Title: Geometric group theory and arithmetic diameter
Author(s): Melvyn B. Nathanson
Let X be a group with identity e, let A be an infinite set of generators for X, and let $\left(X, d_{A}\right)$ be the metric space with the word metric d_{A} induced by A. If the diameter of the space is infinite, then for every positive integer h there are infinitely many elements $x \in X$ with $d_{A}(e, x)=h$. It is proved that if \mathcal{P} is a nonempty finite set of prime numbers and A is the set of positive integers whose prime factors all belong to \mathcal{P}, then the metric space $\left(\mathbf{Z}, d_{A}\right)$ has infinite diameter. Let $\lambda_{A}(h)$ denote the smallest positive integer x with $d_{A}(e, x)=h$. It is an open problem to compute $\lambda_{A}(h)$ and estimate its growth rate.

Address:

Melvyn B. Nathanson
Lehman College (CUNY)
Bronx, NY 10468
and CUNY Graduate Center
New York, NY 10016
USA

