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Abstract. We show that the size of sets A having the property that with some

non-zero integer n, a1a2 + n is a perfect power for any distinct a1, a2 ∈ A, cannot be

bounded by an absolute constant. We give a much more precise statement as well,

showing that such a set A can be relatively large. We further prove that under the abc-

conjecture a bound for the size of A depending on n can already be given. Extending a
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1. Introduction

A set A = {a1, . . . , am} of positive integers is called a Diophantine m-tuple,

if for any 1 ≤ i < j ≤ m we have aiaj + 1 = x2
ij for an integer xij . The his-

tory and theory of Diophantine m-tuples is very rich. Diophantus found the

set {1/16, 33/16, 17/4, 105/16} of four positive rationals with the above property.

However, the first Diophantine quadruple, {1, 3, 8, 120}, was found by Fermat

(see [5]). A folklore conjecture is that there does not exist a Diophantine quin-

tuple. The first important result concerning this conjecture was proved in 1969

by Baker and Davenport [1]. They proved that if d is a positive integer such

that {1, 3, 8, d} forms a Diophantine quadruple, then d = 120. Hence, the triple

{1, 3, 8} cannot be extended to a Diophantine quintuple. In 1998, Dujella and

Pethő [13] proved that the pair {1, 3} cannot be extended to a Diophantine

quintuple. In 2004, Dujella [8] proved that there does not exist a Diophantine

sextuple and there are only finitely many Diophantine quintuples (recently Fujita

[15] showed that there are at most 10276 Diophantine quintuples). An overview

of classical and recent results and the complete list of references on Diophantine

m-tuples can be found on web page [10]. As a generalization of Diophantine m-

tuples one can consider sets A of positive integers such that for any a, b ∈ A with

a 6= b we have ab + n = x2
ab, where n is a fixed non-zero integer. Such sets are

referred to as D(n)-m-tuples. E.g. the set {99, 315, 9920, 32768, 44460, 19534284},
found by Gibbs [17] is a D(2985984)-sextuple. Define

Mn = sup{|A| : A is a D(n)-tuple}.
It is easy to prove that Mn = 3 for n ≡ 2 (mod 4) (see e.g. [2]). By the Lang

conjecture on varieties of general type, we expect that there exists an absolute

constant C such that Mn < C for all non-zero integers n. However, the best

known general result of this shape is Mn ≤ 31 for |n| ≤ 400, Mn < 15.476 log |n|
for |n| > 400 (see [7], [9]). Furthermore, Dujella and Luca [12] proved that

Mp < 3 · 2168 holds for all primes p. It is known that 4 ≤ M1 ≤ 5 [8], 4 ≤ M4 ≤ 5

[16] and 3 ≤ M−1 ≤ 4 [11].

As an alternative, but also natural generalization of Diophantine m-tuples,

Bugeaud and Dujella [3] considered sets A of positive integers with the prop-

erty that ab+1 = xk
ab whenever a, b are distinct elements of A and k is an integer

with k ≥ 2. Such sets are called k-th power Diophantine tuples. Examples of

such triples for k = 3 and k = 4 are given, respectively, by {2, 171, 25326} and

{1352, 8539880, 9768370}. Let
Ek = sup{|A| : A is a k-th power Diophantine tuple}.
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In [3, Corollary 4] absolute upper bounds for the numbers Ek, k ≥ 3 were obta-

ined. More precisely, it was proved that E3 ≤ 7, E4 ≤ 5, E5 ≤ 5, Ek ≤ 4 for

6 ≤ k ≤ 176, and Ek ≤ 3 for k ≥ 177.

As a further generalization, in this paper we consider sets A of positive

integers such that for any distinct elements a, b of A, ab + n is a perfect power,

where n is some fixed non-zero integer. That is, writing A = {a1, a2, . . . } we have

aiaj + n = x
kij

ij (1)

for some integers xij and kij with kij ≥ 2, and here the exponents kij can of

course be different. The case n = 1 of this problem has already been studied

by several authors, see e.g. [19], [20], [4], [6], [22], [21]. The main direction of

research concerns finding an upper bound for the size of sets A ⊆ {1, 2, . . . , N}
such that ab + 1 is a perfect power for all a 6= b in A. The best known result of

that type is due to Stewart [24], who proved that |A| ¿ (logN)2/3(log logN)1/3.

Further, Luca [22] proved that if A satisfies (1) with n = 1, then assuming the

abc-conjecture the number of elements |A| of A can be bounded by an absolute

constant.

We show that this is not true in case of arbitrary n (Theorem 1). We also

give a much more precise statement (Theorem 2), which shows that such sets

can be relatively large. Further, we prove that assuming the abc-conjecture we

already have |A| < C(n), where C(n) is a constant depending only on n. In view

of our construction in the proof of Theorem 2, the dependence of C(n) on n is

necessary. To prove this result we extend a theorem of Bugeaud and Dujella

[3] concerning shifted products which are k-th powers (Theorem 3). Assuming the

abc-conjecture we obtain a bound in terms of n for all but one ai, provided that the

exponents kij in aiaj +n = x
kij

ij are sufficiently large (Lemma 1). Then following

the approach of Luca [22], we use Ramsey theory to prove the bound |A| < C(n)

(Theorem 4). Finally, we note that our Theorems 3 and 4 are formulated for the

more general case A ⊆ Z. Though this formulation qualitatively has no advantage

(since one can bound the positive and negative parts of A separately and then

just combine the bounds), quantitatively the statements are still more general in

this way.

2. Main results

Our first theorem shows that the size of sets with the property (1) cannot be

bounded by an absolute constant.
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Theorem 1. For any K ∈ N there exists an n ∈ N and a set A ⊆ N such

that |A| ≥ K and ab+ n is a perfect power for any distinct a, b ∈ A.

As one can easily see, Theorem 1 is a simple and immediate consequence of

the following, much more precise statement.

Theorem 2. Let x ≥ ee
e

, and take

K :=

⌊(
log log x

2 log log log x

)1/3
⌋
. (2)

Then there exists a set AK = {a1, . . . , aK} with elements all in [1, x], as well as

an integer nK also in [1, x], such that aiaj + nK = x
kij

ij for 1 ≤ i < j ≤ K with

some integers xij , where the exponents kij are the first
(
K
2

)
primes.

Remark 1. The condition x ≥ ee
e

= 3814279.105 . . . is meant to insure that

log log log x > 1. If x > ee
68

, then the above number K is ≥ 2. For smaller values

of x the statement is empty. However, obviously, K → ∞ as x → ∞.

Remark 2. Let f(x) be the maximumK such that there exists AK ⊆ [1, x]∩N
with K elements and some n ≤ x such that aa′+n is a perfect power for all a 6= a′

in AK . A natural question is to find sharp upper and lower bounds on f(x). It

is clear that f(x) is at least as large as the bound shown at (2) and it is easy

to see that f(x) ≤ x2/3+o(1) as x → ∞. Indeed, let AK be a maximal example

(with K = f(x)). Let A1 = {a ∈ AK : aa′ + n is a square for all a′ ∈ AK\{a}}.
It is clear that elements in A1 participate in every maximal D(n)-tuple in AK ,

so the cardinality of A1 is O(log |n|) = O(log x) (see [7, 9]). On the other hand,

for each a ∈ AK\A1 there is an a′ in AK such that aa′ + n is a perfect power uk

of exponent k ≥ 3. Since aa′ + n = uk ≤ 2x2, the number of such perfect powers

is O(x2/3). Given one such perfect power uk, a is a divisor of uk − n, a positive

integer ≤ x2, so which has at most xo(1) divisors as x → ∞. This indeed shows

that f(x) ≤ x2/3+o(1) as x → ∞, which is a nontrivial upper bound. To derive

sharp upper and lower bounds for f(x) we leave as an open problem.

The next result is an extension of a theorem of Bugeaud and Dujella [3].

Theorem 3. Let k and n be integers with k ≥ 2 and n 6= 0, and let A ⊆ Z
such that ab + n is a k-th power for all distinct a, b ∈ A. Then we have |A| ≤
C1(k, n), where C1(k, n) is a constant depending only on k and n. In particular, if

k = 2 (or more generally, if k is even), we may take C1(k, n) = 31+15.476 log |n|,
if k = 3, we may take C1(k, n) = 2|n|17 + 6, while for k ≥ 5 we may take

C1(k, n) = 2|n|5 + 3.
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Corollary 1. Let k and n be integers with k ≥ 2 and n 6= 0, and let A ⊆ Z
such that ab+n is a k-th power for all distinct a, b ∈ A. Then we have |A| ≤ C2(n),

where C2(n) is a constant depending only on n. We may take C2(n) = 2|n|17+31.

Our next result proves that assuming the abc-conjecture, the size of the sets

A considered in Theorem 1, i.e. with the property that the products of distinct

elements of A shifted by some fixed nonzero integer n are perfect powers, can

already be bounded in terms of n.

Theorem 4. Let n be a non-zero integer, and suppose that the abc-conjecture

is valid. Then there exists a constant C3(n) depending only on n with the fol-

lowing property. If A ⊆ Z such that ab + n is a perfect power for any distinct

a, b ∈ A, then |A| < C3(n) holds.

Remark 3. The above theorem extends Theorem 1.4 of Luca [22], where the

case n = 1 is handled.

Remark 4. In view of the set A = {2α : α ≥ 1} it is necessary to assume that

n 6= 0 in Theorem 4.

3. Lemmas and auxiliary results

We shall need the abc-conjecture. We use the same version of the conjecture

as in [22]. For any positive integer t write N(t) for the radical of t, i.e. N(t) =∏
p|t p.

The abc-conjecture. Let ε> 0 and a, b, c be non-zero integers with gcd(a,b, c)= 1

and a+ b = c. Then

max{|a|, |b|, |c|} ¿ N(abc)1+ε

where the implied constant depends only on ε.

The next lemma plays an important part in the proof of Theorem 4. It is

in fact a simple extension of results of Luca [22] to the case where we shift our

products by n, rather than just by 1.

Lemma 1. Suppose that the set A = {a1, a2, a3, a4, a5} has the following

properties

(1) The elements of A are distinct non-zero integers with |a1| ≤ |a2| ≤ |a3| ≤
|a4| ≤ |a5|,

(2) aiaj + n = x
kij

ij with kij ≥ 3205 for 1 ≤ i < j ≤ 5.
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If the abc-conjecture holds, then we have

|a2| ≤ c0|n|3,
where c0 is an absolute constant.

Proof. In the proof below, the Vinogradov symbol always implies a constant

depending only on ε. Since at the appropriate point of the proof we choose a

concrete value for ε, in fact Vinogradov symbols imply an absolute constant. We

shall follow the method in [22].

First put u := x15, v := x25, k := k15 and l := k25, and consider the identities

a1a5 + n = uk, a2a5 + n = vl.

By eliminating the first terms of the above identities we get the equality

a2u
k − a1v

l = n(a2 − a1).

Putting d := gcd(a2u
k, a1v

l) we get

a2u
k

d
− a1v

l

d
=

n(a2 − a1)

d
. (3)

By applying the abc-conjecture to equation (3) we obtain

∣∣∣∣
a2u

k

d

∣∣∣∣ ¿ N(a1a2u
kvl(a2 − a1)n)

1+ε ¿ (2|a2|3 · |n| · |u| · |v|)1+ε. (4)

However,

|u| ≤ (2|na1a5|) 1
k , |v| ≤ (2|na2a5|) 1

l . (5)

Thus combining (4), (5) and |a1| ≤ |a2| we get

∣∣∣∣
a2u

k

d

∣∣∣∣ ¿
(
(2|n|)1+ 1

k+ 1
l · |a2|3+ 1

k+ 1
l · |a5| 1k+ 1

l

)1+ε

. (6)

Choosing ε := 0.1, by k, l > 11 we infer

(
1

k
+

1

l

)
· (1 + ε) ≤ 1

5
,

(
3 +

1

k
+

1

l

)
· (1 + ε) ≤ 4. (7)

Moreover, since d | (a2 − a1)n, we get d ≤ 2|na2|. Hence, using

|a5| ≤ |a1a5| = |uk − n| ≤ 2|nuk|
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together with (6) and (7), we deduce

|a5| ≤ 2|nuk| =
∣∣∣∣
a2u

k

d

∣∣∣∣ ·
∣∣∣∣
2nd

a2

∣∣∣∣ ≤
∣∣∣∣
a2u

k

d

∣∣∣∣ · 4n2 ¿ |na2|4 · |a5|1/5.

This yields

|a5|4/5 ¿ |na2|4,
and we conclude

|a5| ¿ |na2|5. (8)

In the sequel we consider the elements 0 < |a1| ≤ |a2| ≤ |a3| ≤ |a4| and
we use the following notations: x1 := x12, x2 := x23, x3 := x34, x4 := x41 and

k1 := k12, k2 := k23, k3 := k34, k4 := k41. Further, suppose that k > k0, where

k0 will be specified later. With these notations we have

a1a2 = xk1
1 − n, a3a4 = xk3

3 − n,

a2a3 = xk2
2 − n, a4a1 = xk4

4 − n. (9)

By (9) we clearly have

(xk1
1 − n)(xk3

3 − n)− (xk2
2 − n)(xk4

4 − n) = 0,

which yields

xk1
1 xk3

3 − xk2
2 xk4

4 = n(xk1
1 + xk3

3 − xk2
2 − xk4

4 ). (10)

In (10) neither the left nor the right hand side can be zero. Indeed, xk1
1 + xk3

3 −
xk2
2 − xk4

4 = 0 would lead to a1a2 + n+ a3a4 + n− a2a3 − n− a4a1 − n = 0, and

this would mean (a1 − a3)(a2 − a4) = 0, which cannot happen since A contains

distinct elements.

Put D := gcd(xk1
1 xk3

3 , xk2
2 xk4

4 ). Then by (10) we have

xk1
1 xk3

3

D
− xk2

2 xk4
4

D
=

n(xk1
1 + xk3

3 − xk2
2 − xk4

4 )

D
. (11)

Here we use again the abc-conjecture to infer

∣∣∣∣∣
xk1
1 xk3

3

D

∣∣∣∣∣ ¿
∣∣∣∣∣x1x2x3x4

n(xk1
1 + xk3

3 − xk2
2 − xk4

4 )

D

∣∣∣∣∣

1+ε

. (12)

For i = 1, 2, 4 with the appropriate j we clearly have

|xki
i | = |aiaj + n| ≤ 2|n| · |aiaj | ≤ 2|n| · |a3a4| = 2|n| · |xk3

3 − n| ≤ 4n2|x3|k3 .
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This together with (12) proves that

|xk1
1 xk3

3 | ¿
∣∣∣n3x1x2x3x4x

k3
3

∣∣∣
1+ε

. (13)

Similarly to (5), using (9) we get the estimates

|x1| ≤ (2|na1a2|)1/k1 |x3| ≤ (2|na3a4|)1/k3

|x2| ≤ (2|na2a3|)1/k2 |x4| ≤ (2|na4a1|)1/k4 (14)

and combining these with (13) we have

|xk1
1 xk3

3 | ¿
∣∣∣n3(na1a2)

1
k1 (na2a3)

1
k2 (na3a4)

1
k3 (na4a1)

1
k4

∣∣∣
1+ε

|x3|k3(1+ε). (15)

Using that ki > k0 and |a1| ≤ |a2| ≤ |a3| ≤ |a4|, (13) leads to the estimate

|xk1
1 | ¿

(
|n|3+4/k0 |a4|8/k0

)1+ε

|x3|k3ε. (16)

Now using again (14) for |x3|, we have

|a1|2 ≤ |a1a2| ≤ 2|n||x1|k1 ¿ |n|
(
|n|3+4/k0 |a4|8/k0

)1+ε

|x3|k3ε

¿ |n|1+(3+ 4
k0

)(1+ε)|a4|
8
k0

(1+ε)(|na3a4|)ε.

This yields

|a1|2 ¿ |n|(4+ 4
k0

)(1+ε) · |a4|
8
k0

+(2+ 8
k0

)ε. (17)

Now choose ε = 1
1000 and k0 := 2000, so that 8

k0
+
(
2+ 8

k0

)
ε < 1

100 . Thus we

get

|a1|2 ¿ |n|5 · |a4| 1
100 , (18)

i.e.

|a1|200 ¿ |n|500 · |a4|. (19)

Since 0 < |a1| ≤ |a2| ≤ |a3| ≤ |a4| ≤ |a5| we also have

|a2|200 ¿ |n|500 · |a5|. (20)

Now (20) and (8) together show that

|a2|200 ¿ |n|500 · |a5| ¿ |n|505|a52|,

which proves the estimate

|a2| ¿ |n|3. ¤
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4. Proof of Theorem 2

Proof of Theorem 2. We construct inductively for every K ≥ 2 a set

AK = {a1, . . . , aK} with a1 < · · · < aK and a positive integer nK such that

aiaj + nK = x
kij

ij

for 1 ≤ i < j ≤ K, where the exponents kij are the first t(K) :=
(
K
2

)
primes.

When K = 2, we take A2 = {1, 3} and n2 = 1. Let TK = max{nK , a2K}, and
choose an integer aK+1 with

√
2TK > aK+1 >

√
TK . Observe that aK+1 > aK .

Let

mK :=

K∏

i=1

(aiaK+1 + nK).

Clearly,

mK <
(
(
√
2 + 1)TK

)K
< T 2K

K .

Let PK be the set of prime factors of mK . Let pi be the ith prime. For a positive

integer m and a prime q we write νq(m) for the exponent of q in the factorization

of m. For each prime p ∈ PK , consider the following system of congruences

{
αp ≡ 0 (mod pi) for 1 ≤ i ≤ t(K),

αp ≡ −νp(ajaK+1 + nK) (mod pt(K)+j) for 1 ≤ j ≤ K.
(21)

Let αp be the first positive integer in the above progression. Clearly,

αp ≤
∏

i≤t(K+1)

pi < 4pt(K+1) < 42K(K+1) logK < e3(K+1)2 log(K+1).

In the above inequalities, we used the Erdős lemma, i.e. the fact that
∏

p≤x p < 4x

holds for all x ≥ 1, as well as the inequality pn < 2n log n holding for all positive

integers n ≥ 3 (see estimate (3.13) in [23]), which we may apply with n = t(K+1)

since t(K + 1) ≥ t(3) = 3 for K ≥ 2.

Put βp := αp/2. Since αp is even by the first of the above congruences (21),

βp is an integer. Put

uK :=
∏

p∈PK

pβp .

A simple calculation gives

uK < m
max{αp:p∈PK}
K < T e4(K+1)2 log(K+1)

K . (22)
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Put nK+1 := u2
KnK , and observe that nK+1 ≤ u2

KTK . Set a∗i := uKai for

i = 1, . . . ,K + 1. Then we obviously have a∗1 < · · · < a∗K+1, and by the choice

of aK+1, also (a∗K+1)
2 < 2u2

KTK . Further, by the construction of our numbers,

one can easily check that a∗i a
∗
j + nK+1 = u2

K(aiaj + nK) is a perfect power of

exponent kij for all 1 ≤ i < j ≤ K + 1, and moreover the exponents kij can be

chosen to be exactly the t(K + 1) primes p1, . . . , pt(K+1).

Let TK+1 = max{nK+1, (a
∗
K+1)

2}. Then combining the above upper bounds

for nK+1 and (a∗K+1)
2 with (22), we obtain

TK+1 < 2u2
KTK < T 2+2e4(K+1)2 log(K+1)

K < T e5(K+1)2 log(K+1)

K

for all K ≥ 2. Hence by induction, using that T2 = 9, by a simple calculation

we get that TK < ee
6K3 log K

holds for all K ≥ 2. Now we would like to choose a

positive integer x such that AK and nK are all contained in [1, x]. Then it suffices

that

ee
6K3 log K ≤ x,

giving 6K3 logK ≤ log log x. This yields K3 log(K3) ≤ (log log x)/2. This is

fulfilled with

K :=

⌊(
log log x

2 log log log x

)1/3
⌋
,

and the statement follows. ¤

5. Proofs of Theorems 3 and 4

In the proof of Theorem 3 we follow [3]. In particular, we use the following

result of Evertse [14, Theorem 2.1].

Lemma 2. If a, b and k are positive integers with k ≥ 3 and c is a positive

real number, then there is at most one positive integral solution (x, y) to the

inequality

|axk − byk| ≤ c

with gcd(x, y) = 1 and

max{|axk|, |byk|} > βkc
αk ,

where αk and βk are effectively computable positive constants satisfying

α3 = 9, αk = max

{
3k − 2

2(k − 3)
,
2(k − 1)

k − 2

}
for k ≥ 4
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and

β3 = 1152.2, β4 = 98.53, βk < k2 for k ≥ 5.

Note that in [3], in the application of Lemma 2, the condition gcd(x, y) = 1

was omitted. However, all corresponding inequalities from the proofs in [3] hold

with safe margins, except for k = 4, 5, so that this omission has not significant

influence to validity of the final results. In particular, in the result from [3,

Corollary 4] cited in the introduction, only E5 ≤ 4 should be replaced by E5 ≤ 5.

Proof of Theorem 3. By the results from [7, 9] cited in the introduction,

we may assume that k is odd and k ≥ 3.

Consider first the case k ≥ 5. Let {a1, a2, . . . , am} be a kth-power D(n)-m-

tuple, and 0 < a1 < a2 < · · · < am. For i ≥ 3 we have

a1ai + n = xk
i , a2ai + n = yki ,

i.e.

a2x
k
i − a1y

k
i = n(a2 − a1). (23)

Let di = gcd(xi, yi) and write xi = dix
′
i. Note that dki ≤ |n|(a2 − a1). We apply

Lemma 2 to the Thue inequality

|a2xk − a1y
k| ≤ |n|(a2 − a1). (24)

By Lemma 2, there is only one very large primitive solution to (24). It may

correspond to am, but certainly not to ai for i < m. Thus we have

a1am−1 < 2|n|xk
m−1 = 2|n|x′k

m−1d
k
m−1 ≤ 2n2a2x

′k
m−1 < 2n2 · k2 · (|n|a2)13/4,

i.e.

am−1 < 2k2|n|21/4a13/42 . (25)

Assume now that at least four ai’s are larger than 2|n|5, i.e. am−3 > 2|n|5. In

order to obtain a lower bound for am−1, we first consider the case n > 0. Then

we have

(a1am−2 + n)(a2am−1 + n) > (a2am−2 + n)(a1am−1 + n),

which implies

(a1am−2 + n)(a2am−1 + n) ≥ (((a2am−2 + n)(a1am−1 + n))1/k + 1)k,

na2am−1 ≥ k(a1a2am−2am−1)
(k−1)/k,
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and finally

am−1 > kkak−1
1 ak−2

m−2n
−k. (26)

Assume now that n < 0. Then

(a1am−2 + n)(a2am−1 + n) < (a2am−2 + n)(a1am−1 + n),

which implies

(a2am−2 + n)(a1am−1 + n) ≥ ((a1am−2 + n)(a2am−1 + n)1/k + 1)k,

|n|a2am−1 ≥ k(4a1a2am−2am−1/9)
(k−1)/k, (27)

(here we use that am−2 ≥ 2|n|5 + 1 ≥ 3|n|) and finally

am−1 > (9/4)1−kkkak−1
1 ak−2

m−2|n|−k. (28)

From (26) and (28) in both cases we get

am−1 > 2k2ak−2
m−2|n|−k. (29)

By the same arguments we get am−2 > 2k2ak−2
m−3|n|−k. Therefore,

am−1 > (2k2)k−1a
(k−2)2

m−2 |n|−k(k−1). (30)

Comparing (25) with (30), we get a
(k−2)2−13/4
m−3 < |n|k2−k+21/4. Now we use the

assumption that am−3 > 2|n|5. We get 4k2 − 19k − 3/2 < 0, and k < 5, a

contradiction. Hence, at most three ai’s are greater than 2|n|5, which shows that

m ≤ 2|n|5 + 3, as claimed.

It remains to consider the case k = 3. In that case the above approach needs

some modifications because the exponent of am−2 in (28), i.e. k−2, is not greater

than 1. The bound for m will also be considerably weaker. Assume that at least

seven ai’s are larger than 2|n|17, i.e. am−6 > 2|n|17. We take a closer look at

(27), which for k = 3 gives

a2am−1 > 5a21a
2
m−2|n|−3 (31)

and analogously

a3am−1 > 5a22a
2
m−2|n|−3. (32)

We claim that

am−1 > 5|n|−3a
5/3
m−2. (33)
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Indeed, if am−1 ≤ 5|n|−3a
5/3
m−2, then (31) and (32) imply a2 > a21a

1/3
m−2 and

a3 > a22a
1/3
m−2. But this leads to a3 > a41am−2 ≥ am−2, a contradiction. By

iterating (33) five times, we obtain

am−1 > (5|n|−3)1441/81a
3125/243
m−6 . (34)

On the other hand, an application of Lemma 2 to (24) for k = 3 gives

am−1 < 2305|n|11a92. (35)

Comparing (35) with (34) we get

a
938/243
m−6 < |n|1738/27. (36)

The assumption that am−6 > 2|n|17, combined with (36), leads to a contradiction.

Hence, m ≤ 2|n|17 + 6, as we claimed. ¤

Proof of Theorem 4. The proof goes along the same lines as the cor-

responding one in [22, Theorem 1.4]. However, for the convenience of the re-

ader we give the details. We may assume that A ⊆ N, since the bound for

subsets of Z can be obtained by doubling the bound for subsets of N. Let

A′ = {a ∈ A : a > c0|n|3}, where c0 is defined in Lemma 1. By Lemma 1, in the

set A′ there does not exist a subset of five elements such that aiaj+n = x
kij

ij with

kij ≥ 3205 for all distinct i and j. Let t = π(3205) = 453 and let pi be the ith

prime. We let G be the graph whose vertices are the elements of A′. We color the

edges of G with the t+1 colors p1, . . . , pt,∞ in such a way that if a, b ∈ A′, then
we assign to the edge ab the color pi, i ∈ {1, . . . , t} if pi is the smallest prime for

which there exist an integer x such that ab + 1 = xpi . If such pi does not exist,

we assign the color ∞ to the edge ab.

We finish the proof by using the existence of Ramsey numbers. The Ramsey

number R(n1, . . . , ns) is the smallest positive integer R such that no matter how

we color the edges of the complete graph with R vertices with the colors 1, 2, . . . , s,

there exist a color i and a complete monochromatic subgraph with ni vertices

colored with color i (see e.g. [18]). For given non-zero integer n, consider the

following well-defined positive integer

R(n) = R(C1(2, n), C1(3, n), C1(5, n), . . . , C1(3203, n), 5),

where the quantities C1(k, n) are defined in Theorem 3. We claim that |A′| <
R(n), and therefore |A| < c0n

3 + R(n), which will complete the proof of The-

orem 4. Indeed, if |A′| ≥ R(n), then either there exist a prime number p ≤ 3203
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and at least C1(p, n) elements of A′ such that the product of any two of them plus

n is a pth power, contradicting Theorem 3, or there exist at least five elements

of A′ such that the product of any two of them plus n is a kth power with some

k ≥ 3205, contradicting Lemma 1. ¤
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