Title: Nilpotency class of symmetric units of group algebras
Author(s): Zsolt Balogh and Tibor Juhász
Let F be a field of odd prime characteristic p, G a group, U the group of units in the group algebra $F G$, and U^{+}the subgroup of U generated by the elements of U fixed by the anti-automorphism of $F G$ which inverts all elements of G. It is known that U is nilpotent if G is nilpotent and the commutator subgroup G^{\prime} has p-power order, and then the nilpotency class of U is at most the order of G^{\prime}; this bound is attained if and only if G^{\prime} is cyclic and not a Sylow subgroup of G. Adalbert Bovdi and János Kurdics proved the 'if' part of this last statement by exhibiting a nontrivial commutator of the relevant weight. For the special case when G is a nonabelian torsion group (so G^{\prime} cannot possibly be a Sylow subgroup), the present paper identifies such a commutator in U^{+}, showing (Theorem 1) that the same bound is attained even by the nilpotency class of this subgroup. We do not know what happens when G^{\prime} is not a Sylow subgroup but G is not torsion. It can happen that U^{+}is nilpotent even though U is not. The torsion groups G which allow this are known (from the work of Gregory T. Lee) to be precisely the direct products of a finite p-group P, a quaternion group Q of order 8 , and an elementary abelian 2 -group. Theorem 2 : in this case, the nilpotency class of U^{+}is strictly smaller than the nilpotency index of the augmentation ideal of the group algebra $F P$, and this bound is attained whenever P is a powerful p-group. The nonabelian group P of order 27 and exponent 3 is not powerful, yet the $G=P \times Q$ formed with this P also leads to a U^{+}attaining the general bound, so here a necessary and sufficient condition remains elusive.

Address:

Zsolt Balogh

Institute of Mathematics
and Informatics
College of Nyíregyháza
Sóstói út 31/B
H-4410 Nyíregyháza
Hungary

Address:

Tibor Juhász
Institute of Mathematics
and Informatics
Eszterházy Károly College
Leányka út 4
H-3300 Eger
Hungary

