Publ. Math. Debrecen 80/1-2 (2012), 89–106 DOI: 10.5486/PMD.2012.4881

Semi-invariant submanifolds of \mathcal{K} -manifolds

By LUIGIA DI TERLIZZI, (Bari) FRANCESCA VERROCA (Bari) and ROBERT A. WOLAK (Kraków)

Abstract. We are concerned with \mathcal{K} -manifolds which are a natural generalization of metric quasi-Sasakian manifolds. They are Riemannian manifolds with a compatible f-structure which admits a parallelizable kernel, have closed Sasaki 2-form and verify a certain normality condition. We study semi-invariant submanifolds of a \mathcal{K} -manifold and investigate the integrability of the various distributions involved. We also study the normality of semi-invariant submanifolds and present a significant example.

1. Introduction

We consider a Riemannian manifold \widetilde{M} of dimension 2n + s equipped with an *f*-structure φ of rank 2n with parallelizable kernel which is compatible with the Riemannian metric. These manifolds are known as *f.pk-manifolds* or *globally framed f-manifolds* (cf. [16], [17]) and naturally generalize almost contact metric manifolds. When certain further conditions are satisfied we obtain more specific structures that D. E. BLAIR in [5] calls \mathcal{K} - and \mathcal{S} -structures that naturally generalize quasi-Sasakian and Sasakian structures (e.g. cf. [5], [13], [12]).

There are many examples of such structures, (cf. [5], [15]), even of even dimensional manifolds which are never Kähler but which admit \mathcal{S} -structures; in [15] an \mathcal{S} -structure on the 4-dimensional manifold U(2) is constructed.

The study of semi-invariant submanifolds was started by A. BEJANCU in [1] for the Kählerian case and then intensively continued by several geometers (cf. e.g. [2], [3], [4], [21]) in both the Hermitian and the Sasakian case. Generalizations to the case of S-manifolds can be found in literature (cf. eg. [8], [19]). C. CALIN

Mathematics Subject Classification: 53D10, 53C25.

Key words and phrases: f-structures, K-structures, semi-invariant submanifolds.

(cf. [9], [10]) investigated the case of semi-invariant submanifolds of quasi-Sasakian manifolds. The present paper generalizes this case: in fact, it deals with semi-invariant submanifolds of the \mathcal{K} -manifolds. It is organized in the following way. Section 2 recalls the definitions and results that will be used in the paper. In Section 3 we generalize in a natural way the notion of semi-invariant submanifold of a \mathcal{K} -manifolds, exhibit a pertinent example and study the integrability of the distributions involved in this structure: the invariant the anti-invariant and their direct sums with ker φ . Finally, in Section 4 we present the concept of normality for a semi-invariant submanifold and give two characterizations.

All manifolds and distributions considered are smooth i.e. of the class C^{∞} ; we denote by $\Gamma(-)$ the set of all sections of the corresponding bundle.

2. \mathcal{K} - and \mathcal{S} -manifolds

Let \widetilde{M} be a (2n + s)-dimensional manifold equipped with an f-structure φ , vector fields ξ_1, \ldots, ξ_s and 1-forms η^1, \ldots, η^s such that for all $i, j \in \{1, \ldots, s\}$, $\varphi(\xi_i) = 0, \ \eta^i \circ \varphi = 0, \ \eta^i(\xi_j) = \delta_j^i$ and $\varphi^2 = -\operatorname{Id} + \sum_{j=1}^s \eta^j \otimes \xi_j$. The set $(\widetilde{M}, \varphi, \xi_i, \eta^j), \ i, j \in \{1, \ldots, s\}$, is called an f-manifold with parallelizable kernel (shortly: f.pk-manifold). If g is a Riemannian metric compatible with the structure, that is satisfies $g(\varphi X, \varphi Y) = g(X, Y) - \sum_{i=1}^s \eta^i(X)\eta^i(Y)$, for any $X, Y \in \Gamma(TM)$, the set $(\widetilde{M}, \varphi, \xi_i, \eta^j, g), \ i, j \in \{1, \ldots, s\}$, is called a metric f.pk-manifold. The distribution $\mathcal{D} = \Im\varphi$ is clearly orthogonal to ker $\varphi = \langle \xi_1, \ldots, \xi_s \rangle$. With a metric f.pk-manifold there is naturally associated the Sasaki 2-form $F := g(-, \varphi)$ and the tensor N of type (1, 2) such that $N := [\varphi, \varphi] + 2\sum_{i=1}^s d\eta^i \otimes \xi_i$, where $[\varphi, \varphi]$ is the Nijenhuis torsion of φ . When N = 0 we say that \widetilde{M} is normal. Moreover, if the f.pk-manifold \widetilde{M} is normal and has closed Sasaki 2-form we say that it is a \mathcal{K} -manifold (cf. [5]). Clearly in the case s = 1 we get a quasi-Sasakian manifold. If moreover $d\eta^1 = \cdots = d\eta^s = F$ then the \mathcal{K} -manifold is called an \mathcal{S} -manifold and for s = 1 we have a Sasakian manifold.

S. KANEMAKI obtained in [18] an important characterization of the quasi-Sasakian manifolds. In [13], the authors proved the following generalization of Kanemaki's result.

Theorem 2.1 ([13]). Let $(\widetilde{M}, \varphi, \xi_i, \eta^j, g)$, $i, j \in \{1, \ldots, s\}$, be an f.pk-manifold. Then it is a \mathcal{K} -manifold if and only if

- a) $\mathcal{L}_{\xi_i} \eta^j = 0$ for all $i, j \in \{1, \dots, s\}$
- b) there exists a family A_1, \ldots, A_s of tensor fields of type (1, 1) such that

- (1) $(\nabla_X \varphi) Y = \sum_{i=1}^s \{g(A_i X, Y)\xi_i \eta^i(Y)A_i X\}$
- (2) $A_i \circ \varphi = \varphi \circ A_i$
- (3) $g(A_iX,Y) = g(X,A_iY).$

Remark 2.1. In the proof of this theorem one meets the family of tensor fields $\underline{A}_i = \varphi \circ \nabla \xi_i, i \in \{1, \ldots, s\}$, verifying b) of Theorem 2.1. Moreover, the family $\overline{A}_i = \underline{A}_i + \eta^i \otimes \xi_i, i \in \{1, \ldots, s\}$ is called *the family of indicators* and satisfy b) of Theorem 2.1 and $\overline{A}_i \xi_j = \delta_{ij} \xi_j$ (cf. [13]).

Remark 2.2. It is well known that on an S-manifold $(\widetilde{M}, \varphi, \xi_i, \eta^i, g), i, j \in \{1, \ldots, s\}$, the following identity holds (cf. [7])

$$(\nabla_X \varphi) Y = g(\varphi X, \varphi Y) \bar{\xi} + \bar{\eta}(Y) \varphi^2(X).$$
(2.1)

On the other hand in [14] it is proven that the validity on an f.pk-manifold \widetilde{M} of (2.1) together with $\mathcal{L}_{\xi_i}\eta^j = 0, i, j \in \{i, \ldots, s\}$ and ξ_1, \ldots, ξ_s Killing, implies that $(\widetilde{M}, \varphi, \xi_i, \eta^i, g), i, j \in \{1, \ldots, s\}$, is an \mathcal{S} -manifold. Then we can conclude that on an \mathcal{S} -manifold a family of (1, 1)-tensor fields verifying b) of Theorem 2.1 is given by $A_1 = \cdots = A_s = -\varphi^2$.

In the sequel we will denote by A_1, \ldots, A_s a family of (1, 1)-tensor fields verifying b) of Theorem 2.1.

Taking ξ_k in place of Y in b) 1. of Theorem 2.1 and applying φ to both the sides for each $k \in \{1, \ldots, s\}, X \in \Gamma(T\widetilde{M})$ we get

$$\widetilde{\nabla}_X \xi_k = -\varphi(A_k X) + \sum_{i=1}^s \eta^i (\widetilde{\nabla}_X \xi_k) \xi_i.$$
(2.2)

Then we again apply φ to both sides of the last identity and get

$$A_k X = \varphi(\widetilde{\nabla}_X \xi_k) + \sum_{i=1}^s \eta^i (A_k X) \xi_i.$$
(2.3)

On the other hand, taking in (2.2) ξ_j , $j \in \{1, \ldots, s\}$, in place of X and using $\varphi \circ A_k = A_k \circ \varphi$ we get

$$\widetilde{\nabla}_{\xi_j}\xi_k = \sum_{i=1}^s \eta^i (\widetilde{\nabla}_{\xi_j}\xi_k)\xi_i, \qquad (2.4)$$

that is

$$\widetilde{\nabla}_{\xi_j}\xi_k \in \langle \xi_1, \dots, \xi_k \rangle. \tag{2.5}$$

Then by (2.3) we have

$$A_k \xi_j = \sum_{i=1}^s \eta^i (A_k \xi_j) \xi_i,$$
 (2.6)

that is also $A_k \xi_j \in \ker \varphi$.

Lemma 2.1. Let $(\widetilde{M}, \varphi, \xi_i, \eta^j, g)$, $i, j \in \{1, \ldots, s\}$, be a \mathcal{K} -manifold. Then for each $i \in \{1, \ldots, s\}$ we have

$$\widetilde{\nabla}_{\xi_i}\varphi = 0 \tag{2.7}$$

PROOF. Using identity b)1. of Theorem 2.1 and (2.6) we get

$$(\widetilde{\nabla}_{\xi_i}\varphi)X = \sum_{j,k=1}^s \eta^i(X)\{\eta^j(A_k\xi_i) - \eta^k(A_j\xi_i)\}\xi_k.$$
(2.8)

If in particular we write (2.8) using the indicators \bar{A}_i , $i \in \{1, \ldots, s\}$, since $\bar{A}_i \xi_j = \delta_{ij} \xi_j$ (cf. Remark 2.1), we obtain that $\widetilde{\nabla}_{\xi_i} \varphi = 0$.

3. Semi-invariant submanifolds of K-manifolds

Definition 3.1. Let $(\widetilde{M}, \varphi, \xi_i, \eta^j, g)$, $i, j \in \{1, \ldots, s\}$ be a \mathcal{K} -manifold and M be a submanifold of \widetilde{M} . We say that M is a *semi-invariant submanifold* of \widetilde{M} if there exist two distributions D and D^{\perp} on M such that the following conditions are verified

a) $TM = D \oplus D^{\perp} \oplus \langle \xi_1, \dots, \xi_s \rangle$

b)
$$\varphi(D) \subset D$$

c) $\varphi(D^{\perp}) \subset TM^{\perp}$

where TM^{\perp} is the bundle normal to M. D is called the *invariant distribution*, D^{\perp} the *anti-invariant distribution*. The semi-invariant submanifold is said to be proper if both D and D^{\perp} are non-zero distributions.

From the definition it follows that the distributions D and D^{\perp} are orthogonal. Certainly D has even dimension as φ is an almost complex structure on it. If $D = \{0\}$ then M is an anti-invariant submanifold of \widetilde{M} , i.e. for each $x \in M$ $\varphi(T_xM) \subset T_xM^{\perp}$; if $D^{\perp} = \{0\}$ then M is an invariant submanifold of \widetilde{M} , i.e. for each $x \in M \ \varphi(T_xM) \subset T_xM$.

Any vector field X tangent to the semi-invariant submanifold M we can write as

$$X = PX + QX + \sum_{i=1}^{s} \eta^{i}(X)\xi_{i}, \text{ where } PX \in \Gamma(D), \ QX \in \Gamma(D^{\perp})$$

We give now an example based on the Lie theory. For more details about Lie groups and subgroups see, for example, [20].

Example 3.1. Let us consider a nilpotent Lie algebra \mathfrak{n} , and let N be the simply connected nilpotent Lie group whose Lie algebra is \mathfrak{n} . Then if \mathfrak{n} has rational coefficients, the Lie group N admits a cocompact subgroup Γ - the quotient space $\Gamma/N = M(N, \Gamma)$ is a compact manifold.

Consider the following nilpotent Lie algebra n_8 with the basis

$$\{Z_0, Z_1, X_1, X_2, X_3, Y_1, Y_2, Y_3\}$$

and the bracket

$$[X_i, Y_i] = a_i Z_0 + b_i Z_1$$

where the numbers $a_1, a_2, a_3, b_1, b_2, b_3$ are rational and not zero, and the other brackets are zero.

Define the linear transformation $\varphi: n_8 \to n_8$ by the formula

$$\varphi(X_i) = Y_i, \quad \varphi(Y_i) = -X_i \quad \varphi(Z_i) = 0.$$

The total space of the simply connected Lie group N_8 admits a left invariant Riemannian metric g for which the left-invariant vector fields

$$X_1^*, X_2^*, X_3^*, Y_1^*, Y_2^*, Y_3^*, Z_0^*, Z_1^*$$

are orthonormal, i.e.

$$g(A^*, B^*) = g_0(A, B)$$

for any $A, B \in n_8$ where g_0 is a scalar product on n_8 . As the vectors Z_0 and Z_1 commute with all vectors of n_8 , so $[Z_0^*, A^*] = [Z_1^*, A^*] = 0$ for any $A \in n_8$. It also means that the vector fields Z_0^* and Z_1^* are Killing vector fields of the Riemannian manifold (N_8, g) .

Let us define an f.pk-structure on N_8 for s=2,

$$(N_8, \varphi, \xi_1, \xi_2, \eta^1, \eta^2, g)$$

where $\xi_1 = Z_0^*, \xi_2 = Z_1^*, \eta^1 = g(Z_0^*, .), \eta^2 = g(Z_1^*, .), \varphi(A^*) = \varphi(A)^*.$

It is easy to verify that this structure is normal. Using the structure equations of the Lie algebra n_8 we get that it is a \mathcal{K} -manifold.

First, notice that for an invariant k-form η

$$d\eta(A_1^*, \dots, A_{k+1}^*) = \sum_{i < j} (-1)^{i+j} \eta_e([A_i, A_j], A_0, \dots, \hat{A}_i, \dots, \hat{A}_j, \dots, A_{k+1}).$$

Therefore simple calculations show that our manifold is a \mathcal{K} -manifold. Moreover,

$$d\eta^1 = d\eta^2$$

iff $a_i = b_i$ for i=1,2,3.

This f.pk structure descends to the compact manifold $M(N_8, \Gamma)$ - we denote the corresponding tensors on this manifold by the same letters.

The vectors $\{Z_0, Z_1, X_1, X_2, Y_1\}$ define a 5-dimensional subalgebra of n_8 , and the corresponding simply connected Lie group N_5 is a closed Lie subgroup of N_8 , in particular a closed submanifold. Take the distribution D spanned by X_1^*, Y_1^* over N_5 . Its orthogonal complement in TN_5 is spanned by X_2 . Thus we have constructed a proper semi-invariant submanifold of N_8 . The whole setup descends to the compact manifold $M(N_8, \Gamma)$, and the manifold $\Gamma \cap N_5/N_5$ is its proper semi-invariant submanifold. However, it needn't be a closed submanifold.

We recall that a \mathcal{D} -homothetic deformation on \widetilde{M} of constant a > 0 is a change of the structure in the following way (cf. [11]):

$$\widetilde{\varphi} = \varphi, \quad \widetilde{\xi}_i = \frac{1}{a}\xi_i, \quad \widetilde{\eta}^i = a\eta, \quad \widetilde{g} = ag + a(a-1)\sum_{i=1}^s \eta^i \otimes \eta^i.$$

It is easy to see that $(\widetilde{\varphi}, \widetilde{\xi}_i, \widetilde{\eta}^j, \widetilde{g}), i, j \in \{1, \ldots, s\}$ is a \mathcal{K} -structure on \widetilde{M} . Moreover, if \widetilde{M} carries an \mathcal{S} -structure, then $(\widetilde{\varphi}, \widetilde{\xi}_i, \widetilde{\eta}^j, \widetilde{g}), i, j \in \{1, \ldots, s\}$ is an \mathcal{S} -structure on \widetilde{M} .

Proposition 3.1. Semi-invariant submanifolds are invariant under \mathcal{D} -homothetic deformations.

PROOF. Let M be a semi-invariant submanifold of a \mathcal{K} -manifold $(\widetilde{M}, \varphi, \xi_i, \eta^j, g), i, j \in \{1, \ldots, s\}$ and let $(\widetilde{\varphi}, \widetilde{\xi}_i, \widetilde{\eta}^j, \widetilde{g}), i, j \in \{1, \ldots, s\}$ be a \mathcal{K} structure obtained on \widetilde{M} by a \mathcal{D} -homothetic deformation of constant a. Then for each $x \in M, T_x M^{\perp_g} = T_x M^{\perp_{\widetilde{g}}}$. In fact, for each $X \in T_x M, Y \in T_x M^{\perp_g}$ we have $\widetilde{g}(X, Y) = ag(X, Y) + a(a-1) \sum_{i=1}^s \eta^i(X)\eta^i(Y) = 0$ and then $Y \in T_x M^{\perp_{\widetilde{g}}}$; on the other hand if we take $Z \in T_x M^{\perp_{\widetilde{g}}}$, then we get $ag(X, Z) = \widetilde{g}(X, Z) - a(a-1) \sum_{i=1}^s \eta^i(X)\eta^i(Z) = (a-1) \sum_{i=1}^s \eta^i(X)\widetilde{\eta}^i(Z) = 0$ so that $Z \in T_x M^{\perp_g}$. Now, it is obvious that D, D^{\perp} verify Definition 3.1 with respect to the \mathcal{D} homothetic deformed structure. \Box

We recall the Gauss and Weingarten equations

 $\widetilde{\nabla}_X Y = \nabla_X Y + h(X, Y), \quad \text{for each } X, Y \in \Gamma(TM)$ $\widetilde{\nabla}_X N = -\mathcal{A}_N X + \nabla_X^{\perp} N, \quad \text{for each } X \in \Gamma(TM), \ N \in \Gamma(TM^{\perp}).$

Moreover, the second fundamental form h and the Weingarten operator \mathcal{A}_N are related by the well known identity

$$g(\mathcal{A}_N X, Y) = g(h(X, Y), N).$$
(3.1)

95

By (2.5) it follows that

$$\nabla_{\xi_j}\xi_k \in \langle \xi_1, \dots, \xi_k \rangle, \quad h(\xi_k, \xi_j) = 0.$$
(3.2)

Let us fix some notation: we put for each $X \in \Gamma(TM), N \in \Gamma(TM^{\perp}), Z \in \Gamma(T\widetilde{M})$

$$\varphi X = \tau X + \omega X$$
, where $\tau X \in \Gamma(TM)$, $\omega X \in \Gamma(TM^{\perp})$ (3.3)

$$\varphi N = BN + CN$$
, where $BN \in \Gamma(TM)$, $CN \in \Gamma(TM^{\perp})$ (3.4)

$$A_i Z = \alpha_i Z + \beta_i Z$$
, where $\alpha_i Z \in \Gamma(TM)$, $\beta_i Z \in \Gamma(TM^{\perp})$. (3.5)

Remark 3.1. It follows immediately by (3.3), (3.4) that

$$\omega = \varphi \circ Q. \tag{3.6}$$

Moreover, from the antisymmetry of φ with respect to g we obtain that τ and C are antisymmetric as well. Furthermore, by $\varphi^2 = -Id + \sum_{i=1}^s \eta^i \otimes \xi_i$ we get

$$\tau^2 = -Id + B \circ \omega + \sum_{i=1}^s \eta^i \otimes \xi_i, \qquad (3.7)$$

$$C^2 = -Id - \omega \circ B, \tag{3.8}$$

$$\omega \circ \tau = C \circ \omega = B \circ C = \tau \circ B = 0. \tag{3.9}$$

Applying (3.7) to τX , for any $X \in \Gamma(TM)$, we get that $\tau^3 X = -\tau X$, and then τ is an *f*-structure on the tangent bundle TM; analogously, applying (3.8) to CN, for any $N \in \Gamma(TM^{\perp})$, we get $C^3 = -C$, that is C is an *f*-structure on TM^{\perp} .

In the remaining results of the present section we always suppose that a semiinvariant submanifold M of a \mathcal{K} -manifold $(\widetilde{M}, \varphi, \xi_i, \eta^j, g), i, j \in \{1, \ldots, s\}$, is fixed.

Lemma 3.1. For any vector field tangent to M and $k \in \{1, ..., s\}$ we have:

$$\alpha_k(X) = \tau(\nabla_X \xi_k) + Bh(X, \xi_k) + \sum_{i,j=1}^s \eta^j(X)\eta^j(A_k\xi_i)\xi_i$$
(3.10)

$$\beta_k(X) = \omega(\nabla_X \xi_k) + Ch(X, \xi_k). \tag{3.11}$$

PROOF. By (2.3), (3.5), the Gauss equation and (3.3) we get $\alpha_k(X) + \beta_k(X) = \tau(\nabla_X \xi_k) + \omega(\nabla_X \xi_k) + Bh(X, \xi_k) + Ch(X, \xi_k) + \sum_{i=1}^s g(X, A_k \xi_i)\xi_i$. Then we use (2.6) and compare the tangent and the normal part to obtain (3.10), (3.11).

Proposition 3.2. Let M be a semi-invariant submanifold of a \mathcal{K} -manifold \widetilde{M} . Then $\Gamma(TM)$ is invariant under A_k , $k \in \{1, \ldots, s\}$, that is $A_k(\Gamma(TM)) \subset \Gamma(TM)$, if and only if

$$\omega(\nabla_X \xi_k) = 0 \quad and \quad Ch(X, \xi_k) = 0. \tag{3.12}$$

Furthermore, if $\Gamma(TM)$ is invariant under A_k then both $\Gamma(\mathcal{D})$ and $\Gamma(D^{\perp})$ are invariant under A_k .

PROOF. If $X \in \Gamma(TM)$ then $A_k X$ is tangent to M if and only if $\beta_k(X) = 0$. Hence by Lemma 3.1

$$\omega(\nabla_X \xi_k) + Ch(X, \xi_k) = 0. \tag{3.13}$$

Since C is antisymmetric, by (3.9) for each $Y \in \Gamma(TM)$, $N \in \Gamma(TM^{\perp})$, we have $g(\omega Y, CN) = -g(C\omega Y, N) = 0$ and then the two summands in (3.13) are orthogonal. Hence $\beta_k X = 0$ if and only if each summand in (3.13) is zero, that is (3.12).

To prove the second part, first notice that by (2.6) $g(A_kX,\xi_i) = g(X,A_k\xi_i) = 0$, for any $X \in \Gamma(D)$ or $X \in \Gamma(D^{\perp})$. Then to show the invariance of $\Gamma(D)$ under A_k , it is enough to observe that $X' = -\varphi X \in \Gamma(D)$ and for each $Z \in \Gamma(D^{\perp})$ $g(A_kX,Z) = g(A_k(\varphi X'),Z) = -g(A_kX',\varphi Z) = 0$. Finally, we observe that $g(A_kZ,X) = g(Z,A_kX) = 0$, due to the just proved invariance of $\Gamma(D)$ under A_k . Hence we have invariance of $\Gamma(D^{\perp})$ under A_k .

We recall that the covariant derivatives of τ , ω , B and C are defined respectively by $(\nabla_X \tau)Y = \nabla_X(\tau Y) - \tau(\nabla_X Y)$, $(\stackrel{*}{\nabla}_X \omega)Y = \nabla^{\perp}_X \omega Y - \omega(\nabla_X Y)$, $(\stackrel{*}{\nabla}_X B)N = \nabla_X BN - B(\nabla^{\perp}_X N)$ and $(\nabla^{\perp}_X C)N = \nabla^{\perp}_X CN - C(\nabla^{\perp}_X N)$, for each $X, Y \in \Gamma(TM)$, $N \in \Gamma(TM^{\perp})$.

Lemma 3.2. We have the following explicit expressions of the covariant derivatives

$$(\nabla_X \tau)Y = \sum_{i=1}^s \left\{ g(A_i X, Y)\xi_i - \eta^i(Y)\alpha_i(X) \right\} + \mathcal{A}_{\omega Y}X + Bh(X, Y)$$
$$(\overset{*}{\nabla}_X \omega)Y = -\sum_{i=1}^s \eta^i(Y)\beta_i X - h(X, \tau Y) + Ch(X, Y)$$

$$(\overset{*}{\nabla}_{X}B)N = \sum_{i=1}^{s} g(A_{i}X, N)\xi_{i} + \mathcal{A}_{CN}X - \tau(\mathcal{A}_{N}X)$$
$$(\nabla^{\perp}_{X}C)N = -h(X, BN) - \omega(\mathcal{A}_{N}X)$$

PROOF. By (3.3) and by the Gauss and Weingarten equations we get

$$(\widetilde{\nabla}_X \varphi) Y = \nabla_X (\tau Y) + h(X, \tau Y) - \mathcal{A}_{\omega Y} X + \nabla_X^{\perp} (\omega Y) - \tau (\nabla_X Y) - \omega (\nabla_X Y) - Bh(X, Y) - Ch(X, Y).$$
(3.14)

On the other hand by b)1. of Theorem 2.1 and (3.5) we have

$$(\widetilde{\nabla}_X \varphi) Y = \sum_{i=1}^s \left\{ g(A_i X, Y) \xi_i - \eta^i(Y) \alpha_i X - \eta^i(Y) \beta_i X \right\}.$$
(3.15)

Then we get the first two claimed identities comparing (3.14) and (3.15) and taking separately the tangent and the normal summands.

Analogously, using the Gauss and Weingarten equations we have

$$(\widetilde{\nabla}_X \varphi)N = \nabla_X (BN) + h(X, BN) - \mathcal{A}_{CN} X + \nabla_X^{\perp} CN + \tau(\mathcal{A}_N X) + \omega(\mathcal{A}_N X) - B(\nabla_X^{\perp} N) - C(\nabla_X^{\perp} N)$$

while by b)1. of Theorem 2.1 we get $(\widetilde{\nabla}_X \varphi)N = \sum_{i=1}^s g(A_i X, N)\xi_i$. Then the last two claimed identities follow by comparing the two expressions of $(\widetilde{\nabla}_X \varphi)N$ and taking first the tangent and then the normal summands.

Lemma 3.3. For each $X, Y \in \Gamma(D^{\perp}), U \in \Gamma(TM), V \in \Gamma(D)$ we have

$$\mathcal{A}_{\varphi X}Y = \mathcal{A}_{\varphi Y}X \tag{3.16}$$

$$g(h(U,V),\varphi X) = g(\nabla_U X,\varphi V). \tag{3.17}$$

PROOF. Using (3.1), the Gauss equation, compatibility of φ with respect to g and Weingarten equation we get

$$g(\mathcal{A}_{\varphi X}Y,U) = g(h(Y,U),\varphi X) = g(\widetilde{\nabla}_{U}Y,\varphi X) - g(\widetilde{\nabla}_{U}(\varphi Y),X)$$
$$= g(\mathcal{A}_{\varphi Y}U,X) = g(\mathcal{A}_{\varphi Y}X,U),$$

that is (3.16).

By the Gauss equation, the parallelism of g with respect to $\widetilde{\nabla}$ and b)1. of Theorem 2.1

$$\begin{split} g(h(U,V),\varphi X) &= -g(V,\widetilde{\nabla}_U\varphi X) = -g(V,\varphi(\widetilde{\nabla}_U X)) \\ &= g(\varphi V,\nabla_U X + h(U,X)) = g(\varphi V,\nabla_U X) \end{split}$$

that is (3.17).

We would like to establish some necessary and sufficient conditions for the integrability of various distributions involved in the semi-invariant submanifold. Before going further we need the following

Lemma 3.4. We have

$$g([X,Y],Z) = 0 \quad \forall \ X,Y \in \Gamma(D^{\perp}), \ Z \in \Gamma(D).$$
(3.18)

PROOF. By c) of Definition 3.1 we have $\tau X = \tau Y = 0$ and then $\varphi X = \omega X$, $\varphi Y = \omega Y$. Hence

$$g([X,Y],Z) = g(\varphi[X,Y],\varphi Z) = g(\tau[X,Y],\varphi Z) = -g((\nabla_X \tau)Y - (\nabla_Y \tau)X,\varphi Z)$$
$$= g(\mathcal{A}_{\omega X}Y,\varphi Z) - g(\mathcal{A}_{\omega Y}X,\varphi Z) = 0.$$

Here in the last but one equality we use the first identity of Lemma 3.2 and in the last we use (3.16).

Theorem 3.1. The distribution D^{\perp} is integrable if and only if for all $i \in \{1, \ldots, s\}$ $A_i(\Gamma(D^{\perp}))$ is orthogonal to $\varphi(\Gamma(D^{\perp}))$.

PROOF. Let $X, Y \in \Gamma(D^{\perp}), Z \in \Gamma(D)$. By (2.2) $g(\nabla_X Y, \xi_i) = g(\widetilde{\nabla}_X Y, \xi_i) - g(Y, \widetilde{\nabla}_X \xi_i) = g(Y, \varphi(A_i X)) = -g(\varphi Y, A_i X)$ and hence

$$g([X,Y],\xi_i) = -2g(A_iX,\varphi Y)$$

We conclude that [X, Y] is orthogonal to ker φ if and only if for all $i \in \{1, \ldots, s\}$ $A_i(\Gamma(D^{\perp}))$ and $\varphi(\Gamma(D^{\perp}))$ are orthogonal to each other. By (3.18) we get our claim. \Box

Remark 3.2. Obviously by Proposition 3.2 if for each $i \in \{1, \ldots, s\}$ $\Gamma(TM)$ is invariant under A_i then D^{\perp} is integrable.

By Remark 2.2 and Theorem 3.1 it follows

Corollary 3.1. Let M be a semi-invariant submanifold of an S-manifold \widetilde{M} . Then the distribution D^{\perp} is integrable.

PROOF. In fact, $\varphi(\Gamma(D^{\perp}))$ is orthogonal to $-\varphi^2(\Gamma(D^{\perp})) = A_i(\Gamma(D^{\perp}))$. \Box

Theorem 3.2. The distribution $D^{\perp} \oplus \ker \varphi$ is always integrable.

PROOF. Let $X, Y \in \Gamma(D^{\perp}), Z \in \Gamma(D)$. Since we know by (3.18) that [X, Y] is normal to Z it is sufficient to prove that $[X, \xi_i]$ is orthogonal to Z, for each $i \in \{1, \ldots, s\}$. In fact we have

$$g([X,\xi_i],Z) = g(\varphi[X,\xi_i],\varphi Z) = -g(\varphi(\nabla_X \xi_i),\varphi Z) + g(\varphi(\nabla_{\xi_i} X),\varphi Z)$$

$$= g((\widetilde{\nabla}_X \varphi)\xi_i), \varphi Z) + g(\widetilde{\nabla}_{\xi_i}(\varphi Z), \varphi X)$$

$$= g(A_i X, \varphi Z) + g(h(\xi_i, \varphi Z), \varphi X)$$

$$= g(A_i X, \varphi Z) + g(\varphi X, \widetilde{\nabla}_{\varphi Z}\xi_i)$$

$$= -g(A_i X, \varphi Z) - g(\varphi X, \varphi A_i \varphi X) = 0.$$

Here we use (2.7), b)1. of Theorem 2.1, the Gauss equation and (2.2). The last case is obvious as $[\xi_i, \xi_j] = 0$ (cf. [5]).

Theorem 3.3. The distribution $D \oplus \ker \varphi$ is integrable if and only if

$$h(X, \varphi Y) = h(\varphi X, Y), \text{ for each } X, Y \in \Gamma(D).$$
 (3.19)

PROOF. For each $Z \in \Gamma(D^{\perp})$, $i \in \{1, \ldots, s\}$, by the compatibility of φ with the metric, (2.7), b)1. of Theorem 2.1 and (2.2) we have

$$g([X,\xi_i],Z) = -g((\widetilde{\nabla}_X\varphi)\xi_i,\varphi Z) - g(\widetilde{\nabla}_{\xi_i}(\varphi X),\varphi Z)$$
$$= g(A_iX,\varphi Z) - g(\widetilde{\nabla}_{\varphi X}\xi_i,\varphi Z) = g(A_iX,\varphi Z) + g(\varphi A_i\varphi X,\varphi Z) = 0.$$

On the other hand, from the expression of $\nabla \omega$ in Lemma 3.2, we have

$$(\overset{*}{\nabla}_{X}\omega)Y - (\overset{*}{\nabla}_{Y}\omega)X = -h(X,\varphi Y) + Ch(X,Y) + h(Y,\varphi X) - Ch(Y,X),$$

as for each $i \in \{1, \ldots, s\}$ $\eta^i(X) = \eta^i(Y) = 0$ and $\omega X = \omega Y = 0$, that is $\varphi X = \tau X$, $\varphi Y = \tau Y$. Hence $\omega([X, Y]) = h(X, \varphi Y) - h(Y, \varphi X)$. If $D \oplus \ker \varphi$ is integrable then $[X, Y] \in \Gamma(D \oplus \ker \varphi)$ and hence $\omega[X, Y] = 0$. Vice versa, if $h(X, \varphi Y) = h(\varphi X, Y)$ then by (3.6) $\varphi(Q[X, Y]) = \omega[X, Y] = 0$ so that Q[X, Y] = 0. Hence $[X, Y] \in \Gamma(D \oplus \ker \varphi)$.

Theorem 3.4. The distribution D is integrable if and only if (3.19) is verified and, moreover, for each $i \in \{1, ..., s\}$ $A_i(\Gamma(D))$ and $\Gamma(D)$ are orthogonal.

PROOF. From the proof of Theorem 3.3 we get that for each $X, Y \in \Gamma(D)$, [X, Y] is orthogonal to $\Gamma(D^{\perp})$ if and only if (3.19) is verified. Furthermore, by (2.2) we obtain $g([X, Y], \xi_i) = -g(Y, \widetilde{\nabla}_X \xi_i) + g(X, \widetilde{\nabla}_Y \xi_i) = g(Y, \varphi A_i X) - g(X, \varphi A_i Y) = 2g(A_i X, \varphi Y)$ and this complets the proof. \Box

Corollary 3.2. If there exists $i \in \{1, ..., s\}$ such that A_i is an automorphism of $\Gamma(TM)$ and D is integrable then M is an anti-invariant submanifold.

PROOF. The hypotheses and Proposition 3.2 imply $A_i(\Gamma(D)) = \Gamma(D)$. Then by Theorem 3.4 it follows that $D = \{0\}$.

The following Corollary is a simple consequence of Remark 2.2 and Theorem 3.4.

Corollary 3.3. Let M be a semi-invariant submanifold of an S-manifold \widetilde{M} . Then the distribution D is never integrable.

PROOF. In fact, if D is integrable then $\Gamma(D)$ is orthogonal to $-\varphi^2(\Gamma(D))$, a contradiction.

4. Normal semi-invariant submanifolds of \mathcal{K} -manifolds

The concept of normality for semi-invariant submanifolds of Kählerian manifolds is well-known (e.g. cf. [21]). Furthermore BEJANCU and PAPAGHIUC (cf. [4]) gave the definition of normal semi-invariant submanifold of a Sasakian manifold and Calin extended the definition to a semi-invariant submanifold of a quasi-Sasakian manifold. Now we give a natural generalization of this definition for a semi-invariant submanifold of a \mathcal{K} -manifold.

Definition 4.1. Let M be a semi-invariant submanifold of a \mathcal{K} -manifold M. We say that M is normal if the (1,2)-tensor field S on M defined for each $X, Y \in \Gamma(TM)$ by

$$S(X,Y) = [\tau,\tau](X,Y) - 2Bd\omega(X,Y) + \sum_{i=1}^{s} \{F(\alpha_i X,Y) - F(\alpha_i Y,X)\}\xi_i, \quad (4.1)$$

and called the torsion of the semi-invariant structure, vanishes identically.

Lemma 4.1. For each $X, Y \in \Gamma(TM), k \in \{1, ..., s\}$ the following identities hold

$$d\eta^k(X,Y) = g(\beta_k X, \omega Y) + F(\alpha_k X, Y) + \sum_{i=1}^{\circ} \eta^i (\nabla_X \xi_k) \eta^i(Y)$$
(4.2)

$$d\eta^k(\varphi X,\tau Y) = g(A_k X,\tau Y) \tag{4.3}$$

$$F(\tau X, \tau Y) = F(X, Y) \tag{4.4}$$

PROOF. Since for each $k \in \{1, ..., s\} \xi_k$ is Killing (cf. [5]) we have for any $X, Y \in \Gamma(TM)$

$$d\eta^k(X,Y) = g(Y,\nabla_X\xi_k). \tag{4.5}$$

Then we easily get (4.2) from (2.2), (3.5) and the Gauss equation. By (4.5) and (2.2) we obtain

$$d\eta^k(\varphi X, \tau Y) = -g(\varphi A_k \varphi X, \tau Y) = g(A_k X, \tau Y)$$
(4.6)

that is (4.3).

We observe that for each $X \in \Gamma(TM), N \in \Gamma(TM^{\perp})$ we have

$$g(\omega X, N) = -g(X, BN). \tag{4.7}$$

Hence by (3.9), (3.7), (4.7) and the antisymmetry of τ we infer that

$$F(\tau X, \tau Y) = g(\tau X, \varphi \tau Y) = g(\tau X, \tau^2 Y) = -g(\tau X, Y) + g(\tau X, B\omega Y)$$
$$= g(X, \tau Y) - g(\omega \tau X, \omega Y) = g(X, \varphi Y) = F(X, Y).$$

for any $X, Y \in \Gamma(TM)$. Thus (4.4) has been proved.

Proposition 4.1. We have the following expression for the torsion

$$S(X,Y) = \mathcal{A}_{\omega Y}\tau X - \mathcal{A}_{\omega X}\tau Y - \tau(\mathcal{A}_{\omega Y}X - \mathcal{A}_{\omega X}Y) + \sum_{i=1}^{s} \{\eta^{i}(X)\alpha_{i}\omega(Y) - \eta^{i}(Y)\alpha_{i}\omega(X)\}.$$
(4.8)

for any $X, Y \in \Gamma(TM)$.

PROOF. By a direct computation, for each $X, Y \in \Gamma(TM)$ we get

$$[\tau,\tau](X,Y) = (\nabla_{\tau X}\tau)Y - (\nabla_{\tau Y}\tau)X + \tau \left((\nabla_{Y}\tau)X - (\nabla_{X}\tau)Y\right).$$
(4.9)

On the other hand, by Lemma 3.2 we have that

$$2d\omega(X,Y) = (\overset{*}{\nabla}_{X}\omega)Y - (\overset{*}{\nabla}_{Y}\omega)X = \sum_{i=1}^{s} \{\eta^{i}(X)\beta_{i}(Y) - \eta^{i}(Y)\beta_{i}(X)\} - h(X,\tau Y) + h(Y,\tau X).$$
(4.10)

Hence from (4.9), (4.10) it follows that the tensor field S can be written as

$$S(X,Y) = (\nabla_{\tau X}\tau)Y - (\nabla_{\tau Y}\tau)X + \tau ((\nabla_{Y}\tau)X - (\nabla_{X}\tau)Y) + \sum_{i=1}^{s} \{\eta^{i}(Y)B\beta_{i}(X) - \eta^{i}(X)B\beta_{i}(Y) + (F(\alpha_{i}X,Y) - F(\alpha_{i}Y,X))\xi_{i}\} - Bh(Y,\tau X) + Bh(X,\tau Y).$$

$$(4.11)$$

(4.9) Lemma 3.2, the symmetry of h and of A_1, \ldots, A_s and (4.3) assure that

$$[\tau,\tau] = \mathcal{A}_{\omega Y}\tau X - \mathcal{A}_{\omega X}\tau Y - \tau(\mathcal{A}_{\omega Y}X - \mathcal{A}_{\omega X}Y) + \sum_{i=1}^{s} \{\eta^{i}(Y)(\tau\alpha_{i}X - \alpha_{i}\tau X) - \eta^{i}(X)(\tau\alpha_{i}Y - \alpha_{i}\tau Y)$$

101

$$+ \left(d\eta^{i}(\varphi Y, \tau X) - d\eta^{i}(\varphi X, \tau Y) \right) \xi_{i} \right\} + Bh(\tau X, Y) - Bh(\tau Y, X).$$
(4.12)

Furthermore, for each $i \in \{i, \ldots, s\}$ $\alpha_i \tau X - \tau \alpha_i X - B\beta_i X$ is the tangent part of $A_i \tau X - \varphi \alpha_i X - \varphi \beta_i X = A_i \tau X - \varphi A_i X = A_i \tau X - A_i \varphi X = A_i (\tau - \varphi) X = -A_i \omega X$. Then

$$\alpha_i \tau X - \tau \alpha_i X - B\beta_i X = -\alpha_i \omega X. \tag{4.13}$$

From (4.3) we easily get that

$$d\eta^{i}(\varphi X, \tau Y) = F(\alpha_{i}X, Y).$$
(4.14)

for each $i \in \{i, \ldots, s\}$. Using (4.11), (4.12), (4.14) and (4.10) we obtain

$$S(X,Y) = \mathcal{A}_{\omega Y}\tau X - \mathcal{A}_{\omega X}\tau Y - \tau(\mathcal{A}_{\omega Y}X - \mathcal{A}_{\omega X}Y) + \sum_{i=1}^{s} \{\eta^{i}(Y)(\tau\alpha_{i}X - \alpha_{i}\tau X + B\beta_{i}X) - \eta^{i}(X)(\tau\alpha_{i}Y - \alpha_{i}\tau Y + B\beta_{i}Y) + d\eta^{i}(\varphi Y, \tau X) - d\eta^{i}(\varphi X, \tau Y) - F(\alpha_{i}Y, X) + F(\alpha_{i}X, Y)\}.$$
(4.15)

Hence (4.8) is a consequence of (4.15) and (4.13).

Lemma 4.2. For all $i, j \in \{1, ..., s\}$

$$g(\alpha_i X, Y) = g(X, \alpha_i Y) \qquad \forall \ X, Y \in \Gamma(TM)$$
(4.16)

$$g(\beta_i V, W) = g(V, \beta_i W) \qquad \forall V, W \in \Gamma(TM^{\perp})$$
(4.17)

$$g(X,\alpha_i V) = g(\beta_i X, V) \qquad \forall \ X \in \Gamma(TM), V \in \Gamma(TM^{\perp})$$
(4.18)

$$g(\beta_i X, \omega Y) = -g(\tau X, \alpha_i Y) \quad \forall \ X \in \Gamma(D), \ Y \in \Gamma(D^{\perp})$$
(4.19)

$$g(\omega X, \beta_i \xi_j) = 0 \qquad \forall \ X \in \Gamma(D^{\perp}).$$
(4.20)

PROOF. (4.16), (4.17) and (4.18) are obvious; (4.19), (4.20) can be easily derived from the identity $g(\alpha_i X, \tau Y) + g(\beta_i X, \omega Y) - g(\tau X, \alpha_i Y) - g(\omega X, \beta_i Y)$. \Box

Theorem 4.1. A semi-invarian submanifold M of a \mathcal{K} -manifold \widetilde{M} is normal if and only if the distribution D^{\perp} is integrable and

$$\mathcal{A}_{\omega Y}\tau X = \tau \mathcal{A}_{\omega Y} X \quad \forall \ X \in \Gamma(D), \ Y \in \Gamma(D^{\perp}).$$
(4.21)

PROOF. The identity (4.8) assures that for any $j \in \{1, \ldots, s\}, Y \in \Gamma(D^{\perp})$

$$S(\xi_j, Y) = \alpha_j \omega Y - \tau \mathcal{A}_{\omega Y} \xi_j \tag{4.22}$$

and then by the antisymmetry of τ , for each $Z \in \Gamma(D^{\perp})$

$$g(S(\xi_j, Y), Z) = g(\alpha_j \omega Y, Z).$$
(4.23)

Moreover, from (4.8) we obtain

$$S(X,Y) = \mathcal{A}_{\omega Y}\tau X - \tau \mathcal{A}_{\omega Y}X, \quad X \in \Gamma(D), \ Y \in \Gamma(D^{\perp}).$$
(4.24)

Now, if S = 0, from (4.23) and Theorem 3.1 it follows that the distribution D^{\perp} is integrable. Furthermore, (4.21) is clearly verified by virtue of (4.24).

Vice versa, first we observe that by (4.8) S(X,Y) = 0 for any $X,Y \in \Gamma(D)$ or $X,Y \in \Gamma(D^{\perp})$ or $X = \xi_i$, $i \in \{1,\ldots,s\}$ and $Y \in \Gamma(D)$. Then from the integrability of D^{\perp} and (4.23) we get that for all $Y \in \Gamma(D^{\perp})$ $S(\xi_i,Y)$ is normal to D^{\perp} . On the other hand for each $Z \in \Gamma(D)$, by (4.22), we have the antisymmetry of τ and (4.18)

$$g(S(\xi_i, Y), Z) = g(\alpha_i \omega Y - \tau \mathcal{A}_{\omega Y} \xi_i, Z) = g(\alpha_i \omega Y, Z) + g(\mathcal{A}_{\omega Y} \xi_i, \tau Z)$$
$$= g(\omega Y, \beta_i Z) + g(\xi_i, \mathcal{A}_{\omega Y} \tau Z) = g(\omega Y, \beta_i Z) = 0$$

since by (4.19), the symmetry of each A_i , (2.2) and (4.21)

$$g(\omega Y, \beta_i Z) = -g(\alpha_i Y, \tau Z) = -g(Y, A_i \tau Z) - g(\varphi Y, \varphi A_i \tau Z)$$
$$= g(\omega Y, \widetilde{\nabla}_{\tau Z} \xi_i) - g(\widetilde{\nabla}_{\tau Z} \omega Y, \xi_i) = g(\mathcal{A}_{\omega Y} \tau Z, \xi_i) - g(\nabla_{\tau Z}^{\perp} \omega Y, \xi_i) = 0.$$

Finally, (4.22), (4.18), (4.20) ensure that for any $j \in \{1, \ldots, s\}$, $g(S(\xi_i, Y), \xi_j) = g(\alpha_i \omega Y, \xi_j) - g(\tau \mathcal{A}_{\omega Y} \xi_i, \xi_j) = 0$. Hence for all $Y \in \Gamma(D)$, $i \in \{1, \ldots, s\}$, $S(\xi_i, Y) = 0$, as it is obviously normal to TM^{\perp} by virtue of (4.22).

Remark 4.1. As $\varphi(D^{\perp})$ is a vector subbundle of TM^{\perp} we can consider its orthogonal complement μ . Then $\varphi(\mu) = \mu$. In fact, by (4.7) $g(\varphi N, X) = 0$ for any $X \in \Gamma(TM)$ and $N \in \Gamma(\mu)$, that is $\varphi(\mu) \subset TM^{\perp}$. Moreover, $g(\varphi N, \varphi X) = 0$ for any $X \in \Gamma(D^{\perp})$ and $N \in \Gamma(\mu)$, and then $\varphi(\mu) \subset \mu$. The opposite inclusion is obvious.

Another characterization of the normality of semi-invariant submanifolds of \mathcal{K} -manifolds is given by the following result.

Theorem 4.2. A semi-invariant submanifold M of a \mathcal{K} -manifold \widetilde{M} is normal if and only if

$$h(\tau X, W) \in \Gamma(\mu) \qquad \qquad \forall X \in \Gamma(D), \ W \in \Gamma(D^{\perp}) \qquad (4.25)$$

$$h(X,\tau Y) + h(\tau X,Y) \in \Gamma(\mu) \quad \forall X,Y \in \Gamma(D)$$

$$(4.26)$$

$$A_i(D^{\perp}) \subseteq \mu \oplus D^{\perp} \qquad \forall i \in \{1, \dots, s\}.$$
(4.27)

PROOF. We observe that $\forall X, Y \in \Gamma(D), Z, W \in \Gamma(D^{\perp})$, the antisymmetry of τ and (3.1) assure that

$$g(\mathcal{A}_{\omega Z}\tau X - \tau \mathcal{A}_{\omega Z}X, W) = g(\mathcal{A}_{\omega Z}\tau X, W) = g(h(\tau X, W), \omega Z)$$
(4.28)

$$g(\mathcal{A}_{\omega Z}\tau X - \tau \mathcal{A}_{\omega Z}X, Y) = g(h(\tau X, Y) + h(X, \tau Y), \omega Z).$$
(4.29)

Furthermore, for each $X \in \Gamma(D^{\perp}), Y \in \Gamma(D)$ we have

104

$$g(\varphi Y, A_i X) = g(A_i \tau Y, X) = g(\varphi A_i \tau Y, \varphi X) = -g(\omega X, \widetilde{\nabla}_{\tau Y} \xi_i) = g(\widetilde{\nabla}_{\tau Y} \omega X, \xi_i)$$
$$= g(\mathcal{A}_{\omega X} \tau Y, \xi_i) = g(\mathcal{A}_{\omega X} \tau Y - \tau \mathcal{A}_{\omega X} Y, \xi_i).$$
(4.30)

If the semi-invariant submanifold is normal then using Theorem 4.1 from (4.29), (4.28) we easily derive (4.26) and (4.25). To prove (4.27), first we take $X \in \Gamma(D^{\perp})$, $Y \in \Gamma(D)$ and observe that from (4.30) and Theorem 3.4 it follows that $g(\varphi Y, A_i X) = 0$ and then $0 = g(\varphi Y, A_i X) = -g(\alpha_i X + \beta_i X, \varphi Y) = -g(\alpha_i X, \varphi Y)$ so that $\alpha_i X \in \Gamma(D^{\perp} \oplus \langle \xi_1, \dots, \xi_s \rangle)$. Furthermore, by (3.10), (4.16) and (3.2), $g(\alpha_i X, \xi_j) = g(X, \alpha_i \xi_j) = g(X, \tau \nabla_{\xi_j} \xi_i) + g(X, Bh(\xi_i, \xi_j)) = 0$. Hence

$$\alpha_i X \in \Gamma(D^\perp). \tag{4.31}$$

On the other hand, $g(\beta_i X, \varphi Z) = g(A_i X, \varphi Z) = 0$, for any $Z \in \Gamma(D^{\perp})$, as by Theorem 4.1 D^{\perp} is integrable, so

$$\beta_i(X) \in \Gamma(\mu). \tag{4.32}$$

The properties (4.31), (4.32) ensure (4.27).

Conversely, for any $X, Y \in \Gamma(D^{\perp})$, from (4.27) one obtains that $g(A_iX, \varphi Y) = g(\alpha_i X, \varphi Y) + g(\beta_i X, \varphi Y) = 0$, that is D^{\perp} is integrable. Moreover, by (4.29), (4.28), (4.26) and (4.25) it follows that $\mathcal{A}_{\omega Z} \tau X - \tau \mathcal{A}_{\omega Z} X$ is normal to $D \oplus D^{\perp}$ for all $X \in \Gamma(D), Z \in \Gamma(D^{\perp})$; on the other hand, $g(A_i Z, \varphi X) = 0$ as $A_i Z \in \Gamma(\mu \oplus D^{\perp})$ and $\varphi X \in \Gamma(D)$. Then by (4.30) $\mathcal{A}_{\omega Z} \tau X - \tau \mathcal{A}_{\omega Z} X$ is orthogonal to $\langle \xi_1, \ldots, \xi_s \rangle$. Hence we have (4.21).

Definition 4.2. We say that a submanifold M of a \mathcal{K} -manifold is anti-holomorphic if M is a semi-invariant submanifold such that $\dim(TM^{\perp}) = \dim(D^{\perp})$.

Remark 4.2. If M is a normal anti-holomorphic semi-invariant submanifold of a \mathcal{K} -manifold, then $\mu = \{0\}$. Hence Theorem 4.2 assures that

Corollary 4.1. Let M be an anti-holomorphic submanifold of a \mathcal{K} -manifold \widetilde{M} . Then M is a normal semi-invariant submanifold of \widetilde{M} if and only if

$$\begin{split} h(\tau X, W) &= 0 & \forall X \in \Gamma(D), \ W \in \Gamma(D^{\perp}) \\ h(X, \tau Y) + h(\tau X, Y) &= 0 & \forall X, Y \in \Gamma(D) \\ A_i(D^{\perp}) &\subseteq D^{\perp} & \forall i \in \{1, \dots, s\}. \end{split}$$

Finally, let us return to the example.

i) The distribution $D \oplus \langle \xi_1, \xi_2 \rangle = \langle Z_0^*, Z_1^*, X_1^*, Y_1^* \rangle$ is integrable, its integral submanifolds are invariant submanifolds.

ii) The distribution $D^{\perp} \oplus \langle \xi_1, \xi_2 \rangle = \langle Z_0^*, Z_1^*, X_1^* \rangle$, is integrable, its integral submanifolds are anti-invariant submanifolds.

iii) The submanifold $M(N_5, \Gamma)$ is normal. The normality of this submanifold can be checked on the level of the universal covering space, i.e. N_8 , using the characterization given in Theorem 4.1. In this case the distribution $D = \langle X_1^*, Y_1^* \rangle$ and $D^{\perp} = \langle X_2^* \rangle$. The subbundle D^{\perp} being 1-dimensional is integrable. Therefore it remains to check that

$$\mathcal{A}_{\omega Y}\tau X = \tau \mathcal{A}_{\omega Y} X$$

for any $X \in \Gamma(D)$ and $Y \in \Gamma(D^{\perp})$. Therefore it is sufficient to check that equality holds for $X = X_1^*, Y_1^*$ and $Y = X_2^*$. It is an easy calculation that in these cases both sides of the equation are zero.

References

- A. BEJANCU, CR submanifolds of a Kähler manifold I, Proc. Amer. Math. Soc. 69 (1978), 134–142.
- [2] A. BEJANCU, Geometry of CR Submanifolds, D. Reidel Publishing Company, Dordrecht Boston – Lancaster – Tokio, 1986.
- [3] A. BEJANCU and N. PAPAGHIUC, Semi-invariant submanifolds of a Sasakian manifold, An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 27 (1981), 163–170.
- [4] A. BEJANCU and N. PAPAGHIUC, Normal semi-invariant submanifolds of a Sasakian manifold, *Mat. Vesnik* 35, no. 4 (1983), 345–355.
- [5] D. E. BLAIR, Geometry of manifolds with structural group $\mathcal{U}(n) \times \mathcal{O}(s)$, J. Diff. Geom. 4 (1970), 155–167.
- [6] D. E. BLAIR, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Math. 203, Birkhäuser, Boston, 2002.
- [7] J. L. CABRERIZO, L. M. FERNÁNDEZ and M. FERNÁNDEZ, The curvature tensor fields on f-manifolds with complemented frames, An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 36 (1990), 151–161.

- 106 L. Di Terlizzi *et al.* : Semi-invariant submanifolds of \mathcal{K} -manifolds
- [8] J. L. CABRERIZO, L. M. FERNÁNDEZ and M. FERNÁNDEZ, On normal CR-submanifolds of an S-manifolds, Colloq. Math. 64, no. 2 (1993), 203–214, (1990), 151–161.
- C. CALIN, Contact CR-submanifolds of a quasi-Sasakian manifold, Bull. Math. de la Soc. Sci. Math. de Roumanie, Tome 536(584), no. 3–4 (1992), 217–226.
- [10] C. CALIN, Normal contact CR-submanifolds of a quasi-Sasakian manifold, Publ. Math. Debrecen 53 (1998), 257–270.
- [11] B. CAPPELLETTI MONTANO and L. DI TERLIZZI, *D*-homothetic transformations for a generalization of contact metric manifolds, *Bull. Belg. Math. Soc.* 14 (2007), 277–289.
- [12] L. DI TERLIZZI, J. J. KONDERAK, A. M. WOLAK and A. M. PASTORE, K-structures and foliations, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 44 (2001), 171–182.
- [13] L. DI TERLIZZI and A. M. PASTORE, Some results on K-manifolds, Balkan J. Geom. Appl. 7, no. 1 (2002), 43–62.
- [14] L. DI TERLIZZI, On a generalization of contact metric manifolds, Publ. Math. Debrecen 64 (2004), 401–413.
- [15] L. DI TERLIZZI and J. J. KONDERAK, Examples of a generalization of contact metric structures on fibre bundles, J. of Geometry 87 (2007), 31–49.
- [16] S. I. GOLDBERG and K. YANO, On normal globally framed *f*-manifolds, *Tôhoku Math. J.* 22 (1970), 362–370.
- [17] S. I. GOLDBERG and K. YANO, Globally framed f-manifolds, Illinois Math. J. 22 (1971), 456–474.
- [18] S. KANEMAKI, On quasi-Sasakian manifolds, Banach Center Publ. 12 (1984), 94-125.
- [19] L. ORNEA, Subvarietati Cauchy–Riemann generice in S-varietati, Stud. Cerc. Mat. 36, no. 5 (1984), 435–443.
- [20] M. S. RAGHUNATHAN, Discrete Subgroups of Lie Groups, Springer-Verlag, Berlin, New York, 1972.
- [21] K. YANO and M. KON, CR-Submanifolds of Kählerian and Sasakian Manifolds, Birkäuser, Boston, 1983.

LUIGIA DI TERLIZZI, F.VERROCA UNIVERSITÀ DI BARI DIPARTIMENTO DI MATEMATICA VIA E. ORABONA 4 70125 BARI ITALY *E-mail:* terlizzi@dm.uniba.it

FRANCESCA VERROCA UNIVERSITÀ DI BARI DIPARTIMENTO DI MATEMATICA VIA E. ORABONA 4 70125 BARI ITALY

E-mail: verroca@dm.uniba.it

ROBERT A. WOLAK INSTYTUT MATEMATYKI UNIWERSYTET JAGIELLOŃSKI LOJASIEWICZA 6 30 348 KRAKÓW POLAND

E-mail: robert.wolak@im.uj.edu.pl

(Received April 13, 2010; revised March 10, 2011)