Publ. Math. Debrecen **79/3-4** (2011), 423–432 DOI: 10.5486/PMD.2011.5089

Smooth shifted monomial products

By ÉTIENNE FOUVRY (Orsay) and IGOR E. SHPARLINSKI (Sydney)

Dedicated to our colleagues and friends Kálmán Győry, Attila Pethő, János Pintz, András Sárközy

Abstract. We use the large sieve inequality to show that if a_1, \ldots, a_n are odd and coprime positive integers, then for a positive proportion of integral vectors (m_1, \ldots, m_n) the values of the $m_1^{a_1} \ldots m_n^{a_n} - 1$ are rather smooth.

1. Introduction

Let $\mathbf{a} = (a_1, \dots, a_n)$ be a fixed vector with positive integer components. We consider the polynomial in n variables X_i $(1 \le i \le n)$

$$F_{\mathbf{a}}(\mathbf{X}) = X_1^{a_1} \dots X_n^{a_n} - 1.$$

of degree

$$d = a_1 + \dots + a_n.$$

For $\mathbf{m} = (m_1, \ldots, m_n) \in \mathbb{Z}^n$, we define

$$F_{\mathbf{a}}(\mathbf{m}) = m_1^{a_1} \dots m_n^{a_n} - 1.$$

Given real positive x and y consider the set

$$\mathcal{S}_{\mathbf{a}}(x,y) = \{ \mathbf{m} \in \mathbb{Z}^n : 2 \le \|\mathbf{m}\| \le x, \ P(F_{\mathbf{a}}(\mathbf{m})) \le y \}$$

Mathematics Subject Classification: Primary: 11N25; Secondary: 11L40, 11N36.

where

$$\|\mathbf{m}\| = \max_{1 \le i \le n} |m_i|$$

and, as usual, P(k) denotes the largest prime divisor of an integer $k \neq 0$.

Throughout the paper we always assume that $n \ge 2$ as in the case of n = 1 one gets stronger estimates from more general results about smooth values of polynomials, see [3], [7] and references therein. We also notice that smooth values of binary forms have been studied in [1].

As an application of a quite general result on smooth values of multivariate polynomials, it has been deduced in [4, Corollary 1] that if $d \ge 4$ and if $gcd(a_1, \ldots, a_n) = 1$, then for any fixed $\varepsilon > 0$ there exists two constants $c_{\mathbf{a}}(\varepsilon) > 0$ and $x_{\mathbf{a}}(\varepsilon)$ depending only on **a** and ε such that for

 $y = x^{d-2+2/(n+1)+\varepsilon}$

we have

$$\sharp \mathcal{S}_{\mathbf{a}}(x,y) \ge c_{\mathbf{a}}(\varepsilon) x^n,\tag{1}$$

for every $x \ge x_{\mathbf{a}}(\varepsilon)$. The condition of coprimality of the a_i seems necessary for the method, since if $\delta = \gcd(a_1, \ldots, a_n) > 1$, the polynomial $F_{\mathbf{a}}$ factorizes as

$$F_{\mathbf{a}}(\mathbf{X}) = \left(X_1^{\frac{a_1}{\delta}} \cdots X_n^{\frac{a_n}{\delta}}\right)^{\delta} - 1 = \left(X_1^{\frac{a_1}{\delta}} \cdots X_n^{\frac{a_n}{\delta}} - 1\right) Q(\mathbf{X}),\tag{2}$$

where Q is a polynomial, irreducible or not, of total degree $d(1-1/\delta)$. Hence the associated varieties are no more absolutely irreducible, which creates important difficulties for the involved methods of algebraic geometry.

The method of [4] is based on deep techniques on multidimensional exponential sums to study the number of solutions to the congruence

$$F_{\mathbf{a}}(\mathbf{m}) \equiv 0 \pmod{p}, \qquad \|\mathbf{m}\| \le x, \tag{3}$$

for x that is reasonably small compared to the prime p.

Here we use a different approach to study (3) which, as in [8], [9], is based on multiplicative character sums. However instead of "individual" bounds of multiplicative character sums, such as Pólya–Vinogradov and Burgess bounds, see [6, Theorems 12.5 and 12.6], we use estimates on their average values given by the large sieve inequality, see [6, Theorem 7.13]. Such an approach already appears in the classical fact, sometimes called Motohashi's principle, that the convolution of two well-behaved sequences of integers satisfies an equidistribution theorem similar to the Bombieri–Vinogradov Theorem, see [2, Theorem 0 (b)], for instance. However, in the case when some of the integers a_1, \ldots, a_n are even we

also need a bound of HEATH-BROWN [5, Theorem 1] on average values of sums of real characters. In particular, for $n \ge 4$ we obtain the bound (1) for much smaller values of y.

Theorem 1. For any $n \geq 2$ and fixed $\varepsilon > 0$ there exist two constants $c_{\mathbf{a}}(\varepsilon) > 0$ and $x_{\mathbf{a}}(\varepsilon)$ depending only on \mathbf{a} and ε such that for

$$u = x^{d-n/2+\varepsilon}$$

the bound (1) holds for $x \ge x_{\mathbf{a}}(\varepsilon)$.

The fact that the proof of Theorem 1 is based on large sieve inequalities gives some flexibility to our method. For instance, the statement of Theorem 1 can be easily extended to the situation where for each i = 1, ..., n, the values of the m_i are taken in a dense subset of integers \mathcal{M}_i (for instance, the set of primes).

For a set of integers \mathcal{M} and a real x, we denote by $\mathcal{M}(x)$ the set of elements of \mathcal{M} , which are up to x by absolute value, that is,

$$\mathcal{M}(x) = \mathcal{M} \cap [-x, x].$$

With these conventions, we enunciate, without proof

Theorem 2. Let $n \ge 2$, let **a** as above and let \mathcal{M}_i $(1 \le i \le n)$ be n subsets of non zero integers that satisfy

$$\lim_{x \to \infty} \frac{\log(\sharp \mathcal{M}_i(x))}{\log x} = 1.$$

Then, for every fixed $\varepsilon > 0$, there exist constants $c_{\mathbf{a}}(\varepsilon, (\mathcal{M}_i)) > 0$ and $x_{\mathbf{a}}(\varepsilon, (\mathcal{M}_i))$, depending only on ε , **a** and the sets $\mathcal{M}_1, \ldots, \mathcal{M}_n$, such that for $x \ge x_{\mathbf{a}}(\varepsilon, (\mathcal{M}_i))$ one has the following lower bound

$$\sharp \{ \mathbf{m} = (m_1, \dots, m_n) : m_i \in \mathcal{M}_i(x), \ P(F_{\mathbf{a}}(\mathbf{m})) \ge x^{d-n/2+\varepsilon} \}$$
$$\ge c_{\mathbf{a}} \left(\varepsilon, (\mathcal{M}_i) \right) \prod_{i=1}^n \left(\sharp \mathcal{M}_i(x) \right).$$

Throughout the paper, the implied constants in symbols 'O' and ' \ll ' may depend on **a** (we recall that $U \ll V$ and U = O(V) are both equivalent to the inequality $|U| \leq cV$ with some constant c > 0).

The letter p always denotes a prime number and k, m, n always denote positive integer numbers.

2. The case where the a_1, \ldots, a_n are not coprime

As in § 1, let $\delta = \gcd(a_1, \ldots, a_n)$, and we suppose that $\delta \ge 2$. By (2), we deduce the inequality

$$P(F_{\mathbf{a}}(\mathbf{m})) \ll \max\{\|\mathbf{m}\|^{d\delta^{-1}}, \|\mathbf{m}\|^{d(1-\delta^{-1})}\} \ll \|\mathbf{m}\|^{d(1-\delta^{-1})},$$

for every \mathbf{m} , with $\inf m_i \geq 2$. If we suppose that $\|\mathbf{m}\| \leq x$, we see that, as $x \to \infty$, a positive proportion of these \mathbf{m} is such that $P(F_{\mathbf{a}}(\mathbf{m})) \ll x^{d(1-\delta^{-1})}$. From the trivial equality $\delta n \leq d$, we deduce the inequality $d(1-\delta^{-1}) \leq d-n/2$. This gives the proof of Theorem 1 in the case where the a_i are not coprime.

The remaining case, corresponding to the situation where

$$gcd(a_1,\ldots,a_n) = 1, (4)$$

is more interesting.

3. Some analytic number theory tools

For a prime p we denote by \mathcal{X}_p the set of all multiplicative characters χ modulo p and by \mathcal{X}_p^* the set of all non principal characters modulo p, see [6, Section 3.2] for a background on multiplicative characters. In particular, we have the following orthogonality relations

$$\frac{1}{p-1}\sum_{\chi\in\mathcal{X}_p}\chi\left(r\right) = \begin{cases} 1 & \text{if } r \equiv 1 \pmod{p}, \\ 0 & \text{otherwise.} \end{cases}$$
(5)

Our principal tool is the following special case of the large sieve inequality, see [6, Theorem 7.13].

Lemma 3. For any real $Q \ge 2$ and sequence of $L \ge 1$ complex numbers $\alpha_1, \ldots, \alpha_L$, we have

$$\sum_{p \le Q} \sum_{\chi \in \mathcal{X}_p^*} \left| \sum_{\ell=1}^L \alpha_\ell \chi(\ell) \right|^2 \le (Q^2 + L)A,$$

where

$$A = \sum_{\ell=1}^{L} |\alpha_{\ell}|^2.$$

We also recall the result of HEATH-BROWN [5, Corollary 3], about sums of Legendre symbols (ℓ/p) modulo a prime $p \ge 3$.

Smooth shifted monomial products

Lemma 4. For any real numbers $\varepsilon > 0$, $Q \ge 2$ and for any sequence of $L \ge 1$ complex numbers $\alpha_1, \ldots, \alpha_L$, we have

$$\sum_{p \le Q} \left| \sum_{\ell=1}^{L} \alpha_{\ell} \left(\frac{\ell}{p} \right) \right|^{2} \ll_{\varepsilon} (QL)^{\varepsilon} (Q+L) LA_{0}^{2},$$

where

$$A_0 = \max_{1 \le \ell \le L} |\alpha_\ell|.$$

Note that in fact the result of [5, Corollary 3] is more general and the external summation can be extended to all odd square-free integers $s \leq L$.

Finally, we recall the following simple form of the Mertens theorem for arithmetic progressions, which follows instantly from the prime number theorem for arithmetic progressions, see [6, Corollary 5.29], via partial summation. As usual, φ is the Euler function.

Lemma 5. For any fixed integers $q > c \ge 1$ with gcd(q, c) = 1, and real z > w > 1, we have

$$\sum_{\substack{w \le p \le z \\ p \equiv c \pmod{q}}} \frac{1}{p} = \frac{1}{\varphi(q)} \log \frac{\log z}{\log w} + o(1),$$

as $w \to \infty$.

4. Average number of solutions of monomial congruences

Instead of (3) it is technically easier to work only with positive solutions, so we consider the congruence

$$F_{\mathbf{a}}(\mathbf{m}) \equiv 0 \pmod{p} \qquad 2 \le m_1, \dots, m_n \le x,\tag{6}$$

We denote by $T_p(x)$ the number of solutions to (6).

Now for a vector $\mathbf{a} = (a_1, \ldots, a_n)$ and real $z > w \ge 3$, we denote by $\mathcal{P}_{\mathbf{a}}(w, z)$, the set of primes $p \in [w, z]$ with

$$\operatorname{gcd}\left(\frac{p-1}{2}, a_1 \dots a_n\right) = 1.$$

Also for a real $u \ge 1$, we denote by $\mathcal{P}_{\mathbf{a}}(u) = \mathcal{P}_{\mathbf{a}}(u, 2u)$.

Lemma 6. Assume that the positive integers a_1, \ldots, a_n satisfy (4). Then as $x \to \infty$, we have

$$\sum_{p \in \mathcal{P}_{\mathbf{a}}(u)} \left| T_p(x) - \frac{x^n}{p} \right| \le \left(u x^{n/2} + x^{n-1/2} \right) u^{o(1)},$$

uniformly for $u \ge x$.

PROOF. Using (5) to detect solutions we express the number $T_p(x)$ of solutions to (6) as

$$T_p(x) = \sum_{2 \le m_1, \dots, m_n \le x} \frac{1}{p-1} \sum_{\chi \in \mathcal{X}_p} \chi(m_1^{a_1} \dots m_n^{a_n}).$$

Changing the order of summation and then separating the contribution $(\lfloor x \rfloor - 1)^n/(p-1)$ of the principal character, we obtain the inequality

$$\left|T_p(x) - \frac{(\lfloor x \rfloor - 1)^n}{p - 1}\right| \le \frac{1}{p - 1} \sum_{\chi \in \mathcal{X}_p^*} \prod_{j=1}^n |S(\chi^{a_j}, x)|.$$

where

$$S(\chi^{a_j}, x) = \sum_{2 \leq m \leq x} \chi(m^{a_j}) = \sum_{2 \leq m \leq x} \chi^{a_j}(m).$$

Let

$$W = \sum_{p \in \mathcal{P}_{\mathbf{a}}(u)} \left| T_p(x) - \frac{(\lfloor x \rfloor - 1)^n}{p - 1} \right|,\tag{7}$$

we have

$$W \ll u^{-1} \sum_{p \in \mathcal{P}_{\mathbf{a}}(u)} \sum_{\chi \in \mathcal{X}_p^*} \prod_{j=1}^n |S(\chi^{a_j}, x)|.$$

We now separate from the sum on the right hand side of the above inequality the contribution of Legendre symbols (\cdot/p) , getting

$$W \ll \sigma_1 + \sigma_2 \tag{8}$$

where

$$\sigma_1 = u^{-1} \sum_{\substack{p \in \mathcal{P}_{\mathbf{a}}(u) \\ \chi \neq (\cdot/p)}} \sum_{\substack{\chi \in \mathcal{X}_p^* \\ \chi \neq (\cdot/p)}} \prod_{j=1}^n |S(\chi^{a_j}, x)|,$$

and

$$\sigma_2 = u^{-1} \sum_{p \in \mathcal{P}_{\mathbf{a}}(u)} \prod_{j=1}^n |S((\cdot/p)^{a_j}, x)|.$$

Smooth shifted monomial products

To estimate σ_1 , we use the Hölder inequality, to derive

$$\sigma_1^n \le u^{-n} \prod_{j=1}^n \sum_{p \in \mathcal{P}_{\mathbf{a}}(u)} \sum_{\substack{\chi \in \mathcal{X}_p^* \\ \chi \ne (\cdot/p)}} |S(\chi^{a_j}, x)|^n$$

The coprimality condition $gcd((p-1)/2, a_j) = 1$ implies that when χ runs through all other characters of \mathcal{X}_p^* with $\chi \neq (\cdot/p)$ then the character χ^{a_j} is never principal and takes the same value at most two times, $j = 1, \ldots, n$. From these considerations, we deduce the inequality

$$\sum_{\substack{\chi\in\mathcal{X}_p^*\\\chi\neq(\cdot/p)}}|S(\chi^{a_j},x)|^n\leq 2\sum_{\chi\in\mathcal{X}_p^*}|S(\chi,x)|^n$$

and we obtain

$$\sigma_1^n \ll u^{-n} \left(\sum_{p \in \mathcal{P}_{\mathbf{a}}(u)} \sum_{\chi \in \mathcal{X}_p^*} |S(\chi, x)|^n \right)^n,$$

which reduces to

$$\sigma_1 \ll u^{-1} \sum_{p \in \mathcal{P}_{\mathbf{a}}(u)} \sum_{\chi \in \mathcal{X}_p^*} |S(\chi, x)|^n.$$

To apply the large sieve inequality, we want to deal with squares of trigonometric sums. We write n = 1 + (n - 1) and apply the Cauchy–Schwarz inequality to derive

$$\sigma_1^2 \ll u^{-2} \left(\sum_{p \in \mathcal{P}_{\mathbf{a}}(u)} \sum_{\chi \in \mathcal{X}_p^*} |S(\chi, x)|^2 \right) \cdot \left(\sum_{p \in \mathcal{P}_{\mathbf{a}}(u)} \sum_{\chi \in \mathcal{X}_p^*} |S(\chi, x)|^{2n-2} \right).$$

We apply the large sieve inequality to each of the sums in the above expression. For the second one we put $L = \lfloor x^{n-1} \rfloor$ and write

$$S(\chi, x)^{n-1} = \sum_{\ell=1}^{L} \alpha_{\ell} \chi(\ell),$$

where α_{ℓ} is the number of representations of ℓ in the form $\ell = m_1 \dots m_{n-1}$ with $2 \leq m_1, \dots, m_{n-1} \leq x$. By the well known bound on the divisor function, see [6, Bound 1.81], we have $\alpha_{\ell} = x^{o(1)}$. Thus applying twice Lemma 3 we obtain

$$\sigma_1^2 \le u^{-2} \big((u^2 + x)x \big) \cdot \big((u^2 + x^{n-1})x^{n-1} \big) x^{o(1)},$$

which finally gives

$$\sigma_1 \ll \left(u x^{n/2} + x^{n-1/2} \right) x^{o(1)}. \tag{9}$$

since we supposed $u \ge x$.

Now, for the study of σ_2 we note that (4) implies that at least one of the exponents a_1, \ldots, a_n , say, a_1 is odd. Then we trivially have the inequality

$$\sigma_2 \le u^{-1} x^{n-1} \sum_{p \in \mathcal{P}_{\mathbf{a}}(u)} \prod_{j=1}^n |S((\cdot/p)^{a_1}, x)| = u^{-1} x^{n-1} \sum_{p \in \mathcal{P}_{\mathbf{a}}(u)} |S((\cdot/p), x)|.$$

Using the Cauchy–Schwarz inequality and Lemma 4, we derive

$$\sum_{p \in \mathcal{P}_{\mathbf{a}}(u)} |S((\cdot/p), x)| \le \left(u \sum_{p \in \mathcal{P}_{\mathbf{a}}(u)} |S((\cdot/p), x)|^2\right)^{1/2} \le (u+x)^{1/2} u^{1/2+o(1)} x^{1/2+o(1)}.$$

Therefore, recalling that u > x, we obtain

$$\sigma_2 \le u^{o(1)} x^{n-1/2}. \tag{10}$$

Substituting (9) and (10) in (8), we derive

$$W \le \left(u x^{n/2} + x^{n-1/2} \right) u^{o(1)}.$$
(11)

We now remark that, for $p \in \mathcal{P}_{\mathbf{a}}(u)$ and $u \ge x$, we have the equality

$$\frac{(\lfloor x \rfloor - 1)^n}{p - 1} = \frac{x^n}{p} + O(x^{n - 1}p^{-1} + x^n p^{-2}) = \frac{x^n}{p} + O(x^{n - 1}u^{-1}).$$

Combining with (7) and (11), we complete the proof of Lemma 6.

Via dyadic dissection we immediately derive:

Corollary 7. Assume that the integers $a_1 \ldots, a_n$ satisfy (4). Then for any real $z > w \ge x > 1$ we have

$$\sum_{p \in \mathcal{P}_{\mathbf{a}}(w,z)} \left| T_p(x) - \frac{x^n}{p} \right| \le \left(z x^{n/2} + x^{n-1/2} \right) z^{o(1)}.$$

Smooth shifted monomial products

5. Proof of Theorem 1

Following the idea of [4] we consider the sum

$$\Sigma_{\mathbf{a}}(x;w,z) = \sum_{\substack{p \in \mathcal{P}(w,z) \\ p \mid F_{\mathbf{a}}(m_1,\dots,m_n)}} \sum_{\substack{2 \le m_1,\dots,m_n \le x \\ p \mid F_{\mathbf{a}}(m_1,\dots,m_n)}} 1 = \sum_{p \in \mathcal{P}(w,z)} T_p(x)$$

Applying Corollary 7, we see that

$$\Sigma_{\mathbf{a}}(x;w,z) = x^n \sum_{p \in \mathcal{P}(w,z)} \frac{1}{p} + O\big((zx^{n/2} + x^{n-1/2})z^{o(1)}\big).$$
(12)

Clearly, the set $\mathcal{P}(w, z)$ contains all primes $p \in [w, z]$ in the arithmetic progression

$$p \equiv -1 \pmod{2a_1 \dots a_n}$$

since we have

$$\frac{p-1}{2} \equiv -1 \pmod{a_1 \dots a_n}$$

for such primes. We now fix some sufficiently small $\varepsilon > 0$ and choose

$$w = x^{n/2-\varepsilon}$$
 and $z = x^{n/2-\varepsilon/2}$.

Since we always have $\varphi(n) \leq n$, Lemma 5 implies the lower bound

$$\sum_{p \in \mathcal{P}(w,z)} \frac{1}{p} \ge \frac{1}{2a_1 \dots a_n} \log \frac{n/2 - \varepsilon/2}{n/2 - \varepsilon} + o(1),$$

and with the above choice of w and z, we deduce from (12) the following

$$\Sigma_{\mathbf{a}}(x;w,z) \gg x^n. \tag{13}$$

Now, let \mathcal{M} be the set of vectors $\mathbf{m} \in \mathbb{Z}^n$ with $2 \leq ||\mathbf{m}|| \leq x$ and such that $p \mid F_{\mathbf{a}}(\mathbf{m})$ for some $p \in \mathcal{P}_{\mathbf{a}}(w, z)$. For every such vector \mathbf{m} we have $F_{\mathbf{a}}(\mathbf{m}) \neq 0$. Thus we have the following trivial estimate

$$\sum_{\substack{p \ge w \\ p \mid F_{\mathbf{a}}(\mathbf{m})}} 1 \ll \frac{\log |F_{\mathbf{a}}(\mathbf{m})|}{\log w} \ll \frac{\log x}{\log w} \ll 1,$$

which implies

$$\Sigma_{\mathbf{a}}(x;w,z) \ll \sharp \mathcal{M}.$$
(14)

Comparing (13) and (14), we see that $\sharp \mathcal{M} \gg x^n$.

It remains to notice that for every $\mathbf{m} \in \mathcal{M}$ we have $F_{\mathbf{a}}(\mathbf{m}) = pM$ with $p \in [w, z]$. Thus

$$P(F_{\mathbf{a}}(\mathbf{m})) \ll \max\{z, x^d/w\}$$

which concludes the proof of Theorem 1.

432 É. Fouvry and I. E. Shparlinski : Smooth shifted monomial products

References

- A. BALOG, V. BLOMER, C. DARTYGE and G. TENENBAUM, Friable values of binary forms, Comm. Math. Helv. (to appear).
- [2] E. BOMBIERI, J. FRIEDLANDER and H. IWANIEC, Primes in arithmetic progressions, Acta Math. 156 (1986), 203–251.
- [3] C. DARTYGE, G. MARTIN and G. TENENBAUM, Polynomial values free of large prime factors, *Periodica Math. Hungar.* 43 (2001), 111–119.
- [4] E. FOUVRY, Friabilité des valeurs d'un polynôme, Archiv der Math. 95 (2010), 411-421.
- [5] D. R. HEATH-BROWN, A mean value estimate for real character sums, Acta Arith. 72 (1995), 235–275.
- [6] H. IWANIEC and E. KOWALSKI, Analytic number theory, American Mathematical Society Colloquium Publications, 53., American Mathematical Society, Providence, RI, 2004.
- [7] G. MARTIN, An asymptotic formula for the number of smooth values of a polynomial, J. Number Theory 93 (2002), 108–182.
- [8] I. E. SHPARLINSKI, On the distribution of points on multidimensional modular hyperbolas, Proc. Japan Acad. Sci., Ser.A 83 (2007), 5–9.
- [9] I. E. SHPARLINSKI, On a generalisation of a Lehmer problem, Math. Zeitschrift 263 (2009), 619–631.

ÉTIENNE FOUVRY UNIVIRSITY PARIS-SUD 11 LABORATOIRE DE MATHÉMATIQUES UMR 8628 CNRS ORSAY F-91405 ORSAY CEDEX FRANCE

E-mail: etienne.fouvry@math.u-psud.fr

IGOR E. SHPARLINSKI DEPARTMENT OF COMPUTING MACQUARIE UNIVERSITY SYDNEY, NSW 2109 AUSTRALIA

E-mail: igor.shparlinski@mq.edu.au

(Received January 10, 2011; revised May 9, 2011)