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Abstract. Given an L-function F (s) from the extended Selberg class, we associate

a function ΦF (x, y). We show that the functions ΦF (x, y) are, in the general case, the

analogs of the modular forms associated with the GL2 L-functions. Indeed, we prove

that every ΦF (x, y) is eigenfunction of a certain partial differential operator. Moreover,

we prove a general correspondence theorem for such L-functions involving the functions

ΦF (x, y).

Let F (s) be a function in the extended Selberg class S]. This means that

(s−1)mF (s) is entire of finite order for some non-negative integer m, F (s) is rep-

resentable for σ > 1 as an absolutely convergent Dirichlet series with coefficients

a(n) and satisfies the functional equation

γ(s)F (s) = ωγ̄(1− s)F̄ (1− s)

with |ω| = 1 and

γ(s) = Qs
r∏

j=1

Γ(λjs+ µj),
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where Q > 0, <µj ≥ 0 and λj > 0. Here f̄(s) = f(s). We also write dF =

2
∑r

j=1 λj for the degree of F (s) and

µ =
1

2
+

r∑

j=1

(
µj − 1

2

)
.

Moreover, for x, y ∈ R with y > 0, we let

ΦF (x, y) = y−µ
∞∑

n=1

a(n)γ̃(n
√
qy)e(nx)

where q = qF = (2π)dFQ2
∏r

j=1 λ
2λj

j is the conductor of F (s), e(x) = e2πix and

γ̃(ξ) is the inverse Mellin transform of the gamma-factor γ(s), i.e. for ξ > 0

γ̃(ξ) =
1

2πi

∫ 2+i∞

2−i∞
γ(s)ξ−sds.

Since γ̃(ξ) ¿ ξ−A for every A > 0, the series defining ΦF (x, y) has good conver-

gence properties.

Examples of ΦF (x, y). The function ΦF (x, y) becomes a familiar object when

F (s) is a classical L-function of degree 2.

1. Holomorphic cusp forms. Let f(z) be a holomorphic cusp form of weight

k and level N

f(z) =

∞∑
n=1

α(n)e(nz), z = x+ iy;

see Ch. 7 of Iwaniec [3]. Writing a(n) = α(n)n−(k−1)/2, the normalized L-

function associated with f(z) is

L(s, f) =

∞∑
n=1

a(n)

ns
,

hence F (s) = L(s, f) is an entire function of degree 2 in S] with

γ(s) =

(√
N

2π

)s

Γ

(
s+

k − 1

2

)
, µ =

k − 1

2
, q = N. (1)

We therefore have

γ̃(ξ) =
1

2πi

∫ 2+i∞

2−i∞
Γ(s+ µ)

(
2πξ√
q

)−s

ds =

( √
q

2πξ

)−µ

e−2πξ/
√
q
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and hence

ΦF (x, y) = (2π)µ
∞∑

n=1

a(n)nµe−2πny+2πinx = (2π)µf(z). (2)

2. Maass forms. Let f(z) be a Maass form of level N and given parity

f(z) =
√
y
∑

n6=0

a(n)nεKiκ(2π|n|y)e(nx), z = x+ iy

where 1/4 + κ2 is the eigenvalue of f(z), Kiκ(z) is the Bessel K-function and

ε = 0 if f(z) is even, ε = 1 otherwise; see Ch. 3 of Terras [12]. The L-function

associated with f(z) is

L(s, f) =

∞∑
n=1

a(n)

ns
,

hence F (s) = L(s, f) is an entire function of degree 2 in S] with

γ(s) =

(√
N

π

)s

Γ

(
s+ ε+ iκ

2

)
Γ

(
s+ ε− iκ

2

)
, µ = ε− 1

2
, q = N.

In this case we have

γ̃(ξ) =
1

2πi

∫ 2+i∞

2−i∞
Γ

(
s+ ε+ iκ

2

)
Γ

(
s+ ε− iκ

2

)(
πξ√
q

)−s

ds.

Making the substitution s + ε + iκ = 2w and using the following integral repre-

sentation (obtained by the inverse Mellin transform of formula 11.1 of p. 115 of

Oberhettinger [10], choosing a = 2)

Kν(z) =
1

2

(z
2

)ν 1

2πi

∫ c+i∞

c−i∞
Γ(w)Γ(w − ν)

(z
2

)−2w

dw

with c > max(0,<ν), we obtain

γ̃(ξ) =

(
πξ√
q

)ε

Kiκ

(
2πξ√
q

)

and hence

ΦF (x, y) = πε√y

∞∑
n=1

a(n)nεKiκ(2πny)e(nx) =
πε

2
f(z). (3)
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Therefore, in both cases ΦF (x, y) reduces (essentially) to the modular form to

which F (s) is associated. ¤
In Theorem 1 below we assume that λj ∈ Q for every j. Hence, without loss

of generality, we may assume that the λj are all equal and of the form

λj =
1

k
k ∈ N, j = 1, . . . , r (4)

(this can be seen by means of the multiplication formula for the Γ function, see

[6]). In particular, the degree dF is a rational number; note that it is expected

that dF ∈ N for every F ∈ S]. For F ∈ S] satisfying (4) we consider the partial

differential operator

D =

r∏

j=1

(
−1

k
y
∂

∂y
+ µj − µ

k

)
− (2π)r−k

krik
yk

∂k

∂xk
,

where multiplication means composition of differential operators. Note that

ΦF (x, y) depends strongly on F (s), while D depends only on the functional equa-

tion satisfied by F (s). However, the operator D is not invariant, in the sense that

it depends on the shape of the functional equation of F (s), which may be changed

by applications of the multiplication formula for the Γ function. We have

Theorem 1. Let F ∈ S] satisfy (4). Then

DΦF (x, y) = 0.

Remark. Let D0 be a partial differential operator of the form

D0 =

r∏

j=1

(
−λy

∂

∂y
+ νj

)
.

It is not difficult to detect the structure of such operators. Indeed, it can be

proved that D0 can be written as

D0 =

r∑

j=0

Wj,r(λ, νj)y
j ∂j

∂yj

where the Wj,r are polynomials satisfying

Wj,r+1 = (νr+1 − jλ)Wj,r − λWj−1,r, W0,r =

r∏

j=1

νj , Wr,r = (−1)rλr.

Moreover, the ring generated by such operators is the polynomial ring C
[
y ∂
∂y

]
. ¤
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Proof of Theorem 1. From the definition of γ̃(ξ) and ΦF (x, y) we have

1

k
y
∂

∂y
ΦF (x, y) = −µ

k
ΦF (x, y)− y−µ

∞∑
n=1

a(n)
1

2πi

∫ 2+i∞

2−i∞
γ(s)(n

√
qy)−s s

k
ds e(nx)

=
(
µj − µ

k

)
ΦF (x, y)− y−µ

∞∑
n=1

a(n)
1

2πi

∫ 2+i∞

2−i∞
γ(s)

( s

k
+ µj

)
(n
√
qy)−sds e(nx),

hence

(
−1

k
y
∂

∂y
+ µj − µ

k

)
ΦF (x, y)

= y−µ
∞∑

n=1

a(n)
1

2πi

∫ 2+i∞

2−i∞
γ(s)

( s

k
+ µj

)
(n
√
qy)−sds e(nx).

Therefore

r∏

j=1

(
−1

k
y
∂

∂y
+ µj − µ

k

)
ΦF (x, y)

= y−µ
∞∑

n=1

a(n)
1

2πi

∫ 2+i∞

2−i∞
γ(s)

r∏

j=1

( s

k
+ µj

)
(n
√
qy)−sds e(nx). (5)

By (4) and the factorial formula for the Γ function we have

γ(s)

r∏

j=1

( s

k
+ µj

)
= Qs

r∏

j=1

Γ
( s

k
+ µj + 1

)
= Q−kγ(s+ k),

hence, by the substitution s+ k = w and using Cauchy’s theorem, the right hand

side of (5) becomes

Q−ky−µ
∞∑

n=1

a(n)
1

2πi

∫ 2+i∞

2−i∞
γ(s+ k)(n

√
qy)−sds e(nx)

= Q−ky−µ(
√
qy)k

∞∑
n=1

a(n)nk 1

2πi

∫ 2+i∞

2−i∞
γ(w)(n

√
qy)−wdw e(nx)

= Q−ky−µ(
√
qy)k

∞∑
n=1

a(n)nkγ̃(n
√
qy)e(nx)

=

( √
q

2πiQ

)k

yk
∂k

∂xk
ΦF (x, y). (6)

The result follows now from (5), (6) and the definition of q. ¤
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Special cases of Theorem 1. Let us examine again two classical cases of

Theorem 1.

1. Holomorphic cusp forms. In this case by (1) we have

D = −y
∂

∂y
+ iy

∂

∂x
= iy

(
∂

∂x
+ i

∂

∂x

)
,

hence DΦF (x, y) = 0 means

∂ΦF (x.y)

∂x
= −i

∂ΦF (x.y)

∂y

i.e. the Cauchy–Riemann equations. But, see (2), ΦF (x, y) = (2π)µf(z), hence

DΦF (x, y) = 0 is equivalent to the fact that f(z) is holomorphic.

2. Maass forms. In this case we have

D =

(
−y

2

∂

∂y
+

ε+ iκ

2
− ε− 1/2

2

)(
−y

2

∂

∂y
+

ε− iκ

2
− ε− 1/2

2

)
+
(y
2

)2 ∂2

∂x2

=
y2

4

(
∂2

∂x2
+

∂2

∂y2

)
+

1

4

(
1

4
+ κ2

)
.

Hence DΦF (x, y) = 0 becomes

−y2
(

∂2

∂x2
+

∂2

∂y2

)
ΦF (x, y) =

(
1

4
+ κ2

)
ΦF (x, y)

i.e. ΦF (x, y) is an eigenfunction of the hyperbolic laplacian, with eigenvalue 1
4+κ2,

as expected by (3). ¤

The classification of the degree 2 L-functions in the Selberg class (i.e., ro-

ughly, the Dirichlet series with functional equation of degree 2 and Euler product)

is a well known open problem, see Selberg [11], Conrey–Ghosh [2] and our

survey papers [5], [4], [7], [8], [9]. Roughly speaking, it is expected that such func-

tions are the L-functions associated with the holomorphic and non-holomorphic

modular forms. The classification of the degree 2 functions in the extended Sel-

berg class (where no Euler product is assumed) is more difficult, and as far as

we know there isn’t even a clear expectation about it. The above special cases

suggest that the functions ΦF (x, y) are, in the general case, the analogs of the

classical modular forms. Such analogy is supported also by the following exten-

sion of the Hecke correspondence theorem; we refer e.g. to Berndt–Knopp [1]
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for an account of Hecke’s correspondence theorem. Suppose that the Dirichlet

series

F (s) =

∞∑
n=1

a(n)

ns

is absolutely convergent for σ > 1, and let µ ∈ C, q > 0, Q > 0, λj > 0 and

<µj ≥ 0. We write γ(s), γ̃(ξ) and ΦF (x, y) as above, and

γ̃∗(ξ) =
1

2πi

∫ 2+i∞

2−i∞
γ̄(s)ξ−sds Φ∗

F (x, y) = y−µ̄
∞∑

n=1

a(n)γ̃∗(n
√
qy)e(nx).

With this notation our general correspondence theorem is

Theorem 2. Let |ω| = 1. With the above notation the following statements

are equivalent.

(i) F (s) extends to an entire function of finite order and satisfies the functional

equation

γ(s)F (s) = ωγ̄(1− s)F̄ (1− s).

(ii) For y > 0 we have

ΦF (0, y) = ωq−µ̄−1/2y−µ̄−µ−1Φ∗
F

(
0,

1

qy

)
.

Remarks. 1. Results of type of Theorem 2 already exist in the literature,

mainly due to S. Bochner and his collaborators and followers. We refer to Chap-

ters 7 and 8 of Berndt–Knopp [1] and to the literature quoted there for several

variants of the principle underlying Theorem 2.

2. The condition that F (s) is entire is not crucial in Theorem 2. Indeed,

the same argument proves a version of Theorem 2 where F (s) in (i) has a pole

at s = 1 and the modular relation in (ii) is slightly modified by adding terms

corresponding to the residue of F (s) at s = 1. ¤

Proof of Theorem 2. We first show that (i) implies (ii). Since F (s) has

polynomial growth, the integrals below have good convergence properties, justi-

fying our formal manipulations. Note first that, thanks to the functional equa-

tion, F (s)γ(s) is an entire function since F (s) is entire and γ(s) is holomorphic

for σ > 0. Hence by Cauchy’s theorem we have

ΦF (0, y) = y−µ 1

2πi

∫ 2+i∞

2−i∞
γ(s)F (s)(

√
qy)−sds
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= ωy−µ 1

2πi

∫ 2+i∞

2−i∞
γ̄(1− s)F̄ (1− s)(

√
qy)−sds

= ωy−µ 1

2πi

∫ −1+i∞

−1−i∞
γ̄(w)F̄ (w)(

√
qy)w−1dw

= ωy−µ 1

2πi

∫ 2+i∞

2−i∞
γ̄(w)F̄ (w)(

√
qy)w−1dw

= ωq−1/2y−µ−1
∞∑

n=1

a(n)
1

2πi

∫ 2+i∞

2−i∞
γ̄(w)

(
n
√
q

qy

)−w

dw,

hence

ΦF (0, y) = ωq−µ̄−1/2y−µ̄−µ−1Φ∗
F

(
0,

1

qy

)

and the first statement follows. Now we prove that (ii) implies (i). We have
(

y√
q

)µ

ΦF

(
0,

y√
q

)
=

1

2πi

∫ 2+i∞

2−i∞
γ(s)F (s)y−sds,

hence by the inversion formula of Mellin’s transform we get

γ(s)F (s) = q−µ/2

∫ ∞

0

ΦF

(
0,

y√
q

)
ys+µ−1dy.

Now we apply the well known trick of splitting the integration over (0,∞) into

(0, 1) ∪ (1,∞) and then transforming the integral over (0, 1). We get

q−µ/2

∫ 1

0

ΦF

(
0,

y√
q

)
ys+µ−1dy = ωq−µ̄/2

∫ 1

0

Φ∗
F

(
0,

1√
qy

)
ys−µ̄−2dy

= ωq−µ̄/2

∫ ∞

1

Φ∗
F

(
0,

y√
q

)
y−s+µ̄dy.

Therefore

γ(s)F (s) = q−µ/2

∫ ∞

1

ΦF

(
0,

y√
q

)
ys+µ−1dy

+ ωq−µ̄/2

∫ ∞

1

Φ∗
F

(
0,

y√
q

)
y−s+µ̄dy. (7)

Thanks to the decay properties of γ̃(ξ) and γ̃∗(ξ) as ξ → ∞, the right hand side of

(7) provides the analytic continuation of γ(s)F (s) to C, as well as the functional

equation. The other properties in (i) follow from this in a standard way. ¤
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