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On the factors of Stern polynomials
(Remarks on the preceding paper of M. Ulas)

By ANDRZEJ SCHINZEL (Warszawa)

Abstract. It is proved that the Stern polynomial with a prime index does not

have a proper divisor over Q of degree less than 4.

Stern polynomials Bn(t) have been first introduced in [1] and then studied

in [3]. The notation is the same as in [3]. In particular, B0(t) = 0, B1(t) = 1,

B2n(t) = tBn(t) and B2n+1(t) = Bn(t) + Bn+1(t). In connection with Conjec-

ture 6.4 of [3] we shall prove the following theorems.

Theorem 1. For all integers n ≥ 0 we have

Bn(1) ≤ n3/4.

Theorem 2. For no prime p does the polynomial Bp have a proper divisor

over Q of degree 1, 2 or 3.

Theorem 3. For no prime p is the polynomial Bp a product over Q of more

than one polynomial of degree 4.

Corollary. Polynomials Bp are irreducible over Q for all primes p < 2017.

The value of Theorem 1 for applications lies in its explicit form. If one allows

estimates of the form Bn(1) = O(nα), the best value for α is
(
log 1+

√
5

2

)
/ log 2 =

0.694 . . . (see [4], Corollary 3).

The value of the Corollary lies in the fact that it is obtained without comp-

utation. With computation the results are much stronger (see [3], Remark 6.5).

In connection with Conjecture 6.6 of [3] we shall prove
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Theorem 4. For every k there exists an index n with at least k prime factors

such that Bn is irreducible over Q.

The following lemma generalizes Lemmas 2.1 and 2.2 of [3].

Lemma 1. For all non-negative integers a, m and r such that 2a ≥ r ≥ 0

we have

B2am+r = B2a−rBm +BrBm+1. (1)

Proof by induction on a. For a = 0 (1) is trivially true for r = 0 or 1.

Assume that (1) holds for exponent a− 1 (a ≥ 1). Then for r even ≤ 2a

B2am+r = tB2a−1+r/2 = tB2a−1−r/2Bm + tBr/2Bm+1 = B2a−rBm +BrBm+1,

for r odd < 2a

B2am+r = B2a−1m+ r−1
2

+B2a−1m+ r+1
2

= B2a−1− r−1
2
Bm +B r−1

2
Bm+1 +B2a−1− r+1

2
Bm +B r+1

2
Bm+1

= B2a−rBm +BrBm+1.

Proof of Theorem 1. We shall show the stronger inequality

Bn(1) ≤ (n− 1)3/4 for n 6= 0, 1, 3, 5. (2)

We consider n in the interval [16k−1, 16k) and proceed by induction on k. For

k = 1 we check directly (2) for n 6= 1, 3, 5 and also Bn(1) ≤ n3/4 for all n < 16.

For k = 2 we have n = 16m+r, when 1 ≤ m < 16, 0 ≤ r < 16 and from Lemma 1

Bn(1) = B16−r(1)Bm(1) +Br(1)Bm+1(1). (3)

If m 6= 2, 4, then by the inductive assumption

Bm(1) ≤ m3/4, Bm+1(1) ≤ m3/4,

hence for r 6= 0

Bn(1) ≤ (B16−r(1) +Bn(1))m
3/4 ≤ 8m3/4 ≤ 8

(
n− 1

16

)3/4

= (n− 1)3/4. (4)

For r = 0, m arbitrary

Bn(1) = Bm(1) ≤ m3/4 < (n− 1)3/4. (5)
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For m = 2, r 6= 0

Bn(1) = B16−r(1)B2(1) +Br(1)B3(1) = B16−r(1) + 2Br(1) ≤ 13 < 323/4.

Finally, for m = 4, r 6= 0

Bn(1) = B16−r(1)B4(1) +Br(1)Br(1) = B16−r(1) + 3B5(1) ≤ 18 < 643/4.

For k > 2 we have n = 16m+ r, where m ∈ [16k−2, 16k−1), 0 ≤ r < 16 and, from

Lemma 1, (3) holds. By the inductive assumption

Bm(1) ≤ (m− 1)3/4, Bm+1(1) ≤ m3/4

hence (4) or (5) holds for r 6= 0 and r = 0, respectively. ¤

It follows that Bn(1) ≤ (n− 1)3/4.

Lemma 2. If f is a polynomial of degree n, then its leading coefficient is
1
n!∆

nf(a) for arbitrary a, where ∆f(a) = f(a+ 1)− f(a).

Proof. See [2], Satz 23. ¤

Lemma 3. Bn(2) = n, Bn(0) = 2
{

n
2

}
, Bn(−1) = 3

{
n
3 + 1

2

}− 3
2 .

Proof. See [3], Theorem 5.1. ¤

Lemma 4. Every divisor of Bn(t) over R (n > 0) with the leading coefficient

l satisfies lf(0) ≥ 0 and f(a)f(0) ≥ 0 for all a > 0.

Proof. If f(a)f(0) < 0, then by the Darboux property of f , f has a zero

in the interval (0, a), which is also a zero of Bn, a contradiction, since Bn has

non-negative coefficients, not all 0. If lf(0) < 0, then for sufficiently large a:

f(a)f(0) < 0, which has been shown impossible. ¤

Proof of Theorem 2. If Bp (p an odd prime) has over Q a proper divisor

f of degree 1, f could be normalized, by Lemmas 3 and 4, to the form lx + 1,

l > 0. By Lemma 2, l = ∆f(1) = f(2) − f(1) and by Lemmas 3, 4 and, by

Theorem 1, f(2) = 1 or p, 1 ≤ f(1) ≤ Bp(1) ≤ p3/4. Thus l ≥ p− p3/4, hence for

p ≥ 5, Bp(2) > 4(p− p3/4) > p, a contradiction with Lemma 3. ¤

If Bp had over Q a proper divisor f of degree 2, f could be normalized to

the form lx2 +mx+ 1, l > 0. From Lemmas 2, 3, 4 and by Theorem 1

l =
1

2
∆2f(0) =

1

2
(f(2)− 2f(1) + f(0)) ≥ 1

2
(p− 2Bp(1) + 1) ≥ 1

2
(p− 2p3/4 + 1).
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Let e(n) be degree of Bn, as in [2] and [3]. We have (see [1], Corollary 13)

e(2n) = e(n) + 1, e(4n+ 1) = e(n) + 1, e(4n+ 3) = e(n+ 1) + 1.

Hence for e(p) ≥ 4, p ≥ 31 and Bp(2) > 16l ≥ 8(p − 2p3/4 + 1) > p, contrary to

Lemma 3.

If Bp had over Q a proper divisor f of degree 3, f could be normalized to

the form lx3 +mx2 + nx+ 1, where l > 0.

From Lemmas 2, 3, 4 and by Theorem 1

l =
1

6
∆3f(−1) =

1

6
(f(2)− 3f(1) + 3f(0)− f(−1)) ≥ 1

6
(p− 3p3/4 + 2).

Hence for e(p) ≥ 6, p ≥ 127

Bp(2) > 64l ≥ 32

3
(p− 3p3/4 + 2) > p,

contrary to Lemma 3.

Lemma 5. |Bn(−2)| ≤ n.

Proof by induction on n. For n = 0 or 1 true, assume that it is true for all

subscripts < n, then for n even |Bn(−2)| = 2|Bn
2
(−2)| ≤ n, for n odd

|Bn(−2)| = 2
∣∣∣Bn−1

2
(−2) +Bn+1

2
(−2)

∣∣∣ ≤ n− 1

2
+

n+ 1

2
= n.

Proof of Theorem 3. Suppose that

Bp =

k∏

i=1

fi,

where k ≥ 2, fi ∈ Z[x] of degree 4 and with the leading coefficient li > 0. By

Lemma 3 for p > 2 we have

1 = Bp(0) =

k∏

i=1

fi(0)

and, by Lemma 4, fi(0) = 1. Also

p = Bp(2) =

k∏

i=1

fi(2)
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and, by Lemma 4, for a certain i, say i = 1 we have fi(2) = p, for all i > 1 :

fi(2) = 1. From Lemma 2 we have

li =
1

24
∆4f(−2) =

1

24
(fi(2)− 4fi(1) + 6fi(0)− 4fi(−1) + fi(−2))

and, since li ≥ 1, we have for i > 1

fi(−2) ≥ 24− 1 + 4fi(1)− 6fi(0) + 4fi(−1) ≥ 17.

Since, by Lemma 5,

p ≥ |Bp(−2)| =
k∏

i=1

|fi(−2)| ≥ 17|f1(−2)|
we obtain

l1 =
1

24
(p− 4f1(1) + 6f1(0)− 4f1(−1) + f1(−2)) ≥ 1

24

(
16

17
p− 4p3/4 + 2

)
.

Hence, for ep ≥ 8, p ≥ 769

Bp(2) ≥ 256l ≥ 32

3

(
16

17
p− 4p3/4 + 2

)
> p,

contrary to Lemma 3. ¤

Proof of Corollary. By Theorems 2 and 3 if Bp is irreducible over Q,
then ep ≥ 9 and p ≥ 2017. ¤

Theorem 4 is an immediate consequence of the following two lemmas.

Lemma 6. B2n−3 is irreducible over Q for all integers n ≥ 3.

Proof. By definition of Bn and Lemma 2.1 of [3]

B2n−3 = tB2n−2−1 +B2n−1−1 = t · t
n−2 − 1

t− 1
+

tn−1 − 1

t− 1
= 2

n−2∑

i=1

ti + 1,

hence B2n−3 is irreducible over Q by Eisenstein’s criterion. ¤

Lemma 7. For every integer k > 0 there exists an integer n such that 2n−3

has at least k prime factors.
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Proof by induction on k. For k = 1 one takes n = 3. Assume that the

statement is true for k − 1 (k ≥ 2) and that 2nk−1 − 3 has at least k − 1 prime

factors. Let among them be q1, . . . , qk−1 and let qαi
i ‖2nk−1−3. By Euler’s theorem

qαi
i ‖2nk−1+ϕ(q

α1+1
1 ...q

αk−1+1

k−1 ) − 3.

However,

qα1
1 . . . q

αk−1

k−1 < 2nk−1+ϕ(q
α1+1
1 ...q

αk−1+1

k−1 ).

Therefore, we can take

nk = nk−1 + ϕ(qα1+1
1 . . . q

αk−1+1
k−1 ).

Remark. Probably for every integer k > 0 there exists an integer n such that

2n − 3 has exactly k prime factors.
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