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Series with Hermite polynomials and applications

By KHRISTO N. BOYADZHIEV (Ohio) and AYHAN DIL (Antalya)

Abstract. We obtain a series transformation formula involving the classical Her-

mite polynomials. We then provide a number of applications using appropriate binomial

transformations. Several of the new series involve Hermite polynomials and harmonic

numbers, Lucas sequences, exponential and geometric numbers. We also obtain a series

involving both Hermite and Laguerre polynomials, and a series with Hermite polynomi-

als and Stirling numbers of the second kind.

1. Introduction and main result

Let Hn(x) be the Hermite polynomials defined by the generating function

e2xt−t2 =

∞∑
n=0

Hn (x)
tn

n!
(1.1)

and satisfying the Rodrigues formula

Hn (x) = (−1)
n
ex

2

(
d

dx

)n

e−x2

. (1.2)

In this paper we present and discuss a series transformation formula for the series

∞∑
n=0

anHn (x)
tn

n!
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where

f (t) =

∞∑

k=0

akt
k (1.3)

is an arbitrary function, analytical in a neighborhood of zero. Most of our results

are based on the theorem:

Theorem 1.1. With f (t) as above the following series transformation for-

mula holds

∞∑
n=0

anHn (x)
tn

n!
= e2xt−t2

∞∑
n=0

(−1)
n
Hn (x− t)

tn

n!

{
n∑

k=0

(
n

k

)
(−1)

k
ak

}
. (1.4)

For example, when ak = 1 for all k = 0, 1, . . . then
∑n

k=0

(
n
k

)
(−1)k =

(1− 1)
n
= 0 except when n = 0, and (1.4) turns into (1.1) .

For the proof of the theorem we need the following lemma.

Lemma 1.2. Let

g (t) =

∞∑

k=0

bkt
k

be another analytical function like f (t). Then

∞∑
n=0

anbnt
n =

∞∑
n=0

(−1)
n
g(n) (t)

n!
tn

{
n∑

k=0

(
n

k

)
(−1)

k
ak

}
. (1.5)

in some neighborhood of zero where both sides are convergent.

The proof of the lemma can be found in [5]. This result originates in the

works of Euler. In a modified form (1.5) appears in [20, Chapter 6, Problem 19,

p. 245].

Now we are ready to give the proof of the Theorem 1.1.

Proof. We use (1.5) with g (t) = e2xt−t2 . From Rodrigues’ formula it fol-

lows that
(

d

dt

)n

e2xt−t2 =

(
d

dt

)n

ex
2

e−(x−t)2 = ex
2

(−1)
n

(
d

dx

)n

e−(x−t)2

= ex
2

(−1)
n

(
d

d (x− t)

)n

e−(x−t)2 = e2xt−t2Hn(x− t).

That is, (
d

dt

)n

e2xt−t2 = e2xt−t2Hn (x− t) (1.6)

from which (1.4) follows in view of Lemma 1.2. The proof is completed. ¤
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In the next section we present several corollaries resulting from the theorem.

For these corollaries we use appropriate binomial transforms ([13], [20]).

bn =

n∑

k=0

(
n

k

)
(−1)

k
ak, n = 0, 1, . . . (1.7)

We also note that the binomial transform (1.7) can be inverted, with inversion

sequence

an =

n∑

k=0

(
n

k

)
(−1)

k
bk, n = 0, 1, . . . (1.8)

It is good to notice that such binomial transforms can be computed conve-

niently by using the Euler series transformation formula (see [16], [18]).

1

1− λt
f

(
µt

1− λt

)
=

∞∑
n=0

tn

{
n∑

k=0

(
n

k

)
µkλn−kak

}

where f (n) is as in (1.3) and λ, µ are parameters. With λ = 1 and µ = 1, µ = −1

we have correspondingly

1

1− t
f

(
t

1− t

)
=

∞∑
n=0

tn

{
n∑

k=0

(
n

k

)
ak

}
, (1.9)

1

1− t
f

( −t

1− t

)
=

∞∑
n=0

tn

{
n∑

k=0

(
n

k

)
(−1)

k
ak

}
. (1.10)

In the sequel we shall use (1.9) or (1.10).

Lastly, we also introduce two transformation formulas which we need later.

Suppose we are given an entire function f and a function g, analytic in a

region containing the disk K = {z : r < |z| < R}. Hence we have the following

transformation formula ([3]),

∞∑
n=0

g(n)(0)

n!
f(n)xn =

∞∑
n=0

f (n)(0)

n!

n∑

k=0

{
n

k

}
xkg(k)(x) (1.11)

where
{
n
k

}
are the the Stirling numbers of the second kind.

A generalization of (1.11) is given in [12] as:

∞∑
n=r

g(n) (0)

n!

(
n

r

)
r!

nr
fr (n) t

n =

∞∑
n=r

f (n) (0)

n!

n∑

k=0

{
n

k

}

r

tkg(k) (t) (1.12)
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where fr (x) denotes the Maclaurin series of f (x) exclude the first r terms and{
n
k

}
r
are the the r-Stirling numbers of the second kind ([6]).

These two transformation formulas tightly coupled with the derivative ope-

rator
(
t d
dt

)
which defined as:

(
t
d

dt

)
f (t) = tf ′ (t) . (1.13)

From (1.13) it is easy to see that
(
t
d

dt

)n

f(t) =

n∑

k=0

{
n

k

}
tkf (k) (t) . (1.14)

2. Applications

This section consists of two parts. The first part depends on the Theorem 1.1

and transformation formulas (1.9), (1.10). Second part depends on transformation

formulas (1.11) and (1.12).

In all series below the variable is taken in some neighborhood of zero, small

enough to ensure convergence of both sides.

2.1. Transformation formulas (1.9) and (1.10). Our first application is the

following.

Corollary 2.1. We have
∞∑

n=0

Hn (x)
tn

(n+ 1)!
= e2xt−t2

∞∑
n=0

(−1)
n
Hn(x− t)

tn

(n+ 1)!
. (2.1)

Proof. Take ak = 1
k+1 in (1.4) and use the fact that

1

n+ 1
=

n∑

k=0

(
n

k

)
(−1)

k 1

k + 1
. (2.2)

In this case

f (t) =
− ln (1− t)

t
(2.3)

which is invariant under the transformation

f (t) → 1

1− t
f

( −t

1− t

)
(2.4)

and (2.2) follows from (1.10). ¤

For the rest of the section we shall use subtitles for the convenience of the

reader.
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2.1.1. Harmonic numbers.

Remark 2.2. Since the notation Hn (x) for Hermite polynomials and the

standard notation Hn for harmonic numbers are very much alike, in order to

avoid confusion we shall use here the notation hn for harmonic numbers.

Now let

hn = 1 +
1

2
+ · · ·+ 1

n
, h0 = 0 (2.5)

be the usual harmonic numbers. They have the representation as binomial trans-

form

−hn =

n∑

k=1

(
n

k

)
(−1)

k 1

k
. (2.6)

Formula (2.6) corresponds to f (t) = − ln (1− t) and to the generating function

1

1− t
f

( −t

1− t

)
=

ln (1− t)

1− t
= −

∞∑
n=0

hnt
n. (2.7)

Therefore, we obtain the following corollary (with ak = 1
k ).

Corollary 2.3.

∞∑
n=1

Hn (x)
tn

n!n
= e2xt−t2

∞∑
n=1

(−1)
n−1

Hn (x− t)hn
tn

n!
. (2.8)

Next we have an identity “symmetric” to (2.8).

Corollary 2.4.

∞∑
n=1

Hn (x)hn
tn

n!
= e2xt−t2

∞∑
n=1

(−1)
n−1

Hn (x− t)
tn

n!n
(2.9)

Proof. This series results from (1.4) and the inversion of (2.6)

− 1

n
=

n∑

k=1

(
n

k

)
(−1)

k
hk. (2.10)

¤

Corollary 2.5.

∞∑
n=0

Hn (x)hn
tn

(n+ 1)!
= e2xt−t2

∞∑
n=0

(−1)
n
Hn (x− t)

tn

(n+ 1)!
. (2.11)
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Proof. The representation follows from (1.4) and the binomial identity,

n∑

k=0

(
n

k

)
(−1)

k hk

k + 1
=

−hn

n+ 1
. (2.12)

The generating function here is

f (t) =
1

2t
ln2 (1− t) =

∞∑

k=0

hk

k + 1
tk (2.13)

with ak = hk

k+1 . This function has the property

−f (t) =
1

1− t
f

( −t

1− t

)
(2.14)

and we apply (1.10) to obtain (2.12). ¤

The next corollary uses the “square” harmonic numbers

h(2)
n = 1 +

1

22
+ · · ·+ 1

n2
. (2.15)

Lemma 2.6. The numbers h
(2)
n have the binomial representation

−h(2)
n =

n∑

k=1

(
n

k

)
(−1)

k hk

k
. (2.16)

Proof. It is easy to see that the generating function for the sequence

ak = hk

k is

f (t) = Li2 (t) +
1

2
ln2 (1− t) (2.17)

where

Li2 (t) =

∞∑
n=1

tn

n2
(2.18)

is the dilogarithm function. This verification can be done by differentiating in

(2.17) and using (2.8). The dilogarithm satisfies the Landen identity

Li2 (t) +
1

2
ln2 (1− t) = −Li2

( −t

1− t

)
,

that is, f(t) = −Li2
( −t
1−t

)
, and therefore

1

1− t
f

( −t

1− t

)
=

−1

1− t
Li2 (t) = −

∞∑
n=1

h(2)
n tn (2.19)

so (2.16) follows from (1.10). The proof is completed. ¤
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Lemma 2.6 yields the following.

∞∑
n=1

Hn (x)hn
tn

n!n
= e2xt−t2

∞∑
n=1

(−1)
n−1

Hn (x− t)h(2)
n

tn

n!
. (2.20)

The symmetric version of (2.20) based on the inversion of (2.16) is left to the

reader.

2.1.2. Bilinear series with Hermite and Laguerre polynomials. An interesting

and curious two-variable series exists involving the Hermite polynomials together

with the Laguerre polynomials, Ln (x), n = 0, 1, . . . . The Laguerre polynomials

have the representation

Ln (z) =

n∑

k=0

(
n

k

)
(−1)

k zk

k!
(2.21)

which follows immediately by comparing their generating function

1

1− t
exp

( −zt

1− t

)
=

∞∑
n=0

Ln (z) t
n (2.22)

to (1.10) with f(t) = ezt. From (2.21) we obtain via (1.4) .

Corollary 2.7.

∞∑
n=0

Hn (x)
(zt)

n

(n!)
2 = e2xt−t2

∞∑
n=0

(−1)
n
Hn (x− t)Ln (z)

tn

n!
. (2.23)

Even more interesting is the “symmetric” series resulting from the inversion

of (2.21).

zn

n!
=

n∑

k=0

(
n

k

)
(−1)

k
Lk (z) .

Namely, we have the following.

Corollary 2.8.

∞∑
n=0

Hn (x)Ln (z)
tn

n!
= e2xt−t2

∞∑
n=0

(−1)
n
Hn (x− t)

(zt)
n

(n!)
2 . (2.24)
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2.1.3. Bilinear series with Hermite polynomials. The next result includes pairs

of Hermite polynomials. We start with a well-known property

Hn (z + y) =

n∑

k=0

(
n

k

)
(2y)

n−k
Hk (z) . (2.25)

This identity can be written as a binomial transform (dividing both sides by (2y)
n

and replacing y by −y),

(−1)
n Hn(z − y)

(2y)n
=

n∑

k=0

(
n

k

)
(−1)

k Hk (z)

(2y)k
. (2.26)

Applying now (1.4) with ak = Hk(z)

(2y)k
we obtain,

∞∑
n=0

Hn (x)Hn (z)
1

n!

tn

(2y)
n = e2xt−t2

∞∑
n=0

Hn (x− t)Hn (z − y)
1

n!

tn

(2y)
n . (2.27)

Replacing here t by 2ty we obtain our next result.

Corollary 2.9. For all x, y, z and for t small enough we have

∞∑
n=0

Hn (x)Hn (z)
tn

n!
= e4xyt−4y2t2

∞∑
n=0

Hn (x− 2yt)Hn (z − y)
tn

n!
. (2.28)

Note that the variable y does not appear in the left-hand side.

We can compare this expansion to the well-known bilinear series [[18], p. 198],

[[22], p. 167],

∞∑
n=0

Hn (x)Hn (z)
tn

n!
=

1√
1− 4t2

exp

{
x2 − (x− 2zt)2

1− 4t2

}
, (2.29)

i.e. Mehler’s formula, to derive the equation

1√
1− 4t2

exp

{
x2 − (x− 2zt)

2

1− 4t2

}

= exp
{
4xyt− 4y2t2

} ∞∑
n=0

Hn (x− 2yt)Hn (z − y)
tn

n!
. (2.30)

When y = 0, this turns into (2.29). In fact, (2.30) follows directly from (2.29)

when replacing x by x− 2yt and z by z − y in the series on the left hand side.
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2.1.4. Binomial coefficients. For the next corollary we use the binomial trans-

form,
n∑

k=0

(
n

k

)
(−1)

k

(
p+ k

k

)
= (−1)

n

(
p

n

)
(2.31)

which is a version of the Vandermonde convolution formula ([13], [20]). Here p

can be any complex number. The generating function for ak =
(
p+k
k

)
is

f (t) = (1− t)
−p−1

=

∞∑

k=0

(
p+ k

k

)
tk (2.32)

with
1

1− t
f

( −t

1− t

)
= (1− t)

p
=

∞∑
n=0

(
p

n

)
(−1)ntn. (2.33)

According to (1.4) we obtain.

Corollary 2.10. For any complex p,

∞∑
n=0

(
p+ n

n

)
Hn(x)

tn

n!
= e2xt−t2

∞∑
n=0

(
p

n

)
Hn(x− t)

tn

n!
. (2.34)

It is interesting that when p is a positive integer, the right-hand side is finite,

i.e. we have the closed-form evaluation

∞∑
n=0

(
p+ n

n

)
Hn (x)

tn

n!
= e2xt−t2

p∑
n=0

(
p

n

)
Hn (x− t)

tn

n!
. (2.35)

2.1.5. Stirling numbers of the second kind. We have the following equation for

Stirling numbers of the second kind ([10], [15]):

n∑

k=0

(
n

k

){
k

m

}
=

{
n+ 1

m+ 1

}
(2.36)

and inverse binomial transformation of (2.36) is

n∑

k=0

(
n

k

)
(−1)

n−k

{
k + 1

m+ 1

}
=

{
n

m

}
(2.37)

which can equally well be written

n∑

k=0

(
n

k

)
(−1)

k

{
k + 1

m+ 1

}
= (−1)

n

{
n

m

}
. (2.38)
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Corollary 2.11. We have

∞∑
n=0

{
n+ 1

m+ 1

}
Hn (x)

tn

n!
= e2xt−t2

∞∑
n=0

{
n

m

}
Hn(x− t)

tn

n!
. (2.39)

Proof. By setting ak =
{

k+1
m+1

}
in (1.4) and considering (2.38) we obtain

(2.39). ¤

For our next corollary we use the Stirling numbers of the second kind exten-

ded for complex argument. Butzer et al. ([7]) defined the generalized Stirling

numbers (Stirling functions of the second kind) by

{
α

n

}
=

1

n!

n∑

k=0

(
n

k

)
(−1)

n−k
kα (2.40)

for any complex number α 6= 0. Obviously, this equation can be regarded as a

binomial transform. In order to match (1.7) we rewrite (2.40) in the form (see

also [1]).

(−1)
n
n!

{
α

n

}
=

n∑

k=0

(
n

k

)
(−1)

k
kα. (2.41)

This binomial identity with ak = kα leads to the following.

Corollary 2.12. For every complex number α 6= 0 we have

∞∑

k=0

kαHk (x)
tk

k!
= e2xt−t2

∞∑
n=0

{
α

n

}
Hn (x− t) tn. (2.42)

In the case when α = m is a positive integer,
{
α
n

}
=

{
m
n

}
are the usual

Stirling numbers of the second kind ( [14]). These numbers have the property{
m
n

}
= 0 when m < n. Therefore, we obtain the closed form evaluation

∞∑

k=0

kmHk(x)
tk

k!
= e2xt−t2

m∑
n=0

{
m

n

}
Hn(x− t)tn (2.43)

for every positive integer m. This formula was obtained independently in [14] and

[21] by different means.
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2.1.6. Exponential numbers. We have the following equation for exponential

numbers ([8], [10])

φn+1 =

n∑

k=0

(
n

k

)
φk (2.44)

and inverse binomial transformation of (2.44) is

φn =

n∑

k=0

(
n

k

)
(−1)

n−k
φk+1 (2.45)

which can equally well be written

(−1)
n
φn =

n∑

k=0

(
n

k

)
(−1)

k
φk+1. (2.46)

Then we have the following corollary.

Corollary 2.13. We have

∞∑
n=0

φn+1Hn(x)
tn

n!
= e2xt−t2

∞∑
n=0

φnHn (x− t)
tn

n!
. (2.47)

Proof. By setting ak = φk+1 in (1.4) and considering (2.46) we obtain

(2.47). ¤

2.1.7. Geometric numbers. We have the following equation for geometric num-

bers ([8], [10])

2wn =

n∑

k=0

(
n

k

)
wk (2.48)

and inverse binomial transformation of (2.48) is

wn =

n∑

k=0

(
n

k

)
(−1)

n−k
2wk (2.49)

which can equally well be written

(−1)
n
wn =

n∑

k=0

(
n

k

)
(−1)

k
2wk. (2.50)

Then we have the following corollary.

Corollary 2.14. We have

∞∑
n=0

2wnHn (x)
tn

n!
= e2xt−t2

∞∑
n=0

wnHn (x− t)
tn

n!
. (2.51)

Proof. Setting ak = 2wk in (1.4) and considering (2.50) gives (2.51). ¤
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2.1.8. Fibonacci numbers. Let us consider the generating function of Fibonacci

numbers

F (t) =
t

1− t− t2
=

∞∑
n=0

Fnt
n. (2.52)

On the other hand we have,

1

1− t
F

(
t

1− t

)
=

t

1− 3t+ t2
. (2.53)

But we know that ( [9], [17]):

t

1− 3t+ t2
=

∞∑
n=0

F2nt
n. (2.54)

Then from (2.54) and formula (1.9) we get

F2n =

n∑

k=0

(
n

k

)
Fk. (2.55)

Here using inverse binomial transformation we get

Fn =

n∑

k=0

(
n

k

)
(−1)

n−k
F2k. (2.56)

Equation (2.56) may also be put in the form

(−1)
n
Fn =

n∑

k=0

(
n

k

)
(−1)

k
F2k. (2.57)

Corollary 2.15. We have

∞∑
n=0

F2nHn (x)
tn

n!
= e2xt−t2

∞∑
n=0

FnHn (x− t)
tn

n!
. (2.58)

Proof. By setting ak = F2k in (1.4) and considering (2.57) we obtain (2.58).

¤

Let us consider the function

F (t) =
−t

1 + t− t2
=

∞∑
n=0

(−1)
n
Fnt

n. (2.59)
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Then we have
1

1− t
F

(
t

1− t

)
=

−t

1− t− t2
= −

∞∑
n=0

Fnt
n. (2.60)

Now using (1.9) we get

−Fn =

n∑

k=0

(
n

k

)
(−1)

k
Fk. (2.61)

Corollary 2.16. We have

∞∑
n=0

FnHn (x)
tn

n!
= e2xt−t2

∞∑
n=0

(−1)
n+1

FnHn (x− t)
tn

n!
. (2.62)

Proof. By setting ak = Fk in (1.4) and considering (2.61) we obtain (2.62).

¤

Corollary 2.17. We have

∞∑
n=0

(−1)
n
FnHn (x)

tn

n!
= e2xt−t2

∞∑
n=0

(−1)
n
F2nHn (x− t)

tn

n!
. (2.63)

Proof. By setting ak = (−1)
k
Fk in (1.4) and considering (2.55) we obtain

(2.63). ¤

Similar transformation formulas can be obtain for Lucas numbers.

2.1.9. Lucas numbers. Let us consider the generating function of Lucas numbers

L (t) =
2− t

1− t− t2
=

∞∑
n=0

Lnt
n (2.64)

Then we have
1

1− t
L

( −t

1− t

)
=

2− t

1− t− t2
=

∞∑
n=0

Lnt
n. (2.65)

(2.65) combines with (1.10) to give

Ln =

n∑

k=0

(
n

k

)
(−1)

k
Lk. (2.66)

Now we can state the following corollary.
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Corollary 2.18. We have

∞∑
n=0

LnHn (x)
tn

n!
= e2xt−t2

∞∑
n=0

(−1)
n
LnHn (x− t)

tn

n!
. (2.67)

Proof. By setting ak = Lk in (1.4) and considering (2.66) we obtain (2.67).

¤

Due to giving more applications let us consider the following generating func-

tion

L (t) =
2 + t

1 + t− t2
=

∞∑
n=0

(−1)
n
Lnt

n. (2.68)

Then we have
1

1− t
L

( −t

1− t

)
=

2− 3t

1− 3t+ t2
. (2.69)

But we know that ( [9], [17]):

2− 3t

1− 3t+ t2
=

∞∑
n=0

L2nt
n. (2.70)

From (2.70) and (1.10) it follows that

L2n =

n∑

k=0

(
n

k

)
Lk. (2.71)

Now using inverse binomial transformation we get

Ln =

n∑

k=0

(
n

k

)
(−1)

n−k
L2k (2.72)

which can equally well be written

(−1)
n
Ln =

n∑

k=0

(
n

k

)
(−1)

k
L2k. (2.73)

Now we have the following corollaries.

Corollary 2.19. We have

∞∑
n=0

L2nHn (x)
tn

n!
= e2xt−t2

∞∑
n=0

LnHn (x− t)
tn

n!
. (2.74)



Series with Hermite polynomials and applications 399

Proof. By setting ak = L2k in (1.4) and considering (2.73) we obtain (2.74).

¤

Corollary 2.20. We have

∞∑
n=0

(−1)
n
LnHn (x)

tn

n!
= e2xt−t2

∞∑
n=0

(−1)
n
L2nHn (x− t)

tn

n!
. (2.75)

Proof. By setting ak = (−1)
k
Lk in (1.4) and considering (2.71) we obtain

(2.75). ¤

Now we give some results obtained by using transformation formulas (1.11)

and (1.12).

2.2. Transformation formulas (1.11) and (1.12). Applying the transforma-

tion formula (1.11) to the equation (1.1) we get the following formula which is a

generalization of (2.43):

∞∑
n=0

Hn (x) f (n)
tn

n!
= e2xt−t2

∞∑
n=0

f (n) (0)

n!

n∑

k=0

{
n

k

}
tkHk (x− t) . (2.76)

If we set f(t) = tm in (2.76) we get (2.43).

It is possible to obtain more general results than (2.43) by setting f(t) as an

arbitrary polynomial of order m as

f (t) = pmtm + pm−1t
m−1 + · · ·+ p1t+ p0

where p0, p1, . . . , pm−1, pm are any complex numbers. Hence we get following

equation,

∞∑
n=0

(
pmnm + pm−1n

m−1 + · · ·+ p1n+ p0
)
Hn (x)

tn

n!

= e2xt−t2
m∑

n=0

pn

n∑

k=0

{
n

k

}
tkHk (x− t) . (2.77)

To obtain more general results, let us set g (t) = e2xt−t2 in the generalized

transformation formula (1.12). Then we have

∞∑
n=r

Hn (x)
fr (n)

(n− r)!nr
tn = e2xt−t2

∞∑
n=r

f (n) (0)

n!

n∑

k=0

{
n

k

}

r

tkHk (x− t) . (2.78)



400 Khristo N. Boyadzhiev and Ayhan Dil

If we set f (t) = tm such that m ≥ r in (2.78) we obtain

∞∑
n=r

nm−rHn (x)
tn

(n− r)!
= e2xt−t2

m∑

k=0

{
m

k

}

r

tkHk (x− t) (2.79)

which is a generalization of (2.43) .

Again to obtain more general formula than (2.79) we set f(t) = pmtm +

pm−1t
m−1 + · · ·+ p1t+ p0 in (2.78). Hence we get

∞∑
n=r

Hn (x)

(
pmnm + pm−1n

m−1 + · · ·+ prn
r
)

(n− r)!nr
tn

= e2xt−t2
m∑

n=r

pn

n∑

k=0

{
n

k

}

r

tkHk (x− t) .

2.2.1. Results using transformation formula (1.11). The generating function of

Hermite polynomials is an entire function. Therefore we can consider f(t) =

e2xt−t2 in (1.11). Then we have

∞∑
n=0

g(n) (0)

n!
e2nx−n2

tn =

∞∑
n=0

Hn (x)

n!

n∑

k=0

{
n

k

}
tkg(k) (t) . (2.80)

i) If we set g (t) = tm in the formula (2.80) we get

e2mx−m2

=

∞∑
n=0

Hn (x)

n!

n∑

k=0

{
n

k

}
(m)k (2.81)

where (m)k is the Pochhammer symbol, i.e.

(m)k = m (m− 1) (m− 2) . . . (m− k + 1) . (2.82)

Now comparison of the coefficients of the both sides in (2.81) gives the following

well known equation:

mn =

n∑

k=0

{
n

k

}
(m)k (2.83)

Later we generalize (2.83).

ii) If we set g(t) = et in the formula (2.80) we get

∞∑
m=0

e2mx−m2 tm

m!
= et

∞∑
n=0

Hn (x)φn (t)

n!
(2.84)
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where φn (t) is nth exponential polynomial ([3], [4], [10]). This can equally well

be written by means generating function of Hermite polynomials as:

∞∑
m=0

( ∞∑
n=0

Hn(x)

n!
mn

)
tm

m!
= et

∞∑
n=0

Hn(x)φn(t)

n!
.

Then we have

∞∑
n=0

Hn (x)

n!

∞∑
m=0

mn t
m

m!
= et

∞∑
n=0

Hn (x)φn (t)

n!
.

Hence we get following equation

(
t
d

dt

)n

et = etφn (t) . (2.85)

The equation (2.85) can be found in [3].

iii) If we set g(t) = 1
1−t in the formula (2.80) we get

∞∑

k=0

e2kx−k2

tk =
1

1− t

∞∑
n=0

Hn (x)wn

(
t

1−t

)

n!

where wn (t) is nth geometric polynomial ([3], [10]). Now this can equally well be

written
∞∑

k=0

( ∞∑
n=0

Hn(x)

n!
kn

)
tk =

1

1− t

∞∑
n=0

Hn(x)wn

(
t

1−t

)

n!
.

By rearranging we get

∞∑
n=0

Hn (x)

n!

∞∑

k=0

kntk =
1

1− t

∞∑
n=0

Hn (x)wn

(
t

1−t

)

n!
.

This can equally well be written by means of
(
t d
dt

)
operator as

∞∑
n=0

Hn (x)

n!

(
t
d

dt

)n
1

1− t
=

1

1− t

∞∑
n=0

Hn (x)

n!
wn

(
t

1− t

)

Then we have (
t
d

dt

)n
1

1− t
=

1

1− t
wn

(
t

1− t

)
. (2.86)

The equation (2.86) also can be found in [3].
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2.2.2. Results using transformation formula (1.12). We can generalize previous

results by considering the generalized transformation formula (1.12).

Let us take f(t) = e2xt−t2 in (1.12). Then we have
∞∑

n=r

g(n) (0)

n!

(
n

r

)
r!

nr

( ∞∑
s=r

Hs(x)
ns

s!

)
tn =

∞∑
n=r

Hn (x)

n!

n∑

k=0

{
n

k

}

r

tkg(k)(t). (2.87)

i) If we set g (t) = tm, (m ≥ r) in the formula (2.87) we get
∞∑

n=r

Hn (x)

n!

(
m

r

)
r!mn−r =

∞∑
n=r

Hn (x)

n!

n∑

k=0

{
n

k

}

r

(
m

k

)
k!. (2.88)

From (2.88) we get a generalization of (2.83) as follows:

(m)r m
n−r =

n∑

k=0

{
n

k

}

r

(m)k . (2.89)

In (2.89) we use the Pochhammer symbol from (2.82).

ii) If we set g(t) = et in the formula (2.87) we get
∞∑
s=r

Hs (x)

s!

∞∑
n=r

ns−rtn

(n− r)!
= et

∞∑
n=r

Hn (x)r φn (t)

n!
, (2.90)

where rφn (t) is the nth r-exponential polynomial ([12]). After rearranging (2.90)

we get
∞∑

n=r

Hn (x)

n!

(
t
d

dt

)n−r

tret = et
∞∑

n=r

Hn (x)r φn (t)

n!
. (2.91)

Equation (2.91) gives a generalization of (2.85) as
(
t
d

dt

)n−r

tret =r φn (t) e
t (2.92)

iii) If we set g (t) = 1
1−t in the formula (2.87) we get

∞∑
n=r

Hn (x)

n!

∞∑
m=r

(
m

r

)
r!mn−rtm =

∞∑
n=r

Hn (x)

n!

rwn

(
t

1−t

)

1− t
(2.93)

where rwn (t) is the nth r-geometric polynomial ([12]). By rearranging (2.93)

we get

∞∑
n=r

Hn (x)

n!
r!

(
t
d

dt

)n−r
tr

(1− t)
r+1 =

∞∑
n=r

Hn (x)

n!

rwn

(
t

1−t

)

1− t
. (2.94)

From (2.94) we see that

r!

(
t
d

dt

)n−r
tr

(1− t)
r+1 =

1

1− t
rwn

(
t

1− t

)
(2.95)

which is a generalization of (2.86).
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