Title: On the counting function of sets with even partition functions
Author(s): Fethi Ben Saïd and Jean-Louis Nicolas
Let q be an odd positive integer and $P \in F_{2}[z]$ be of order q and such that $P(0)=1$. We denote by $\mathcal{A}=\mathcal{A}(P)$ the unique set of positive integers satisfying $\sum_{n=0}^{\infty} p(\mathcal{A}, n) z^{n} \equiv P(z)(\bmod 2)$, where $p(\mathcal{A}, n)$ is the number of partitions of n with parts in \mathcal{A}. In [?], it is proved that if $A(P, x)$ is the counting function of the set $\mathcal{A}(P)$ then $A(P, x) \ll x(\log x)^{-r / \varphi(q)}$, where r is the order of 2 modulo q and φ is the Euler's function. In this paper, we improve on the constant $c=c(q)$ for which $A(P, x) \ll x(\log x)^{-c}$.

Address:

Fethi Ben Saïd
Université de Monastir
Faculté des Sciences de Monastir
Avenue de l'environnement
5000 Monastir

Tunisie

Address:

Jean-Louis Nicolas
Université de Lyon
Université Lyon 1, CNRS
Institut Camile Jordan, Mathématiques
Batiment Doyen Jean Braconnier
Université Claude Bernard
21 Avenue Claude Bernard
F-69622 Villeurbanne cedex
France

