Publ. Math. Debrecen
 79/3-4 (2011), 423-432
 DOI: 10.5486/PMD.2011.5089

Smooth shifted monomial products

By ÉtIENNE FOUVRY (Orsay) and IGOR E. SHPARLINSKI (Sydney)

> Dedicated to our colleagues and friends Kálmán Györy, Attila Pethő, János Pintz, András Sárközy

Abstract

We use the large sieve inequality to show that if a_{1}, \ldots, a_{n} are odd and coprime positive integers, then for a positive proportion of integral vectors (m_{1}, \ldots, m_{n}) the values of the $m_{1}^{a_{1}} \ldots m_{n}^{a_{n}}-1$ are rather smooth.

1. Introduction

Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ be a fixed vector with positive integer components. We consider the polynomial in n variables $X_{i}(1 \leq i \leq n)$

$$
F_{\mathbf{a}}(\mathbf{X})=X_{1}^{a_{1}} \ldots X_{n}^{a_{n}}-1 .
$$

of degree

$$
d=a_{1}+\cdots+a_{n} .
$$

For $\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}^{n}$, we define

$$
F_{\mathbf{a}}(\mathbf{m})=m_{1}^{a_{1}} \ldots m_{n}^{a_{n}}-1
$$

Given real positive x and y consider the set

$$
\mathcal{S}_{\mathbf{a}}(x, y)=\left\{\mathbf{m} \in \mathbb{Z}^{n}: 2 \leq\|\mathbf{m}\| \leq x, P\left(F_{\mathbf{a}}(\mathbf{m})\right) \leq y\right\}
$$

where

$$
\|\mathbf{m}\|=\max _{1 \leq i \leq n}\left|m_{i}\right|
$$

and, as usual, $P(k)$ denotes the largest prime divisor of an integer $k \neq 0$.
Throughout the paper we always assume that $n \geq 2$ as in the case of $n=1$ one gets stronger estimates from more general results about smooth values of polynomials, see [3], [7] and references therein. We also notice that smooth values of binary forms have been studied in [1].

As an application of a quite general result on smooth values of multivariate polynomials, it has been deduced in [4, Corollary 1] that if $d \geq 4$ and if $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=1$, then for any fixed $\varepsilon>0$ there exists two constants $c_{\mathbf{a}}(\varepsilon)>0$ and $x_{\mathbf{a}}(\varepsilon)$ depending only on \mathbf{a} and ε such that for

$$
y=x^{d-2+2 /(n+1)+\varepsilon}
$$

we have

$$
\begin{equation*}
\sharp \mathcal{S}_{\mathbf{a}}(x, y) \geq c_{\mathbf{a}}(\varepsilon) x^{n}, \tag{1}
\end{equation*}
$$

for every $x \geq x_{\mathbf{a}}(\varepsilon)$. The condition of coprimality of the a_{i} seems necessary for the method, since if $\delta=\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)>1$, the polynomial $F_{\mathbf{a}}$ factorizes as

$$
\begin{equation*}
F_{\mathbf{a}}(\mathbf{X})=\left(X_{1}^{\frac{a_{1}}{\delta}} \cdots X_{n}^{\frac{a_{n}}{\delta}}\right)^{\delta}-1=\left(X_{1}^{\frac{a_{1}}{\delta}} \cdots X_{n}^{\frac{a_{n}}{\delta}}-1\right) Q(\mathbf{X}) \tag{2}
\end{equation*}
$$

where Q is a polynomial, irreducible or not, of total degree $d(1-1 / \delta)$. Hence the associated varieties are no more absolutely irreducible, which creates important difficulties for the involved methods of algebraic geometry.

The method of [4] is based on deep techniques on multidimensional exponential sums to study the number of solutions to the congruence

$$
\begin{equation*}
F_{\mathbf{a}}(\mathbf{m}) \equiv 0 \quad(\bmod p), \quad\|\mathbf{m}\| \leq x \tag{3}
\end{equation*}
$$

for x that is reasonably small compared to the prime p.
Here we use a different approach to study (3) which, as in [8], [9], is based on multiplicative character sums. However instead of "individual" bounds of multiplicative character sums, such as Pólya-Vinogradov and Burgess bounds, see [6 , Theorems 12.5 and 12.6], we use estimates on their average values given by the large sieve inequality, see [6, Theorem 7.13]. Such an approach already appears in the classical fact, sometimes called Motohashi's principle, that the convolution of two well-behaved sequences of integers satisfies an equidistribution theorem similar to the Bombieri-Vinogradov Theorem, see [2, Theorem 0 (b)], for instance. However, in the case when some of the integers a_{1}, \ldots, a_{n} are even we
also need a bound of Heath-Brown [5, Theorem 1] on average values of sums of real characters. In particular, for $n \geq 4$ we obtain the bound (1) for much smaller values of y.

Theorem 1. For any $n \geq 2$ and fixed $\varepsilon>0$ there exist two constants $c_{\mathbf{a}}(\varepsilon)>0$ and $x_{\mathbf{a}}(\varepsilon)$ depending only on \mathbf{a} and ε such that for

$$
y=x^{d-n / 2+\varepsilon}
$$

the bound (1) holds for $x \geq x_{\mathbf{a}}(\varepsilon)$.
The fact that the proof of Theorem 1 is based on large sieve inequalities gives some flexibility to our method. For instance, the statement of Theorem 1 can be easily extended to the situation where for each $i=1, \ldots, n$, the values of the m_{i} are taken in a dense subset of integers \mathcal{M}_{i} (for instance, the set of primes).

For a set of integers \mathcal{M} and a real x, we denote by $\mathcal{M}(x)$ the set of elements of \mathcal{M}, which are up to x by absolute value, that is,

$$
\mathcal{M}(x)=\mathcal{M} \cap[-x, x]
$$

With these conventions, we enunciate, without proof
Theorem 2. Let $n \geq 2$, let \mathbf{a} as above and let $\mathcal{M}_{i}(1 \leq i \leq n)$ be n subsets of non zero integers that satisfy

$$
\lim _{x \rightarrow \infty} \frac{\log \left(\sharp \mathcal{M}_{i}(x)\right)}{\log x}=1
$$

Then, for every fixed $\varepsilon>0$, there exist constants $c_{\mathbf{a}}\left(\varepsilon,\left(\mathcal{M}_{i}\right)\right)>0$ and $x_{\mathbf{a}}\left(\varepsilon,\left(\mathcal{M}_{i}\right)\right)$, depending only on ε, a and the sets $\mathcal{M}_{1}, \ldots \mathcal{M}_{n}$, such that for $x \geq x_{\mathbf{a}}\left(\varepsilon,\left(\mathcal{M}_{i}\right)\right)$ one has the following lower bound

$$
\begin{aligned}
\sharp\left\{\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right): m_{i} \in \mathcal{M}_{i}(x), P\left(F_{\mathbf{a}}(\mathbf{m})\right)\right. & \left.\geq x^{d-n / 2+\varepsilon}\right\} \\
& \geq c_{\mathbf{a}}\left(\varepsilon,\left(\mathcal{M}_{i}\right)\right) \prod_{i=1}^{n}\left(\sharp \mathcal{M}_{i}(x)\right) .
\end{aligned}
$$

Throughout the paper, the implied constants in symbols ' O ' and ' $<$ ' may depend on a (we recall that $U \ll V$ and $U=O(V)$ are both equivalent to the inequality $|U| \leq c V$ with some constant $c>0$).

The letter p always denotes a prime number and k, m, n always denote positive integer numbers.

2. The case where the a_{1}, \ldots, a_{n} are not coprime

As in $\S 1$, let $\delta=\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$, and we suppose that $\delta \geq 2$.
By (2), we deduce the inequality

$$
P\left(F_{\mathbf{a}}(\mathbf{m})\right) \ll \max \left\{\|\mathbf{m}\|^{d \delta^{-1}},\|\mathbf{m}\|^{d\left(1-\delta^{-1}\right)}\right\} \ll\|\mathbf{m}\|^{d\left(1-\delta^{-1}\right)},
$$

for every \mathbf{m}, with $\inf m_{i} \geq 2$. If we suppose that $\|\mathbf{m}\| \leq x$, we see that, as $x \rightarrow \infty$, a positive proportion of these \mathbf{m} is such that $P\left(F_{\mathbf{a}}(\mathbf{m})\right) \ll x^{d\left(1-\delta^{-1}\right)}$. From the trivial equality $\delta n \leq d$, we deduce the inequality $d\left(1-\delta^{-1}\right) \leq d-n / 2$. This gives the proof of Theorem 1 in the case where the a_{i} are not coprime.

The remaining case, corresponding to the situation where

$$
\begin{equation*}
\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=1 \tag{4}
\end{equation*}
$$

is more interesting.

3. Some analytic number theory tools

For a prime p we denote by \mathcal{X}_{p} the set of all multiplicative characters χ modulo p and by \mathcal{X}_{p}^{*} the set of all non principal characters modulo p, see $[6$, Section 3.2] for a background on multiplicative characters. In particular, we have the following orthogonality relations

$$
\frac{1}{p-1} \sum_{\chi \in \mathcal{X}_{p}} \chi(r)= \begin{cases}1 & \text { if } r \equiv 1 \quad(\bmod p) \tag{5}\\ 0 & \text { otherwise }\end{cases}
$$

Our principal tool is the following special case of the large sieve inequality, see [6, Theorem 7.13].

Lemma 3. For any real $Q \geq 2$ and sequence of $L \geq 1$ complex numbers $\alpha_{1}, \ldots, \alpha_{L}$, we have

$$
\sum_{p \leq Q} \sum_{\chi \in \mathcal{X}_{p}^{*}}\left|\sum_{\ell=1}^{L} \alpha_{\ell} \chi(\ell)\right|^{2} \leq\left(Q^{2}+L\right) A
$$

where

$$
A=\sum_{\ell=1}^{L}\left|\alpha_{\ell}\right|^{2} .
$$

We also recall the result of Heath-Brown [5, Corollary 3], about sums of Legendre symbols (ℓ / p) modulo a prime $p \geq 3$.

Lemma 4. For any real numbers $\varepsilon>0, Q \geq 2$ and for any sequence of $L \geq 1$ complex numbers $\alpha_{1}, \ldots, \alpha_{L}$, we have

$$
\sum_{p \leq Q}\left|\sum_{\ell=1}^{L} \alpha_{\ell}\left(\frac{\ell}{p}\right)\right|^{2} \ll_{\varepsilon}(Q L)^{\varepsilon}(Q+L) L A_{0}^{2}
$$

where

$$
A_{0}=\max _{1 \leq \ell \leq L}\left|\alpha_{\ell}\right|
$$

Note that in fact the result of [5, Corollary 3] is more general and the external summation can be extended to all odd square-free integers $s \leq L$.

Finally, we recall the following simple form of the Mertens theorem for arithmetic progressions, which follows instantly from the prime number theorem for arithmetic progressions, see [6, Corollary 5.29], via partial summation. As usual, φ is the Euler function.

Lemma 5. For any fixed integers $q>c \geq 1$ with $\operatorname{gcd}(q, c)=1$, and real $z>w>1$, we have
as $w \rightarrow \infty$.

$$
\sum_{\substack{w \leq p \leq z \\ p \equiv c(\bmod q)}} \frac{1}{p}=\frac{1}{\varphi(q)} \log \frac{\log z}{\log w}+o(1)
$$

4. Average number of solutions of monomial congruences

Instead of (3) it is technically easier to work only with positive solutions, so we consider the congruence

$$
\begin{equation*}
F_{\mathbf{a}}(\mathbf{m}) \equiv 0 \quad(\bmod p) \quad 2 \leq m_{1}, \ldots, m_{n} \leq x \tag{6}
\end{equation*}
$$

We denote by $T_{p}(x)$ the number of solutions to (6).
Now for a vector $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ and real $z>w \geq 3$, we denote by $\mathcal{P}_{\mathbf{a}}(w, z)$, the set of primes $p \in[w, z]$ with

$$
\operatorname{gcd}\left(\frac{p-1}{2}, a_{1} \ldots a_{n}\right)=1
$$

Also for a real $u \geq 1$, we denote by $\mathcal{P}_{\mathbf{a}}(u)=\mathcal{P}_{\mathbf{a}}(u, 2 u)$.

Lemma 6. Assume that the positive integers a_{1}, \ldots, a_{n} satisfy (4). Then as $x \rightarrow \infty$, we have

$$
\sum_{p \in \mathcal{P}_{\mathbf{a}}(u)}\left|T_{p}(x)-\frac{x^{n}}{p}\right| \leq\left(u x^{n / 2}+x^{n-1 / 2}\right) u^{o(1)}
$$

uniformly for $u \geq x$.
Proof. Using (5) to detect solutions we express the number $T_{p}(x)$ of solutions to (6) as

$$
T_{p}(x)=\sum_{2 \leq m_{1}, \ldots, m_{n} \leq x} \frac{1}{p-1} \sum_{\chi \in \mathcal{X}_{p}} \chi\left(m_{1}^{a_{1}} \ldots m_{n}^{a_{n}}\right) .
$$

Changing the order of summation and then separating the contribution $(\lfloor x\rfloor-1)^{n} /(p-1)$ of the principal character, we obtain the inequality

$$
\left|T_{p}(x)-\frac{(\lfloor x\rfloor-1)^{n}}{p-1}\right| \leq \frac{1}{p-1} \sum_{\chi \in \mathcal{X}_{p}^{*}} \prod_{j=1}^{n}\left|S\left(\chi^{a_{j}}, x\right)\right|
$$

where

$$
S\left(\chi^{a_{j}}, x\right)=\sum_{2 \leq m \leq x} \chi\left(m^{a_{j}}\right)=\sum_{2 \leq m \leq x} \chi^{a_{j}}(m) .
$$

Let

$$
\begin{equation*}
W=\sum_{p \in \mathcal{P}_{\mathbf{a}}(u)}\left|T_{p}(x)-\frac{(\lfloor x\rfloor-1)^{n}}{p-1}\right|, \tag{7}
\end{equation*}
$$

we have

$$
W \ll u^{-1} \sum_{p \in \mathcal{P}_{\mathbf{a}}(u)} \sum_{\chi \in \mathcal{X}_{p}^{*}} \prod_{j=1}^{n}\left|S\left(\chi^{a_{j}}, x\right)\right| .
$$

We now separate from the sum on the right hand side of the above inequality the contribution of Legendre symbols (\cdot / p), getting

$$
\begin{equation*}
W \ll \sigma_{1}+\sigma_{2} \tag{8}
\end{equation*}
$$

where

$$
\sigma_{1}=u^{-1} \sum_{p \in \mathcal{P}_{\mathbf{a}}(u)} \sum_{\substack{\chi \in \mathcal{X}_{p}^{*} \\ \chi \neq(\cdot / p)}} \prod_{j=1}^{n}\left|S\left(\chi^{a_{j}}, x\right)\right|,
$$

and

$$
\sigma_{2}=u^{-1} \sum_{p \in \mathcal{P}_{\mathbf{a}}(u)} \prod_{j=1}^{n}\left|S\left((\cdot / p)^{a_{j}}, x\right)\right| .
$$

To estimate σ_{1}, we use the Hölder inequality, to derive

$$
\sigma_{1}^{n} \leq u^{-n} \prod_{j=1}^{n} \sum_{p \in \mathcal{P}_{\mathbf{a}}(u)} \sum_{\substack{x \in \mathcal{X}_{p}^{*} \\ \chi \neq(\cdot / p)}}\left|S\left(\chi^{a_{j}}, x\right)\right|^{n}
$$

The coprimality condition $\operatorname{gcd}\left((p-1) / 2, a_{j}\right)=1$ implies that when χ runs through all other characters of \mathcal{X}_{p}^{*} with $\chi \neq(\cdot / p)$ then the character $\chi^{a_{j}}$ is never principal and takes the same value at most two times, $j=1, \ldots, n$. From these considerations, we deduce the inequality

$$
\sum_{\substack{\chi \in \mathcal{X}_{p}^{*} \\ \chi \neq(\cdot / p)}}\left|S\left(\chi^{a_{j}}, x\right)\right|^{n} \leq 2 \sum_{\chi \in \mathcal{X}_{p}^{*}}|S(\chi, x)|^{n}
$$

and we obtain

$$
\sigma_{1}^{n} \ll u^{-n}\left(\sum_{p \in \mathcal{P}_{\mathbf{a}}(u)} \sum_{\chi \in \mathcal{X}_{p}^{*}}|S(\chi, x)|^{n}\right)^{n}
$$

which reduces to

$$
\sigma_{1} \ll u^{-1} \sum_{p \in \mathcal{P}_{\mathbf{a}}(u)} \sum_{\chi \in \mathcal{X}_{p}^{*}}|S(\chi, x)|^{n}
$$

To apply the large sieve inequality, we want to deal with squares of trigonometric sums. We write $n=1+(n-1)$ and apply the Cauchy-Schwarz inequality to derive

$$
\sigma_{1}^{2} \ll u^{-2}\left(\sum_{p \in \mathcal{P}_{\mathbf{a}}(u)} \sum_{\chi \in \mathcal{X}_{p}^{*}}|S(\chi, x)|^{2}\right) \cdot\left(\sum_{p \in \mathcal{P}_{\mathbf{a}}(u)} \sum_{\chi \in \mathcal{X}_{p}^{*}}|S(\chi, x)|^{2 n-2}\right) .
$$

We apply the large sieve inequality to each of the sums in the above expression. For the second one we put $L=\left\lfloor x^{n-1}\right\rfloor$ and write

$$
S(\chi, x)^{n-1}=\sum_{\ell=1}^{L} \alpha_{\ell} \chi(\ell)
$$

where α_{ℓ} is the number of representations of ℓ in the form $\ell=m_{1} \ldots m_{n-1}$ with $2 \leq m_{1}, \ldots, m_{n-1} \leq x$. By the well known bound on the divisor function, see [6, Bound 1.81], we have $\alpha_{\ell}=x^{o(1)}$. Thus applying twice Lemma 3 we obtain

$$
\sigma_{1}^{2} \leq u^{-2}\left(\left(u^{2}+x\right) x\right) \cdot\left(\left(u^{2}+x^{n-1}\right) x^{n-1}\right) x^{o(1)}
$$

which finally gives

$$
\begin{equation*}
\sigma_{1} \ll\left(u x^{n / 2}+x^{n-1 / 2}\right) x^{o(1)} \tag{9}
\end{equation*}
$$

since we supposed $u \geq x$.
Now, for the study of σ_{2} we note that (4) implies that at least one of the exponents a_{1}, \ldots, a_{n}, say, a_{1} is odd. Then we trivially have the inequality

$$
\sigma_{2} \leq u^{-1} x^{n-1} \sum_{p \in \mathcal{P}_{\mathbf{a}}(u)} \prod_{j=1}^{n}\left|S\left((\cdot / p)^{a_{1}}, x\right)\right|=u^{-1} x^{n-1} \sum_{p \in \mathcal{P}_{\mathbf{a}}(u)}|S((\cdot / p), x)| .
$$

Using the Cauchy-Schwarz inequality and Lemma 4, we derive

$$
\begin{aligned}
\sum_{p \in \mathcal{P}_{\mathbf{a}}(u)}|S((\cdot / p), x)| & \leq\left(u \sum_{p \in \mathcal{P}_{\mathbf{a}}(u)}|S((\cdot / p), x)|^{2}\right)^{1 / 2} \\
& \leq(u+x)^{1 / 2} u^{1 / 2+o(1)} x^{1 / 2+o(1)}
\end{aligned}
$$

Therefore, recalling that $u>x$, we obtain

$$
\begin{equation*}
\sigma_{2} \leq u^{o(1)} x^{n-1 / 2} \tag{10}
\end{equation*}
$$

Substituting (9) and (10) in (8), we derive

$$
\begin{equation*}
W \leq\left(u x^{n / 2}+x^{n-1 / 2}\right) u^{o(1)} \tag{11}
\end{equation*}
$$

We now remark that, for $p \in \mathcal{P}_{\mathbf{a}}(u)$ and $u \geq x$, we have the equality

$$
\frac{(\lfloor x\rfloor-1)^{n}}{p-1}=\frac{x^{n}}{p}+O\left(x^{n-1} p^{-1}+x^{n} p^{-2}\right)=\frac{x^{n}}{p}+O\left(x^{n-1} u^{-1}\right)
$$

Combining with (7) and (11), we complete the proof of Lemma 6 .
Via dyadic dissection we immediately derive:
Corollary 7. Assume that the integers $a_{1} \ldots, a_{n}$ satisfy (4). Then for any real $z>w \geq x>1$ we have

$$
\sum_{p \in \mathcal{P}_{\mathbf{a}}(w, z)}\left|T_{p}(x)-\frac{x^{n}}{p}\right| \leq\left(z x^{n / 2}+x^{n-1 / 2}\right) z^{o(1)}
$$

5. Proof of Theorem 1

Following the idea of [4] we consider the sum

$$
\Sigma_{\mathbf{a}}(x ; w, z)=\sum_{\substack{p \in \mathcal{P}(w, z)}} \sum_{\substack{2 \leq m_{1}, \ldots, m_{n} \leq x \\ p \mid F_{\mathbf{a}}\left(m_{1}, \ldots, m_{n}\right)}} 1=\sum_{p \in \mathcal{P}(w, z)} T_{p}(x) .
$$

Applying Corollary 7, we see that

$$
\begin{equation*}
\Sigma_{\mathbf{a}}(x ; w, z)=x^{n} \sum_{p \in \mathcal{P}(w, z)} \frac{1}{p}+O\left(\left(z x^{n / 2}+x^{n-1 / 2}\right) z^{o(1)}\right) \tag{12}
\end{equation*}
$$

Clearly, the set $\mathcal{P}(w, z)$ contains all primes $p \in[w, z]$ in the arithmetic progression

$$
p \equiv-1 \quad\left(\bmod 2 a_{1} \ldots a_{n}\right)
$$

since we have

$$
\frac{p-1}{2} \equiv-1 \quad\left(\bmod a_{1} \ldots a_{n}\right)
$$

for such primes. We now fix some sufficiently small $\varepsilon>0$ and choose

$$
w=x^{n / 2-\varepsilon} \quad \text { and } \quad z=x^{n / 2-\varepsilon / 2}
$$

Since we always have $\varphi(n) \leq n$, Lemma 5 implies the lower bound

$$
\sum_{p \in \mathcal{P}(w, z)} \frac{1}{p} \geq \frac{1}{2 a_{1} \ldots a_{n}} \log \frac{n / 2-\varepsilon / 2}{n / 2-\varepsilon}+o(1)
$$

and with the above choice of w and z, we deduce from (12) the following

$$
\begin{equation*}
\Sigma_{\mathbf{a}}(x ; w, z) \gg x^{n} . \tag{13}
\end{equation*}
$$

Now, let \mathcal{M} be the set of vectors $\mathbf{m} \in \mathbb{Z}^{n}$ with $2 \leq\|\mathbf{m}\| \leq x$ and such that $p \mid F_{\mathbf{a}}(\mathbf{m})$ for some $p \in \mathcal{P}_{\mathbf{a}}(w, z)$. For every such vector \mathbf{m} we have $F_{\mathbf{a}}(\mathbf{m}) \neq 0$. Thus we have the following trivial estimate

$$
\sum_{\substack{p \geq w \\ p \mid F_{\mathbf{a}}(\mathbf{m})}} 1 \ll \frac{\log \left|F_{\mathbf{a}}(\mathbf{m})\right|}{\log w} \ll \frac{\log x}{\log w} \ll 1,
$$

which implies

$$
\begin{equation*}
\Sigma_{\mathbf{a}}(x ; w, z) \ll \sharp \mathcal{M} . \tag{14}
\end{equation*}
$$

Comparing (13) and (14), we see that $\sharp \mathcal{M} \gg x^{n}$.
It remains to notice that for every $\mathbf{m} \in \mathcal{M}$ we have $F_{\mathbf{a}}(\mathbf{m})=p M$ with $p \in[w, z]$. Thus

$$
P\left(F_{\mathbf{a}}(\mathbf{m})\right) \ll \max \left\{z, x^{d} / w\right\}
$$

which concludes the proof of Theorem 1.

References

[1] A. Balog, V. Blomer, C. Dartyge and G. Tenenbaum, Friable values of binary forms, Comm. Math. Helv. (to appear).
[2] E. Bombieri, J. Friedlander and H. Iwaniec, Primes in arithmetic progressions, Acta Math. 156 (1986), 203-251.
[3] C. Dartyge, G. Martin and G. Tenenbaum, Polynomial values free of large prime factors, Periodica Math. Hungar. 43 (2001), 111-119.
[4] E. Fouvry, Friabilité des valeurs d'un polynôme, Archiv der Math. 95 (2010), 411-421.
[5] D. R. Heath-Brown, A mean value estimate for real character sums, Acta Arith. 72 (1995), 235-275.
[6] H. Iwaniec and E. Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, 53., American Mathematical Society, Providence, RI, 2004.
[7] G. Martin, An asymptotic formula for the number of smooth values of a polynomial, J. Number Theory 93 (2002), 108-182.
[8] I. E. Shparlinski, On the distribution of points on multidimensional modular hyperbolas, Proc. Japan Acad. Sci., Ser.A 83 (2007), 5-9.
[9] I. E. Shparlinski, On a generalisation of a Lehmer problem, Math. Zeitschrift 263 (2009), 619-631.

ÉTIENNE FOUVRY
UNIVIRSITY PARIS-SUD 11
LABORATOIRE DE MATHÉMATIQUES
UMR 8628 CNRS
ORSAY F-91405 ORSAY CEDEX
FRANCE
E-mail: etienne.fouvry@math.u-psud.fr
IGOR E. SHPARLINSKI
DEPARTMENT OF COMPUTING
MACQUARIE UNIVERSITY
SYDNEY, NSW 2109
AUSTRALIA
E-mail: igor.shparlinski@mq.edu.au
(Received January 10, 2011; revised May 9, 2011)

