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Abstract. We use the large sieve inequality to show that if a1, . . . , an are odd and

coprime positive integers, then for a positive proportion of integral vectors (m1, . . . ,mn)

the values of the ma1
1 . . .man

n − 1 are rather smooth.

1. Introduction

Let a = (a1, . . . , an) be a fixed vector with positive integer components. We

consider the polynomial in n variables Xi (1 ≤ i ≤ n)

Fa(X) = Xa1
1 . . . Xan

n − 1.

of degree

d = a1 + · · ·+ an.

For m = (m1, . . . ,mn) ∈ Zn, we define

Fa(m) = ma1
1 . . .man

n − 1.

Given real positive x and y consider the set

Sa(x, y) = {m ∈ Zn : 2 ≤ ‖m‖ ≤ x, P (Fa(m)) ≤ y}
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where

‖m‖ = max
1≤i≤n

|mi|

and, as usual, P (k) denotes the largest prime divisor of an integer k 6= 0.

Throughout the paper we always assume that n ≥ 2 as in the case of n = 1

one gets stronger estimates from more general results about smooth values of

polynomials, see [3], [7] and references therein. We also notice that smooth values

of binary forms have been studied in [1].

As an application of a quite general result on smooth values of multiva-

riate polynomials, it has been deduced in [4, Corollary 1] that if d ≥ 4 and if

gcd(a1, . . . , an) = 1, then for any fixed ε > 0 there exists two constants ca(ε) > 0

and xa(ε) depending only on a and ε such that for

y = xd−2+2/(n+1)+ε

we have

]Sa(x, y) ≥ ca(ε)x
n, (1)

for every x ≥ xa(ε). The condition of coprimality of the ai seems necessary for

the method, since if δ = gcd(a1, . . . , an) > 1, the polynomial Fa factorizes as

Fa(X) =
(
X

a1
δ

1 · · ·X
an
δ

n

)δ − 1 =
(
X

a1
δ

1 · · ·X
an
δ

n − 1
)
Q(X), (2)

where Q is a polynomial, irreducible or not, of total degree d(1− 1/δ). Hence the

associated varieties are no more absolutely irreducible, which creates important

difficulties for the involved methods of algebraic geometry.

The method of [4] is based on deep techniques on multidimensional exponen-

tial sums to study the number of solutions to the congruence

Fa(m) ≡ 0 (mod p), ‖m‖ ≤ x, (3)

for x that is reasonably small compared to the prime p.

Here we use a different approach to study (3) which, as in [8], [9], is based

on multiplicative character sums. However instead of “individual” bounds of

multiplicative character sums, such as Pólya–Vinogradov and Burgess bounds,

see [6, Theorems 12.5 and 12.6], we use estimates on their average values given

by the large sieve inequality, see [6, Theorem 7.13]. Such an approach already

appears in the classical fact, sometimes called Motohashi’s principle, that the

convolution of two well-behaved sequences of integers satisfies an equidistribution

theorem similar to the Bombieri–Vinogradov Theorem, see [2, Theorem 0 (b)], for

instance. However, in the case when some of the integers a1, . . . , an are even we
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also need a bound of Heath-Brown [5, Theorem 1] on average values of sums of

real characters. In particular, for n ≥ 4 we obtain the bound (1) for much smaller

values of y.

Theorem 1. For any n ≥ 2 and fixed ε > 0 there exist two constants

ca(ε) > 0 and xa(ε) depending only on a and ε such that for

y = xd−n/2+ε

the bound (1) holds for x ≥ xa(ε).

The fact that the proof of Theorem 1 is based on large sieve inequalities gives

some flexibility to our method. For instance, the statement of Theorem 1 can be

easily extended to the situation where for each i = 1, . . . , n, the values of the mi

are taken in a dense subset of integers Mi (for instance, the set of primes).

For a set of integers M and a real x, we denote by M(x) the set of elements

of M, which are up to x by absolute value, that is,

M(x) = M∩ [−x, x].

With these conventions, we enunciate, without proof

Theorem 2. Let n ≥ 2, let a as above and let Mi (1 ≤ i ≤ n) be n subsets

of non zero integers that satisfy

lim
x→∞

log
(
] Mi(x)

)

log x
= 1.

Then, for every fixed ε>0, there exist constants ca(ε, (Mi))>0 and xa (ε, (Mi)),

depending only on ε, a and the sets M1, . . .Mn, such that for x ≥ xa (ε, (Mi))

one has the following lower bound

] {m = (m1, . . . ,mn) : mi ∈ Mi(x), P (Fa(m)) ≥ xd−n/2+ε}

≥ ca (ε, (Mi))

n∏

i=1

(
]Mi(x)

)
.

Throughout the paper, the implied constants in symbols ‘O’ and ‘¿’ may

depend on a (we recall that U ¿ V and U = O(V ) are both equivalent to the

inequality |U | ≤ cV with some constant c > 0).

The letter p always denotes a prime number and k, m, n always denote

positive integer numbers.
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2. The case where the a1, . . . , an are not coprime

As in § 1, let δ = gcd(a1, . . . , an), and we suppose that δ ≥ 2.

By (2), we deduce the inequality

P (Fa(m)) ¿ max{‖m‖dδ−1

, ‖m‖d(1−δ−1)} ¿ ‖m‖d(1−δ−1),

for every m, with infmi ≥ 2. If we suppose that ‖m‖ ≤ x, we see that, as x → ∞,

a positive proportion of these m is such that P (Fa(m)) ¿ xd(1−δ−1). From the

trivial equality δn ≤ d, we deduce the inequality d(1− δ−1) ≤ d−n/2. This gives

the proof of Theorem 1 in the case where the ai are not coprime.

The remaining case, corresponding to the situation where

gcd(a1, . . . , an) = 1, (4)

is more interesting.

3. Some analytic number theory tools

For a prime p we denote by Xp the set of all multiplicative characters χ

modulo p and by X ∗
p the set of all non principal characters modulo p, see [6,

Section 3.2] for a background on multiplicative characters. In particular, we have

the following orthogonality relations

1

p− 1

∑

χ∈Xp

χ (r) =

{
1 if r ≡ 1 (mod p),

0 otherwise.
(5)

Our principal tool is the following special case of the large sieve inequality,

see [6, Theorem 7.13].

Lemma 3. For any real Q ≥ 2 and sequence of L ≥ 1 complex numbers

α1, . . . , αL, we have

∑

p≤Q

∑

χ∈X∗
p

∣∣∣∣∣
L∑

`=1

α`χ(`)

∣∣∣∣∣

2

≤ (Q2 + L)A,

where

A =

L∑

`=1

|α`|2.

We also recall the result of Heath-Brown [5, Corollary 3], about sums of

Legendre symbols (`/p) modulo a prime p ≥ 3.
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Lemma 4. For any real numbers ε > 0, Q ≥ 2 and for any sequence of

L ≥ 1 complex numbers α1, . . . , αL, we have

∑

p≤Q

∣∣∣∣∣
L∑

`=1

α`

(
`

p

) ∣∣∣∣∣

2

¿ε (QL)ε(Q+ L)LA2
0,

where

A0 = max
1≤`≤L

|α`|.

Note that in fact the result of [5, Corollary 3] is more general and the external

summation can be extended to all odd square-free integers s ≤ L.

Finally, we recall the following simple form of the Mertens theorem for arith-

metic progressions, which follows instantly from the prime number theorem for

arithmetic progressions, see [6, Corollary 5.29], via partial summation. As usual,

ϕ is the Euler function.

Lemma 5. For any fixed integers q > c ≥ 1 with gcd(q, c) = 1, and real

z > w > 1, we have

∑

w≤p≤z
p≡c (mod q)

1

p
=

1

ϕ(q)
log

log z

logw
+ o(1),

as w → ∞.

4. Average number of solutions of monomial congruences

Instead of (3) it is technically easier to work only with positive solutions, so

we consider the congruence

Fa(m) ≡ 0 (mod p) 2 ≤ m1, . . . ,mn ≤ x, (6)

We denote by Tp(x) the number of solutions to (6).

Now for a vector a = (a1, . . . , an) and real z > w ≥ 3, we denote by Pa(w, z),

the set of primes p ∈ [w, z] with

gcd

(
p− 1

2
, a1 . . . an

)
= 1.

Also for a real u ≥ 1, we denote by Pa(u) = Pa(u, 2u).
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Lemma 6. Assume that the positive integers a1, . . . , an satisfy (4). Then

as x → ∞, we have

∑

p∈Pa(u)

∣∣∣∣Tp(x)− xn

p

∣∣∣∣ ≤
(
uxn/2 + xn−1/2

)
uo(1),

uniformly for u ≥ x.

Proof. Using (5) to detect solutions we express the number Tp(x) of solu-

tions to (6) as

Tp(x) =
∑

2≤m1,...,mn≤x

1

p− 1

∑

χ∈Xp

χ (ma1
1 . . .man

n ) .

Changing the order of summation and then separating the contribution

(bxc − 1)n/(p− 1) of the principal character, we obtain the inequality

∣∣∣∣Tp(x)− (bxc − 1)n

p− 1

∣∣∣∣ ≤
1

p− 1

∑

χ∈X∗
p

n∏

j=1

|S(χaj , x)|,

where

S(χaj , x) =
∑

2≤m≤x

χ(maj ) =
∑

2≤m≤x

χaj (m).

Let

W =
∑

p∈Pa(u)

∣∣∣∣Tp(x)− (bxc − 1)n

p− 1

∣∣∣∣ , (7)

we have

W ¿ u−1
∑

p∈Pa(u)

∑

χ∈X∗
p

n∏

j=1

|S(χaj , x)|.

We now separate from the sum on the right hand side of the above inequality the

contribution of Legendre symbols (·/p), getting

W ¿ σ1 + σ2 (8)

where

σ1 = u−1
∑

p∈Pa(u)

∑

χ∈X∗
p

χ 6=(·/p)

n∏

j=1

|S(χaj , x)|,

and

σ2 = u−1
∑

p∈Pa(u)

n∏

j=1

|S((·/p)aj , x)|.
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To estimate σ1, we use the Hölder inequality, to derive

σn
1 ≤ u−n

n∏

j=1

∑

p∈Pa(u)

∑

χ∈X∗
p

χ 6=(·/p)

|S(χaj , x)|n.

The coprimality condition gcd((p − 1)/2, aj) = 1 implies that when χ runs

through all other characters of X ∗
p with χ 6= (·/p) then the character χaj is

never principal and takes the same value at most two times, j = 1, . . . , n. From

these considerations, we deduce the inequality

∑

χ∈X∗
p

χ 6=(·/p)

|S(χaj , x)|n ≤ 2
∑

χ∈X∗
p

|S(χ, x)|n

and we obtain

σn
1 ¿ u−n

( ∑

p∈Pa(u)

∑

χ∈X∗
p

|S(χ, x)|n
)n

,

which reduces to

σ1 ¿ u−1
∑

p∈Pa(u)

∑

χ∈X∗
p

|S(χ, x)|n.

To apply the large sieve inequality, we want to deal with squares of trigonometric

sums. We write n = 1 + (n − 1) and apply the Cauchy–Schwarz inequality to

derive

σ2
1 ¿ u−2

( ∑

p∈Pa(u)

∑

χ∈X∗
p

|S(χ, x)|2
)

·
( ∑

p∈Pa(u)

∑

χ∈X∗
p

|S(χ, x)|2n−2

)
.

We apply the large sieve inequality to each of the sums in the above expression.

For the second one we put L = bxn−1c and write

S(χ, x)n−1 =

L∑

`=1

α`χ(`),

where α` is the number of representations of ` in the form ` = m1 . . .mn−1 with

2 ≤ m1, . . . ,mn−1 ≤ x. By the well known bound on the divisor function, see [6,

Bound 1.81], we have α` = xo(1). Thus applying twice Lemma 3 we obtain

σ2
1 ≤ u−2

(
(u2 + x)x

) · ((u2 + xn−1)xn−1
)
xo(1),
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which finally gives

σ1 ¿ (
uxn/2 + xn−1/2

)
xo(1). (9)

since we supposed u ≥ x.

Now, for the study of σ2 we note that (4) implies that at least one of the

exponents a1, . . . , an, say, a1 is odd. Then we trivially have the inequality

σ2 ≤ u−1xn−1
∑

p∈Pa(u)

n∏

j=1

|S((·/p)a1 , x)| = u−1xn−1
∑

p∈Pa(u)

|S((·/p) , x)|.

Using the Cauchy–Schwarz inequality and Lemma 4, we derive

∑

p∈Pa(u)

|S((·/p) , x)| ≤
(
u

∑

p∈Pa(u)

|S((·/p) , x)|2
)1/2

≤ (u+ x)1/2u1/2+o(1)x1/2+o(1).

Therefore, recalling that u > x, we obtain

σ2 ≤ uo(1)xn−1/2. (10)

Substituting (9) and (10) in (8), we derive

W ≤ (
uxn/2 + xn−1/2

)
uo(1). (11)

We now remark that, for p ∈ Pa(u) and u ≥ x, we have the equality

(bxc − 1)n

p− 1
=

xn

p
+O(xn−1p−1 + xnp−2) =

xn

p
+O(xn−1u−1).

Combining with (7) and (11), we complete the proof of Lemma 6 . ¤

Via dyadic dissection we immediately derive:

Corollary 7. Assume that the integers a1 . . . , an satisfy (4). Then for any

real z > w ≥ x > 1 we have

∑

p∈Pa(w,z)

∣∣∣∣Tp(x)− xn

p

∣∣∣∣ ≤
(
zxn/2 + xn−1/2

)
zo(1).
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5. Proof of Theorem 1

Following the idea of [4] we consider the sum

Σa(x;w, z) =
∑

p∈P(w,z)

∑

2≤m1,...,mn≤x
p|Fa(m1,...,mn)

1 =
∑

p∈P(w,z)

Tp(x).

Applying Corollary 7, we see that

Σa(x;w, z) = xn
∑

p∈P(w,z)

1

p
+O

(
(zxn/2 + xn−1/2)zo(1)

)
. (12)

Clearly, the set P(w, z) contains all primes p ∈ [w, z] in the arithmetic progression

p ≡ −1 (mod 2a1 . . . an)

since we have
p− 1

2
≡ −1 (mod a1 . . . an)

for such primes. We now fix some sufficiently small ε > 0 and choose

w = xn/2−ε and z = xn/2−ε/2.

Since we always have ϕ(n) ≤ n, Lemma 5 implies the lower bound

∑

p∈P(w,z)

1

p
≥ 1

2a1 . . . an
log

n/2− ε/2

n/2− ε
+ o(1),

and with the above choice of w and z, we deduce from (12) the following

Σa(x;w, z) À xn. (13)

Now, let M be the set of vectors m ∈ Zn with 2 ≤ ‖m‖ ≤ x and such that

p | Fa(m) for some p ∈ Pa(w, z). For every such vector m we have Fa(m) 6= 0.

Thus we have the following trivial estimate

∑

p≥w
p|Fa(m)

1 ¿ log |Fa(m)|
logw

¿ log x

logw
¿ 1,

which implies

Σa(x;w, z) ¿ ]M. (14)

Comparing (13) and (14), we see that ]M À xn.

It remains to notice that for every m ∈ M we have Fa(m) = pM with

p ∈ [w, z]. Thus

P (Fa(m)) ¿ max{z, xd/w}
which concludes the proof of Theorem 1.
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