$$p = B_p(2) = \prod_{i=1}^k f_i(2)$$

On the factors of Stern polynomials

and, by Lemma 4, for a certain i, say i = 1 we have $f_i(2) = p$, for all i > 1: $f_i(2) = 1$. From Lemma 2 we have

$$l_i = \frac{1}{24}\Delta^4 f(-2) = \frac{1}{24} \left(f_i(2) - 4f_i(1) + 6f_i(0) - 4f_i(-1) + f_i(-2) \right)$$

and, since $l_i \ge 1$, we have for i > 1

$$f_i(-2) \ge 24 - 1 + 4f_i(1) - 6f_i(0) + 4f_i(-1) \ge 17.$$

Since, by Lemma 5,

$$p \ge |B_p(-2)| = \prod_{i=1}^k |f_i(-2)| \ge 17|f_1(-2)|$$

we obtain

$$l_1 = \frac{1}{24} \left(p - 4f_1(1) + 6f_1(0) - 4f_1(-1) + f_1(-2) \right) \ge \frac{1}{24} \left(\frac{16}{17} p - 4p^{3/4} + 2 \right).$$

Hence, for $e_p \ge 8$, $p \ge 769$

$$B_p(2) \ge 256l \ge \frac{32}{3} \left(\frac{16}{17}p - 4p^{3/4} + 2\right) > p,$$

contrary to Lemma 3.

PROOF OF COROLLARY. By Theorems 2 and 3 if B_p is irreducible over \mathbb{Q} , then $e_p \geq 9$ and $p \geq 2017$.

Theorem 4 is an immediate consequence of the following two lemmas.

Lemma 6. B_{2^n-3} is irreducible over \mathbb{Q} for all integers $n \geq 3$.

PROOF. By definition of B_n and Lemma 2.1 of [3]

$$B_{2^n-3} = tB_{2^{n-2}-1} + B_{2^{n-1}-1} = t \cdot \frac{t^{n-2}-1}{t-1} + \frac{t^{n-1}-1}{t-1} = 2\sum_{i=1}^{n-2} t^i + 1,$$

hence B_{2^n-3} is irreducible over \mathbb{Q} by Eisenstein's criterion.

Lemma 7. For every integer k > 0 there exists an integer n such that $2^n - 3$ has at least k prime factors.

A. Schinzel : On the factors of Stern polynomials

PROOF by induction on k. For k = 1 one takes n = 3. Assume that the statement is true for k - 1 ($k \ge 2$) and that $2^{n_{k-1}} - 3$ has at least k - 1 prime factors. Let among them be q_1, \ldots, q_{k-1} and let $q_i^{\alpha_i} || 2^{n_{k-1}} - 3$. By Euler's theorem

$$q_i^{\alpha_i} \| 2^{n_{k-1} + \varphi(q_1^{\alpha_1 + 1} \dots q_{k-1}^{\alpha_{k-1} + 1})} - 3$$

However,

$$q_1^{\alpha_1} \dots q_{k-1}^{\alpha_{k-1}} < 2^{n_{k-1} + \varphi(q_1^{\alpha_1+1} \dots q_{k-1}^{\alpha_{k-1}+1})}.$$

Therefore, we can take

$$n_k = n_{k-1} + \varphi(q_1^{\alpha_1+1} \dots q_{k-1}^{\alpha_{k-1}+1})$$

Remark. Probably for every integer k > 0 there exists an integer n such that $2^n - 3$ has exactly k prime factors.

References

- S. KLAVŽAR, K. MILUTINOVIĆ and C. PETR, Stern polynomials, Adv. in Appl. Math. 39 (2007), 86–95.
- [2] O. PERRON, Algebra Bd I, 3rd ed., Walter de Gruyter, 1951.
- [3] M. ULAS, On certain arithmetic properties of Stern polynomials, Publ. Math. Debrecen 79 (2011), 55–81.
- [4] I. URBIHA, Some properties of a function studied by De Rham, Carlitz and Dijkstra and its relation to the (Eisenstein) Stern's diatomic sequence, *Math. Commun.* 6 (2001), 181–198.

ANDRZEJ SCHINZEL INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES ŚNIADECKICH 8 00-956 WARSAW POLAND

E-mail: schinzel@impan.pl

(Received January 24, 2011; revised March 18, 2011)