On the factors of Stern polynomials

(Remarks on the preceding paper of M. Ulas)

By ANDRZEJ SCHINZEL (Warszawa)

Abstract

It is proved that the Stern polynomial with a prime index does not have a proper divisor over \mathbb{Q} of degree less than 4.

Stern polynomials $B_{n}(t)$ have been first introduced in [1] and then studied in [3]. The notation is the same as in [3]. In particular, $B_{0}(t)=0, B_{1}(t)=1$, $B_{2 n}(t)=t B_{n}(t)$ and $B_{2 n+1}(t)=B_{n}(t)+B_{n+1}(t)$. In connection with Conjecture 6.4 of [3] we shall prove the following theorems.

Theorem 1. For all integers $n \geq 0$ we have

$$
B_{n}(1) \leq n^{3 / 4}
$$

Theorem 2. For no prime p does the polynomial B_{p} have a proper divisor over \mathbb{Q} of degree 1,2 or 3 .

Theorem 3. For no prime p is the polynomial B_{p} a product over \mathbb{Q} of more than one polynomial of degree 4.

Corollary. Polynomials B_{p} are irreducible over \mathbb{Q} for all primes $p<2017$.
The value of Theorem 1 for applications lies in its explicit form. If one allows estimates of the form $B_{n}(1)=O\left(n^{\alpha}\right)$, the best value for α is $\left(\log \frac{1+\sqrt{5}}{2}\right) / \log 2=$ $0.694 \ldots$ (see [4], Corollary 3).

The value of the Corollary lies in the fact that it is obtained without computation. With computation the results are much stronger (see [3], Remark 6.5).

In connection with Conjecture 6.6 of [3] we shall prove

[^0]Theorem 4. For every k there exists an index n with at least k prime factors such that B_{n} is irreducible over \mathbb{Q}.

The following lemma generalizes Lemmas 2.1 and 2.2 of [3].
Lemma 1. For all non-negative integers a, m and r such that $2^{a} \geq r \geq 0$ we have

$$
\begin{equation*}
B_{2^{a} m+r}=B_{2^{a}-r} B_{m}+B_{r} B_{m+1} . \tag{1}
\end{equation*}
$$

Proof by induction on a. For $a=0(1)$ is trivially true for $r=0$ or 1 . Assume that (1) holds for exponent $a-1(a \geq 1)$. Then for r even $\leq 2^{a}$

$$
B_{2^{a} m+r}=t B_{2^{a-1}+r / 2}=t B_{2^{a-1}-r / 2} B_{m}+t B_{r / 2} B_{m+1}=B_{2^{a}-r} B_{m}+B_{r} B_{m+1},
$$

for r odd $<2^{a}$

$$
\begin{aligned}
B_{2^{a} m+r} & =B_{2^{a-1} m+\frac{r-1}{2}}+B_{2^{a-1} m+\frac{r+1}{2}} \\
& =B_{2^{a-1}-\frac{r-1}{2}} B_{m}+B_{\frac{r-1}{2}} B_{m+1}+B_{2^{a-1}-\frac{r+1}{2}} B_{m}+B_{\frac{r+1}{2}} B_{m+1} \\
& =B_{2^{a}-r} B_{m}+B_{r} B_{m+1} .
\end{aligned}
$$

Proof of Theorem 1. We shall show the stronger inequality

$$
\begin{equation*}
B_{n}(1) \leq(n-1)^{3 / 4} \quad \text { for } n \neq 0,1,3,5 \tag{2}
\end{equation*}
$$

We consider n in the interval $\left[16^{k-1}, 16^{k}\right.$) and proceed by induction on k. For $k=1$ we check directly (2) for $n \neq 1,3,5$ and also $B_{n}(1) \leq n^{3 / 4}$ for all $n<16$. For $k=2$ we have $n=16 m+r$, when $1 \leq m<16,0 \leq r<16$ and from Lemma 1

$$
\begin{equation*}
B_{n}(1)=B_{16-r}(1) B_{m}(1)+B_{r}(1) B_{m+1}(1) \tag{3}
\end{equation*}
$$

If $m \neq 2,4$, then by the inductive assumption

$$
B_{m}(1) \leq m^{3 / 4}, \quad B_{m+1}(1) \leq m^{3 / 4}
$$

hence for $r \neq 0$

$$
\begin{equation*}
B_{n}(1) \leq\left(B_{16-r}(1)+B_{n}(1)\right) m^{3 / 4} \leq 8 m^{3 / 4} \leq 8\left(\frac{n-1}{16}\right)^{3 / 4}=(n-1)^{3 / 4} \tag{4}
\end{equation*}
$$

For $r=0, m$ arbitrary

$$
\begin{equation*}
B_{n}(1)=B_{m}(1) \leq m^{3 / 4}<(n-1)^{3 / 4} \tag{5}
\end{equation*}
$$

For $m=2, r \neq 0$

$$
B_{n}(1)=B_{16-r}(1) B_{2}(1)+B_{r}(1) B_{3}(1)=B_{16-r}(1)+2 B_{r}(1) \leq 13<32^{3 / 4}
$$

Finally, for $m=4, r \neq 0$

$$
B_{n}(1)=B_{16-r}(1) B_{4}(1)+B_{r}(1) B_{r}(1)=B_{16-r}(1)+3 B_{5}(1) \leq 18<64^{3 / 4}
$$

For $k>2$ we have $n=16 m+r$, where $m \in\left[16^{k-2}, 16^{k-1}\right), 0 \leq r<16$ and, from Lemma 1, (3) holds. By the inductive assumption

$$
B_{m}(1) \leq(m-1)^{3 / 4}, \quad B_{m+1}(1) \leq m^{3 / 4}
$$

hence (4) or (5) holds for $r \neq 0$ and $r=0$, respectively.
It follows that $B_{n}(1) \leq(n-1)^{3 / 4}$.
Lemma 2. If f is a polynomial of degree n, then its leading coefficient is $\frac{1}{n!} \Delta^{n} f(a)$ for arbitrary a, where $\Delta f(a)=f(a+1)-f(a)$.

Proof. See [2], Satz 23.
Lemma 3. $B_{n}(2)=n, B_{n}(0)=2\left\{\frac{n}{2}\right\}, B_{n}(-1)=3\left\{\frac{n}{3}+\frac{1}{2}\right\}-\frac{3}{2}$.
Proof. See [3], Theorem 5.1.
Lemma 4. Every divisor of $B_{n}(t)$ over $\mathbb{R}(n>0)$ with the leading coefficient l satisfies $l f(0) \geq 0$ and $f(a) f(0) \geq 0$ for all $a>0$.

Proof. If $f(a) f(0)<0$, then by the Darboux property of f, f has a zero in the interval $(0, a)$, which is also a zero of B_{n}, a contradiction, since B_{n} has non-negative coefficients, not all 0 . If $l f(0)<0$, then for sufficiently large a : $f(a) f(0)<0$, which has been shown impossible.

Proof of Theorem 2. If B_{p} (p an odd prime) has over \mathbb{Q} a proper divisor f of degree $1, f$ could be normalized, by Lemmas 3 and 4 , to the form $l x+1$, $l>0$. By Lemma $2, l=\Delta f(1)=f(2)-f(1)$ and by Lemmas 3,4 and, by Theorem $1, f(2)=1$ or $p, 1 \leq f(1) \leq B_{p}(1) \leq p^{3 / 4}$. Thus $l \geq p-p^{3 / 4}$, hence for $p \geq 5, B_{p}(2)>4\left(p-p^{3 / 4}\right)>p$, a contradiction with Lemma 3 .

If B_{p} had over \mathbb{Q} a proper divisor f of degree $2, f$ could be normalized to the form $l x^{2}+m x+1, l>0$. From Lemmas 2, 3, 4 and by Theorem 1
$l=\frac{1}{2} \Delta^{2} f(0)=\frac{1}{2}(f(2)-2 f(1)+f(0)) \geq \frac{1}{2}\left(p-2 B_{p}(1)+1\right) \geq \frac{1}{2}\left(p-2 p^{3 / 4}+1\right)$.

Let $e(n)$ be degree of B_{n}, as in [2] and [3]. We have (see [1], Corollary 13)

$$
e(2 n)=e(n)+1, \quad e(4 n+1)=e(n)+1, \quad e(4 n+3)=e(n+1)+1
$$

Hence for $e(p) \geq 4, p \geq 31$ and $B_{p}(2)>16 l \geq 8\left(p-2 p^{3 / 4}+1\right)>p$, contrary to Lemma 3.

If B_{p} had over \mathbb{Q} a proper divisor f of degree $3, f$ could be normalized to the form $l x^{3}+m x^{2}+n x+1$, where $l>0$.

From Lemmas 2, 3, 4 and by Theorem 1

$$
l=\frac{1}{6} \Delta^{3} f(-1)=\frac{1}{6}(f(2)-3 f(1)+3 f(0)-f(-1)) \geq \frac{1}{6}\left(p-3 p^{3 / 4}+2\right)
$$

Hence for $e(p) \geq 6, p \geq 127$

$$
B_{p}(2)>64 l \geq \frac{32}{3}\left(p-3 p^{3 / 4}+2\right)>p
$$

contrary to Lemma 3.
Lemma 5. $\left|B_{n}(-2)\right| \leq n$.
Proof by induction on n. For $n=0$ or 1 true, assume that it is true for all subscripts $<n$, then for n even $\left|B_{n}(-2)\right|=2\left|B_{\frac{n}{2}}(-2)\right| \leq n$, for n odd

$$
\left|B_{n}(-2)\right|=2\left|B_{\frac{n-1}{2}}(-2)+B_{\frac{n+1}{2}}(-2)\right| \leq \frac{n-1}{2}+\frac{n+1}{2}=n
$$

Proof of Theorem 3. Suppose that

$$
B_{p}=\prod_{i=1}^{k} f_{i}
$$

where $k \geq 2, f_{i} \in \mathbb{Z}[x]$ of degree 4 and with the leading coefficient $l_{i}>0$. By Lemma 3 for $p>2$ we have

$$
1=B_{p}(0)=\prod_{i=1}^{k} f_{i}(0)
$$

and, by Lemma $4, f_{i}(0)=1$. Also

$$
p=B_{p}(2)=\prod_{i=1}^{k} f_{i}(2)
$$

and, by Lemma 4 , for a certain i, say $i=1$ we have $f_{i}(2)=p$, for all $i>1$: $f_{i}(2)=1$. From Lemma 2 we have

$$
l_{i}=\frac{1}{24} \Delta^{4} f(-2)=\frac{1}{24}\left(f_{i}(2)-4 f_{i}(1)+6 f_{i}(0)-4 f_{i}(-1)+f_{i}(-2)\right)
$$

and, since $l_{i} \geq 1$, we have for $i>1$

$$
f_{i}(-2) \geq 24-1+4 f_{i}(1)-6 f_{i}(0)+4 f_{i}(-1) \geq 17
$$

Since, by Lemma 5,
we obtain

$$
l_{1}=\frac{1}{24}\left(p-4 f_{1}(1)+6 f_{1}(0)-4 f_{1}(-1)+f_{1}(-2)\right) \geq \frac{1}{24}\left(\frac{16}{17} p-4 p^{3 / 4}+2\right)
$$

Hence, for $e_{p} \geq 8, p \geq 769$

$$
B_{p}(2) \geq 256 l \geq \frac{32}{3}\left(\frac{16}{17} p-4 p^{3 / 4}+2\right)>p
$$

contrary to Lemma 3.
Proof of Corollary. By Theorems 2 and 3 if B_{p} is irreducible over \mathbb{Q}, then $e_{p} \geq 9$ and $p \geq 2017$.

Theorem 4 is an immediate consequence of the following two lemmas.
Lemma 6. $B_{2^{n}-3}$ is irreducible over \mathbb{Q} for all integers $n \geq 3$.
Proof. By definition of B_{n} and Lemma 2.1 of [3]

$$
B_{2^{n}-3}=t B_{2^{n-2}-1}+B_{2^{n-1}-1}=t \cdot \frac{t^{n-2}-1}{t-1}+\frac{t^{n-1}-1}{t-1}=2 \sum_{i=1}^{n-2} t^{i}+1
$$

hence $B_{2^{n}-3}$ is irreducible over \mathbb{Q} by Eisenstein's criterion.
Lemma 7. For every integer $k>0$ there exists an integer n such that $2^{n}-3$ has at least k prime factors.

Proof by induction on k. For $k=1$ one takes $n=3$. Assume that the statement is true for $k-1(k \geq 2)$ and that $2^{n_{k-1}}-3$ has at least $k-1$ prime factors. Let among them be q_{1}, \ldots, q_{k-1} and let $q_{i}^{\alpha_{i}} \| 2^{n_{k-1}}-3$. By Euler's theorem

$$
q_{i}^{\alpha_{i}} \| 2^{n_{k-1}+\varphi\left(q_{1}^{\alpha_{1}+1} \ldots q_{k-1}^{\alpha_{k-1}+1}\right)}-3
$$

However,

$$
q_{1}^{\alpha_{1}} \ldots q_{k-1}^{\alpha_{k-1}}<2^{n_{k-1}+\varphi\left(q_{1}^{\alpha_{1}+1} \ldots q_{k-1}^{\alpha_{k-1}+1}\right)}
$$

Therefore, we can take

$$
n_{k}=n_{k-1}+\varphi\left(q_{1}^{\alpha_{1}+1} \ldots q_{k-1}^{\alpha_{k-1}+1}\right)
$$

Remark. Probably for every integer $k>0$ there exists an integer n such that $2^{n}-3$ has exactly k prime factors.

References

[1] S. Klavžar, K. Milutinović and C. Petr, Stern polynomials, Adv. in Appl. Math. 39 (2007), 86-95.
[2] O. Perron, Algebra Bd I, 3rd ed., Walter de Gruyter, 1951.
[3] M. Ulas, On certain arithmetic properties of Stern polynomials, Publ. Math. Debrecen 79 (2011), 55-81.
[4] I. Urbina, Some properties of a function studied by De Rham, Carlitz and Dijkstra and its relation to the (Eisenstein) Stern's diatomie sequence, Math. Commun. 6 (2001), 181-198.

ANDRZEJ SCHINZEL
INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
ŚNIADECKICH 8
00-956 WARSAW
POLAND
E-mail: schinzel@impan.pl
(Received January 24, 2011; revised March 18, 2011)

[^0]: Mathematics Subject Classification: 11C08.
 Key words and phrases: factor, Stern polynomial.

