Year: 2011 | Vol.: 79 | Fasc.: 3-4

Title: Geometric group theory and arithmetic diameter

Author(s): Melvyn B. Nathanson

Let X be a group with identity e, let A be an infinite set of generators for X, and let (X, d_A) be the metric space with the word metric d_A induced by A. If the diameter of the space is infinite, then for every positive integer h there are infinitely many elements $x \in X$ with $d_A(e, x) = h$. It is proved that if \mathcal{P} is a nonempty finite set of prime numbers and A is the set of positive integers whose prime factors all belong to \mathcal{P} , then the metric space (\mathbf{Z}, d_A) has infinite diameter. Let $\lambda_A(h)$ denote the smallest positive integer x with $d_A(e, x) = h$. It is an open problem to compute $\lambda_A(h)$ and estimate its growth rate.

Address:

Melvyn B. Nathanson Lehman College (CUNY) Bronx, NY 10468 and CUNY Graduate Center New York, NY 10016 USA