Publ. Math. Debrecen 81/1-2 (2012), 11–29 DOI: 10.5486/PMD.2012.4897

The maximal subsemigroups of semigroups of transformations preserving or reversing the orientation on a finite chain

By ILINKA DIMITROVA (Blagoevgrad), VÍTOR H. FERNANDES (Caparica) and JÖRG KOPPITZ (Potsdam)

Abstract. The study of the semigroups \mathcal{OP}_n , of all orientation-preserving transformations on an *n*-element chain, and \mathcal{OR}_n , of all orientation-preserving or orientationreversing transformations on an *n*-element chain, has began in [17] and [5]. In order to bring more insight into the subsemigroup structure of \mathcal{OP}_n and \mathcal{OR}_n , we characterize their maximal subsemigroups.

Introduction and preliminaries

For $n \in \mathbb{N}$, let $X_n = \{1 < 2 < \cdots < n\}$ be a finite chain with n elements. As usual, we denote by \mathcal{T}_n the monoid (under composition) of all full transformations of X_n .

We say that a transformation $\alpha \in \mathcal{T}_n$ is order-preserving [respectively, orderreversing] if $x \leq y$ implies that $x\alpha \leq y\alpha$ [respectively, $x\alpha \geq y\alpha$], for all $x, y \in X_n$. As usual, \mathcal{O}_n denotes the submonoid of \mathcal{T}_n of all order-preserving transformations of X_n . This monoid has been extensively studied, for instance in [1], [7], [13], [15], [20].

Let $a = (a_1, a_2, \ldots, a_t)$ be a sequence of $t \ (t \ge 1)$ elements from the chain X_n . We say that a is cyclic [respectively, anti-cyclic] if there exists no more than

Mathematics Subject Classification: 20M20.

Key words and phrases: finite transformation semigroup, orientation-preserving and orientation-reversing transformations, maximal subsemigroups.

The authors gratefully acknowledge support of FCT, within the project ISFL-1-143 of CAUL. The second author also acknowledges support of the project PTDC/MAT/69514/2006 of FCT and CAUL.

one index $i \in \{1, \ldots, t\}$ such that $a_i > a_{i+1}$ [respectively, $a_i < a_{i+1}$], where a_{t+1} denotes a_1 . Notice that the sequence a is cyclic [respectively, anti-cyclic] if and only if a is empty or there exists $i \in \{0, 1, \ldots, t-1\}$ such that $a_{i+1} \leq a_{i+2} \leq a_{i+2}$ $\dots \leq a_t \leq a_1 \leq \dots \leq a_i$ [respectively, $a_{i+1} \geq a_{i+2} \geq \dots \geq a_t \geq a_1 \geq \dots \geq a_i$] (the index $i \in \{0, 1, \dots, t-1\}$ is unique unless a is constant and $t \ge 2$). We say that a transformation $\alpha \in \mathcal{T}_n$ is orientation-preserving [respectively, orientation*reversing*] if the sequence $(1\alpha, 2\alpha, \ldots, n\alpha)$ of its images is cyclic [respectively, anti-cyclic]. The notion of an orientation-preserving transformation was introduced by MCALISTER in [17] and, independently, by CATARINO and HIGGINS in [5]. It is easy to show that the product of two orientation-preserving or of two orientation-reversing transformations is orientation-preserving, and the product of an orientation-preserving transformation by an orientation-reversing transformation is orientation-reversing (see [5]). We denote by \mathcal{OP}_n [respectively, \mathcal{OR}_n] the monoid of all orientation-preserving [respectively, orientation-preserving or orientation-reversing] full transformations. It is clear that \mathcal{OP}_n is a submonoid of \mathcal{OR}_n .

Regarding the monoids \mathcal{OP}_n and \mathcal{OR}_n , presentations for them were exhibited by CATARINO in [4] and by ARTHUR and RUŠKUC in [2], the Green's relations, their sizes and ranks, among other properties, were determined by CATARINO and HIGGINS in [5] and a description of their congruences were given in [10] by FERNANDES, GOMES and JESUS. In [22], ZHAO, BO and MEI characterized the locally maximal idempotent-generated subsemigroups of \mathcal{OP}_n (excluding the permutations).

In this paper, we aim to give more insight into the subsemigroup structure of the monoids \mathcal{OP}_n and \mathcal{OR}_n by characterizing the maximal subsemigroups of these monoids and of their ideals. By a maximal subsemigroup of a semigroup S we mean a maximal element, under set inclusion, of the family of all proper subsemigroups of S. In Section 1, we study the monoid \mathcal{OP}_n and its ideals. First, we describe all maximal subsemigroups of \mathcal{OP}_n (some of them are associated with the maximal subsemigroups of the additive group \mathbb{Z}_n). The main result of this section is the characterization of the maximal subsemigroups of the ideals of \mathcal{OP}_n . In Section 2, we study the monoid \mathcal{OR}_n and its ideals. Again, first we describe all maximal subsemigroups of \mathcal{OR}_n (some of them are associated with the maximal subsemigroups of the dihedral group \mathcal{D}_n of order 2n). The main result of this section is the characterization of the maximal subsemigroups of the ideals of \mathcal{OR}_n , which are associated with the maximal subsemigroups of the ideals of \mathcal{OR}_n ,

The maximal subsemigroups of the monoid \mathcal{T}_n were described by BAYRA-MOV [3] in 1966. Much more recently (2001), YANG [21] classified the maximal

13

subsemigroups of the semigroup $Sing_n$ of all singular full transformations of X_n . In 1985, TODOROV and KRAČOLOVA [18] constructed four types of maximal subsemigroups of the ideals of \mathcal{T}_n . A complete description of the maximal subsemigroups of the ideals of \mathcal{T}_n was given in 2004 by YANG and YANG [19]. The maximal subsemigroups of the semigroup \mathcal{O}_n were characterized by YANG [20] in 2000. GYUDZHENOV and DIMITROVA (2006) completely described in [14] the maximal subsemigroups of the semigroup \mathcal{OD}_n of all order-preserving or order-reversing full transformations of X_n . In 2008, DIMITROVA and KOPPITZ [6] classified the maximal subsemigroups of the ideals of \mathcal{OD}_n .

On the other hand, GANYUSHKIN and MAZORCHUK [11] in 2003 gave a description of the maximal subsemigroups of the semigroup \mathcal{POI}_n of all orderpreserving partial injections of X_n and, in 2009, DIMITROVA and KOPPITZ [7] characterized the maximal subsemigroups of the ideals of the semigroup \mathcal{POI}_n and of the ideals of the semigroup \mathcal{PODI}_n of all order-preserving or orderreversing partial injections of X_n .

For every transformation $\alpha \in \mathcal{T}_n$, we denote by ker α and im α the kernel and the image of α , respectively. The number rank $\alpha = |\ker \alpha| = |\operatorname{im} \alpha|$ is called the rank of α . Given a subset U of \mathcal{T}_n , we denote by E(U) its set of idempotents. The weight of an equivalence relation π on X_n is the number $|X_n/\pi|$. Let $A \subseteq X_n$ and let π be an equivalence relation on X_n of weight |A|. We say that A is a transversal of π (denoted by $A \# \pi$) if $|A \cap \bar{x}| = 1$ for every equivalence class \bar{x} of π .

Since \mathcal{O}_n , \mathcal{OP}_n and \mathcal{OR}_n are regular submonoids of \mathcal{T}_n , the definition of the Green's relations \mathcal{L} , \mathcal{R} and \mathcal{H} on \mathcal{O}_n , \mathcal{OP}_n and \mathcal{OR}_n follow immediately from well known results on regular semigroups and from their descriptions on \mathcal{T}_n . We have $\alpha \mathcal{L}\beta \iff \operatorname{im} \alpha = \operatorname{im} \beta$ and $\alpha \mathcal{R}\beta \iff \operatorname{ker} \alpha = \operatorname{ker} \beta$, for every transformations α and β . Recall also that for the Green's relation \mathcal{J} , we have (on \mathcal{O}_n , \mathcal{OP}_n and \mathcal{OR}_n) $\alpha \mathcal{J}\beta \iff \operatorname{rank} \alpha = \operatorname{rank} \beta$, for every transformations α and β .

Given a semigroup S, we denote by L_s^S , R_s^S and H_s^S (or, if not ambiguous, simply by L_s , R_s and H_s) the \mathcal{L} -class, \mathcal{R} -class and \mathcal{H} -class, respectively, of an element $s \in S$.

For general background on Semigroup Theory, we refer the reader to HOWIE's book [16]. Regarding notions on Group Theory, the book [8] by DUMMIT and FOOTE is our reference.

1. Maximal subsemigroups of the ideals of \mathcal{OP}_n

Let $n \in \mathbb{N}$. The semigroup \mathcal{OP}_n is the union of its \mathcal{J} -classes J_1, J_2, \ldots, J_n , where

$$J_k = \{ \alpha \in \mathcal{OP}_n \mid \operatorname{rank} \alpha = k \},\$$

for k = 1, ..., n. It follows that the ideals of the semigroup \mathcal{OP}_n are unions of the \mathcal{J} -classes $J_1, J_2, ..., J_k$, i.e. the sets

$$OP(n,k) = \{ \alpha \in \mathcal{OP}_n \mid \operatorname{rank} \alpha \leq k \},\$$

with k = 1, ..., n. See [9, Note of page 181].

Now, notice that for $\alpha \in OP(n,k)$, with k = 1, ..., n, we have $L_{\alpha}^{OP(n,k)} = L_{\alpha}^{\mathcal{OP}_n}$, $R_{\alpha}^{OP(n,k)} = R_{\alpha}^{\mathcal{OP}_n}$ and $H_{\alpha}^{OP(n,k)} = H_{\alpha}^{\mathcal{OP}_n}$. Moreover, for $\alpha, \beta \in J_k$, with k = 1, ..., n, the product $\alpha\beta$ belongs to J_k (if and only if $\alpha\beta \in R_{\alpha} \cap L_{\beta}$) if and only if im $\alpha \# \ker \beta$. Thus, it is easy to show:

Lemma 1.1. Let $k \in \{1, 2, ..., n\}$ and let $\alpha, \beta \in J_k$ be such that im $\alpha \# \ker \beta$. Then $\alpha R_{\beta}^{\mathcal{OP}_n} = R_{\alpha\beta}^{\mathcal{OP}_n} = R_{\alpha}^{\mathcal{OP}_n}, L_{\alpha}^{\mathcal{OP}_n}\beta = L_{\alpha\beta}^{\mathcal{OP}_n} = L_{\beta}^{\mathcal{OP}_n}, \alpha H_{\beta}^{\mathcal{OP}_n} = H_{\alpha}^{\mathcal{OP}_n}\beta = H_{\alpha\beta}^{\mathcal{OP}_n} = H_{\alpha\beta}^{\mathcal{OP}_n} = J_k.$

Next, recall that CATARINO and HIGGINS [5] proved:

Proposition 1.2. Let $k \in \{1, 2, ..., n\}$ and let $\alpha \in OP_n$ be an element of rank k. Then $|H_{\alpha}| = k$. Moreover, if α is an idempotent, then H_{α} is a cyclic group of order k.

Let G be a cyclic group of order k, with $k \in \mathbb{N}$. It is well known that there exists an one-to-one correspondence between the subgroups of G and the (positive) divisors of k.

Let us consider the following elements of \mathcal{OP}_n :

$$g=egin{pmatrix} 1&2&\cdots&n-1&n\ 2&3&\cdots&n&1 \end{pmatrix}\in J_n$$

and

$$u_{i} = \left(\begin{array}{cccc|c} 1 & 2 & \cdots & i-1 \\ 1 & 2 & \cdots & i-1 \\ 1 & 2 & \cdots & i-1 \\ \end{array} \middle| \begin{array}{c} i + 1 & i+1 \\ i+1 & \cdots & n \\ \end{array} \right) \in J_{n-1},$$

for $i = 1, \ldots, n$ (with i = n we take i + 1 = 1).

Notice that the group of units of \mathcal{OP}_n is the cyclic group $J_n = H_g^{\mathcal{OP}_n}$ of order n.

We will use the following well known result (see [4], [17]).

Proposition 1.3. $\mathcal{OP}_n = \langle u_1, g \rangle$.

Next, we present alternative generating sets of the monoid \mathcal{OP}_n .

Proposition 1.4. Let $\alpha, \gamma \in \mathcal{OP}_n$. If $\alpha \in J_{n-1}$ and γ is a permutation of order *n* then $\mathcal{OP}_n = \langle \alpha, \gamma \rangle$.

PROOF. Since $\gamma \in J_n$ has order n, we have $\langle \gamma \rangle = J_n$ and so $g \in \langle \gamma \rangle$. From $\alpha \in J_{n-1}$, it follows that there exist $1 \leq i, j \leq n$ such that im $\alpha = X_n \setminus \{j\}$ and $(i, i+1) \in \ker \alpha$ (by taking i+1=1, if i=n). Put s=i-j, if j < i, and s=n+i-j, otherwise. Then, it is easy to show that $\beta = \alpha g^s \in H_{u_i}$. Now, as u_i is an idempotent of \mathcal{OP}_n , by Proposition 1.2, it follows that u_i is a power of β . On the other hand, it is a routine matter to show that $u_1 = g^{n+i-1}u_ig^{n-i+1}$. Thus, by Proposition 1.3, we deduce that $\mathcal{OP}_n = \langle \alpha, \gamma \rangle$.

For a prime divisor p of n, we put $W_p = \langle g^p \rangle = \{1, g^p, g^{2p}, \dots, g^{(\frac{n}{p}-1)p}\}$, which is a cyclic group of order $\frac{n}{p}$. Furthermore, from well known results regarding finite cyclic groups, we have:

Lemma 1.5. The groups W_p , with p a prime divisor of n, are the maximal subsemigroups of J_n .

Now, we can describe the maximal subsemigroups of \mathcal{OP}_n .

Theorem 1.6. Let S be a subsemigroup of the semigroup \mathcal{OP}_n . Then S is maximal if and only if $S = OP(n, n-2) \cup J_n$ or $S = OP(n, n-1) \cup W_p$, for a prime divisor p of n.

PROOF. Let S be a maximal subsemigroup of \mathcal{OP}_n . Then, it is clear that $OP(n, n-2) \subseteq S$ and thus $S = OP(n, n-2) \cup T$, for some subset T of $J_{n-1} \cup J_n$. By Proposition 1.4, we have $T \cap J_{n-1} = \emptyset$ or T does not contain any element of J_n of order n. In the latter case, we must have $J_{n-1} \subseteq T$, by the maximality of S. This shows that $S = OP(n, n-1) \cup T'$, for some subset T' of J_n , whence T' must be a maximal subsemigroup of J_n . Thus, by Lemma 1.5, we have $T' = W_p$, for some prime divisor p of n. On the other hand, if $T \cap J_{n-1} = \emptyset$ then $S \subseteq OP(n, n-2) \cup J_n$, whence $S = OP(n, n-2) \cup J_n$, by the maximality of S.

The converse part follows immediately from Proposition 1.4 and Lemma 1.5.

Let $n \geq 3$ and $1 \leq k \leq n-1$. In the remaining of this section, we consider the ideal OP(n,k) of \mathcal{OP}_n .

Clearly, the maximal subsemigroups of OP(n, 1) are the sets of the form $OP(n, 1) \setminus \{\alpha\}$, for $\alpha \in OP(n, 1)$. Therefore, in what follows, we consider $k \geq 2$.

Notice that any element $\alpha \in \mathcal{O}_n$ of rank k-1, for $2 \leq k \leq n-1$, is expressible as a product of elements of \mathcal{O}_n of rank k (see [12]). On the other hand, any element $\beta \in \mathcal{OP}_n$ admits a decomposition $\beta = g^t \alpha$, for some $1 \leq t \leq n$ and $\alpha \in \mathcal{O}_n$ (see [5]). Then, it is easy to deduce that any element of J_{k-1} is a product of elements of J_k , for $2 \leq k \leq n-1$. Thus, we have:

Lemma 1.7. $OP(n,k) = \langle J_k \rangle$.

Next, observe that for a transformation $\alpha \in \mathcal{OP}_n$, it is easy to show that if $(1,n) \notin \ker \alpha$ then all kernel classes of α are intervals of X_n and, on the other hand, if $(1,n) \in \ker \alpha$ then all kernel classes of α are intervals of X_n , except the class containing 1 and n which is a union of two intervals of X_n (one containing 1 and the other n). Moreover, if α is not a constant, then $H^{\mathcal{OP}_n}_{\alpha} \cap \mathcal{O}_n = \emptyset$ if and only if $(1,n) \in \ker \alpha$.

Proposition 1.8. Let C be any subset of J_k containing $J_k \cap \mathcal{O}_n$ and at least one element from each \mathcal{R} -class of \mathcal{OP}_n of rank k. Then $OP(n, k) = \langle C \rangle$.

PROOF. First, let $\alpha \in C$ with kernel $\{\{1, k + 1, ..., n\}, \{2\}, ..., \{k\}\}$. Let β be an order-preserving transformation with image $\{1, ..., k\}$ such that im $\alpha \# \ker \beta$. Then, $\beta \in C$, ker $(\alpha\beta) = \ker \alpha$ and im $(\alpha\beta) = \operatorname{im} \beta$, from which it follows that the idempotent power of $\alpha\beta$ is the element $\begin{pmatrix} 1 & \cdots & k & | & k+1 & \cdots & n \\ 1 & \cdots & k & | & 1 & \cdots & 1 \end{pmatrix} \in \langle C \rangle$. Therefore,

$$\begin{split} \gamma &= \left(\begin{array}{cccc} 1 & \cdots & k \\ 2 & \cdots & k+1 \end{array} \middle| \begin{array}{c} k+1 & \cdots & n \\ k+1 & \cdots & k+1 \end{array}\right) \left(\begin{array}{cccc} 1 & \cdots & k \\ 1 & \cdots & k \end{array} \middle| \begin{array}{c} k+1 & \cdots & n \\ 1 & \cdots & 1 \end{array}\right) \\ &= \left(\begin{array}{ccccc} 1 & \cdots & k-1 & k \\ 2 & \cdots & k & 1 \end{array} \middle| \begin{array}{c} k+1 & \cdots & n \\ 1 & \cdots & 1 \end{array}\right) \in \langle C \rangle, \end{split}$$

since the first element of the second member of these equalities is an orderpreserving transformation of rank k and so an element of C. Furthermore, as γ generates a cyclic group of order k, then the \mathcal{H} -class H_{γ} of \mathcal{OP}_n is contained in $\langle C \rangle$.

Now, $\varepsilon = \gamma^k = \begin{pmatrix} 1 & \cdots & k \\ 1 & \cdots & k \end{pmatrix} \begin{pmatrix} k+1 & \cdots & n \\ k & \cdots & k \end{pmatrix}$ is the idempotent of H_{γ} and let H be any \mathcal{H} -class of \mathcal{OP}_n contained in the \mathcal{R} -class $R_{\varepsilon} = R_{\gamma}$ of \mathcal{OP}_n . Since the elements of H have the same kernel as $\varepsilon \in \mathcal{O}_n$, then H has an order-preserving element τ . From $\varepsilon \mathcal{R} \tau$ it follows that $\varepsilon \tau = \tau$, whence $\operatorname{im} \varepsilon \# \ker \tau$ and so, by Lemma 1.1, we have $H_{\varepsilon} \tau = H_{\tau}$. As $\tau \in C$ and $H_{\varepsilon} \subseteq \langle C \rangle$, we also have $H = H_{\tau} \subseteq \langle C \rangle$.

Next, let $\theta \in J_k$.

Suppose first that $(1,n) \notin \ker \theta$. Then, there exists an order-preserving transformation $\tau \in L_{\varepsilon} \cap R_{\theta}$. Since $\varepsilon \in L_{\varepsilon} \cap R_{\varepsilon} = L_{\tau} \cap R_{\varepsilon}$, we have $\tau \varepsilon = \tau$, whence $\operatorname{im} \tau \# \ker \varepsilon$ and so, by Lemma 1.1, we obtain $\tau R_{\varepsilon} = R_{\tau} = R_{\theta}$. As $\tau \in C$ and $R_{\varepsilon} \subseteq \langle C \rangle$, then the \mathcal{R} -class R_{θ} of \mathcal{OP}_n is contained in $\langle C \rangle$.

Finally, suppose that $(1, n) \in \ker \theta$ and let $\tau \in C \cap R_{\theta}$. Take an orderpreserving idempotent ε' such that $\operatorname{im} \varepsilon' = \operatorname{im} \tau$. Then, $\varepsilon' \in L_{\varepsilon'} \cap R_{\varepsilon'} = L_{\tau} \cap R_{\varepsilon'}$, whence $\tau \varepsilon' = \tau$ and so $\operatorname{im} \tau \# \ker \varepsilon'$. Thus, by Lemma 1.1, we have $\tau R_{\varepsilon'} = R_{\tau} = R_{\theta}$. As $\tau \in C$ and $R_{\varepsilon'} \subseteq \langle C \rangle$ (by the previous case), then the \mathcal{R} -class R_{θ} is also contained in $\langle C \rangle$.

Hence, we have proved that $J_k \subseteq \langle C \rangle$ and so, by Lemma 1.7, we obtain $OP(n,k) = \langle C \rangle$, as required.

Since $J_k \cap \mathcal{O}_n \subseteq \langle E(J_k \cap \mathcal{O}_n) \rangle$ (see [12]) and each \mathcal{R} -class of \mathcal{OP}_n contains at least one idempotent, we have:

Corollary 1.9. $OP(n,k) = \langle E(J_k) \rangle$.

Notice that it is easy to show that, in fact, each \mathcal{R} -class of \mathcal{OP}_n contained in J_k has at least two idempotents. Moreover, as $2 \leq k \leq n-1$, it also is easy to show that each \mathcal{L} -class of \mathcal{OP}_n contained in J_k also has at least two idempotents.

Next, we define a fundamental concept (first considered by YANG and YANG in [19]) for our description of the maximal subsemigroups of OP(n, k).

Let Im_k be any non-empty family of subsets of X_n of cardinality k. Let Ker_k be any non-empty collection of equivalence relations on X_n of weight k. Let \mathfrak{I} be a non-empty proper subset of Im_k and let \mathcal{K} be a non-empty proper subset of Ker_k . The pair $(\mathfrak{I}, \mathcal{K})$ is called a *coupler* of $(\operatorname{Im}_k, \operatorname{Ker}_k)$ if the following three conditions are satisfied:

- (1) For every $A \in \mathcal{I}$ and $\pi \in \mathcal{K}$, A is not a transversal of π ;
- (2) For every $B \in \text{Im}_k \setminus \mathcal{I}$, there exists $\pi \in \mathcal{K}$ such that $B \# \pi$;
- (3) For every $\rho \in \operatorname{Ker}_k \setminus \mathcal{K}$, there exists $A \in \mathcal{I}$ such that $A \# \rho$. Now, let

$$\operatorname{Im}_k(\mathcal{OP}_n) = \{ \operatorname{im} \alpha \mid \alpha \in \mathcal{OP}_n \text{ and } \operatorname{rank} \alpha = k \}$$

(i.e. $\operatorname{Im}_k(\mathcal{OP}_n) = \binom{X_n}{k}$, the family of all subsets of X_n of cardinality k) and let

$$\operatorname{Ker}_k(\mathcal{OP}_n) = \{\operatorname{ker} \alpha \mid \alpha \in \mathcal{OP}_n \text{ and } \operatorname{rank} \alpha = k\}.$$

Then, to a coupler of $(\operatorname{Im}_k(\mathcal{OP}_n), \operatorname{Ker}_k(\mathcal{OP}_n))$ we also call *k*-coupler of \mathcal{OP}_n . Analogously, being $\operatorname{Im}_k(\mathcal{O}_n) = \{\operatorname{im} \alpha \mid \alpha \in \mathcal{O}_n \text{ and } \operatorname{rank} \alpha = k\}$ and $\operatorname{Ker}_k(\mathcal{O}_n) = \{\operatorname{Im}_k(\mathcal{O}_n) \mid \alpha \in \mathcal{O}_n \}$

{ker $\alpha \mid \alpha \in \mathcal{O}_n$ and rank $\alpha = k$ }, we also call *k*-coupler of \mathcal{O}_n to a coupler of $(\operatorname{Im}_k(\mathcal{O}_n), \operatorname{Ker}_k(\mathcal{O}_n))$ (notice that $\operatorname{Im}_k(\mathcal{O}_n) = \binom{X_n}{k} = \operatorname{Im}_k(\mathcal{OP}_n)$ and $\operatorname{Ker}_k(\mathcal{O}_n) = \{\pi \in \operatorname{Ker}_k(\mathcal{OP}_n) \mid (1, n) \notin \pi\}$).

Example 1.10. Consider the following transformations of \mathcal{OP}_5 of rank 3:

$\alpha_1 = \begin{pmatrix} 1\\ 1 \end{pmatrix}$	$\frac{2}{1}$	$\frac{3}{1}$	$\frac{4}{2}$	$\begin{pmatrix} 5\\ 3 \end{pmatrix}$,		$\alpha_2 = \begin{pmatrix} 1 & 2\\ 1 & 1 \end{pmatrix}$	$\frac{3}{2}$		$\begin{pmatrix} 5\\1 \end{pmatrix}$,
$\alpha_3 = \begin{pmatrix} 1\\1 \end{pmatrix}$	2 1	$\frac{3}{2}$	$\frac{4}{5}$	$\begin{pmatrix} 5\\5 \end{pmatrix}$,		$\alpha_4 = \begin{pmatrix} 1 & 2\\ 1 & 3 \end{pmatrix}$	3 3	$\begin{array}{ccc} 4 & 5 \\ 3 & 4 \end{array}$	$\begin{pmatrix} i \\ 1 \end{pmatrix}$,
$\alpha_5 = \begin{pmatrix} 1\\1 \end{pmatrix}$	$2 \\ 3$	$\frac{3}{3}$	$\frac{4}{5}$	$\begin{pmatrix} 5\\5 \end{pmatrix}$,		$\alpha_6 = \begin{pmatrix} 1 & 2\\ 1 & 4 \end{pmatrix}$	$\frac{3}{5}$		$\left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right),$
$\alpha_7 = \begin{pmatrix} 1\\ 4 \end{pmatrix}$	2 2	$\frac{3}{2}$	$\frac{4}{3}$	$\begin{pmatrix} 5\\4 \end{pmatrix}$,		$\alpha_8 = \begin{pmatrix} 1 & 2\\ 5 & 2 \end{pmatrix}$	3 3	4 5 3 5	$\left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right),$
$\alpha_9 = \begin{pmatrix} 1\\5 \end{pmatrix}$	2 2	$\frac{3}{4}$	$\frac{4}{5}$	$\begin{pmatrix} 5\\5 \end{pmatrix}$	and	$\alpha_{10} = \begin{pmatrix} 1 & 2\\ 5 & 5 \end{pmatrix}$	$\frac{3}{3}$	$\frac{4}{4}$	$\begin{pmatrix} 5\\5 \end{pmatrix}$.

Then, we have $\{\operatorname{im} \alpha_1, \ldots, \operatorname{im} \alpha_{10}\} = {X_5 \choose 3}, \{\operatorname{ker} \alpha_1, \ldots, \operatorname{ker} \alpha_{10}\} = \operatorname{Ker}_3(\mathcal{OP}_5)$ and $\{\operatorname{ker} \alpha_1, \ldots, \operatorname{ker} \alpha_6\} = \operatorname{Ker}_3(\mathcal{O}_5)$. Moreover, for instance,

- $(\{\operatorname{im} \alpha_1, \operatorname{im} \alpha_2\}, \{\operatorname{ker} \alpha_1, \operatorname{ker} \alpha_2, \operatorname{ker} \alpha_3, \operatorname{ker} \alpha_4, \operatorname{ker} \alpha_{10}\})$ [Figure 1],
- $(\{\operatorname{im} \alpha_7, \operatorname{im} \alpha_8, \operatorname{im} \alpha_9, \operatorname{im} \alpha_{10}\}, \{\operatorname{ker} \alpha_4, \operatorname{ker} \alpha_5, \operatorname{ker} \alpha_6\})$ [Figure 2],
- $(\{\operatorname{im} \alpha_1, \operatorname{im} \alpha_7, \operatorname{im} \alpha_{10}\}, \{\operatorname{ker} \alpha_2, \operatorname{ker} \alpha_4, \operatorname{ker} \alpha_5\})$ [Figure 3] and

• $(\{\operatorname{im} \alpha_6, \operatorname{im} \alpha_9\}, \{\operatorname{ker} \alpha_3, \operatorname{ker} \alpha_5, \operatorname{ker} \alpha_6, \operatorname{ker} \alpha_9, \operatorname{ker} \alpha_{10}\})$ [Figure 4] are 3-couplers of \mathcal{OP}_5 .

	im α_1	im α_2	im α_3	im α_4	im α_5	im α_6	im α_7	im α_8	im α_9	im α_{10}
$\ker \alpha_1$						*			*	*
$\ker \alpha_2$					*	*		*	*	
$\ker \alpha_3$				*	*		*	*		
$\ker \alpha_4$			*		*	*				
$\ker \alpha_5$		*	*	*	*					
$\ker \alpha_6$	*	*	*							
$\ker \alpha_7$		*		*					*	*
$\ker \alpha_8$	*	*						*	*	
$\ker \alpha_9$	*						*	*		
$\ker \alpha_{10}$				*			*			*

Figure 1

	im α_1	im α_2	$\operatorname{im} \alpha_3$	im α_4	im α_5	im α_6	$\operatorname{im} \alpha_7$	im α_8	im α_9	im α_{10}
$\ker \alpha_1$						*			*	*
$\ker \alpha_2$					*	*		*	*	
$\ker \alpha_3$				*	*		*	*		
$\ker \alpha_4$			*		*	*				
$\ker \alpha_5$		*	*	*	*					
$\ker \alpha_6$	*	*	*							
$\ker \alpha_7$		*		*					*	*
$\ker \alpha_8$	*	*						*	*	
$\ker \alpha_9$	*						*	*		
$\ker \alpha_{10}$				*			*			*

Figure~2

	im α_1	$\operatorname{im} \alpha_2$	im α_3	im α_4	$\operatorname{im} \alpha_{5}$	im α_6	im α_7	$\operatorname{im} \alpha_8$	$\operatorname{im} \alpha_9$	im α_{10}
$\ker \alpha_1$						*			*	*
$\ker \alpha_2$					*	*		*	*	
$\ker \alpha_3$				*	*		*	*		
$\ker \alpha_4$			*		*	*				
$\ker \alpha_5$		*	*	*	*					
$\ker \alpha_6$	*	*	*							
$\ker \alpha_7$		*		*					*	*
$\ker \alpha_8$	*	*						*	*	
$\ker \alpha_9$	*						*	*		
$\ker \alpha_{10}$				*			*			*

Figure 3

	im α_1	im α_2	im α_3	im α_4	im α_5	im α_6	im α_7	im α_8	im α_9	im α_{10}
$\ker \alpha_1$						*			*	*
$\ker \alpha_2$					*	*		*	*	
$\ker \alpha_3$				*	*		*	*		
$\ker \alpha_4$			*		*	*				
$\ker \alpha_5$		*	*	*	*					
$\ker \alpha_6$	*	*	*							
$\ker \alpha_7$		*		*					*	*
$\ker \alpha_8$	*	*						*	*	
$\ker \alpha_9$	*						*	*		
$\ker \alpha_{10}$				*			*			*

Figure 4

On the other hand,

• $(\{\operatorname{im} \alpha_1, \operatorname{im} \alpha_7, \operatorname{im} \alpha_{10}\}, \{\operatorname{ker} \alpha_2, \operatorname{ker} \alpha_4, \operatorname{ker} \alpha_5\})$ [Figure 5]

• $(\{\operatorname{im} \alpha_1, \operatorname{im} \alpha_2\}, \{\operatorname{ker} \alpha_1, \operatorname{ker} \alpha_2, \operatorname{ker} \alpha_3, \operatorname{ker} \alpha_4\})$ [Figure 6] are 3-couplers of \mathcal{O}_5 .

	im α_1	im α_2	im α_3	im α_4	im α_5	im α_6	im α_7	im α_8	im α_9	im α_{10}
$\ker \alpha_1$						*			*	*
$\ker \alpha_2$					*	*		*	*	
$\ker \alpha_3$				*	*		*	*		
$\ker \alpha_4$			*		*	*				
$\ker \alpha_5$		*	*	*	*					
$\ker \alpha_6$	*	*	*							

Figure 5

	im α_1	$\operatorname{im} \alpha_2$	$im \alpha_3$	im α_4	im α_5	im α_6	$\operatorname{im} \alpha_7$	$\operatorname{im} \alpha_8$	$\operatorname{im} \alpha_9$	$\operatorname{im} \alpha_{10}$
$\ker \alpha_1$	-	2			5	*			*	*
$\ker \alpha_2$					*	*		*	*	
$\ker \alpha_3$				*	*		*	*		
$\ker \alpha_4$			*		*	*				
$\ker \alpha_5$		*	*	*	*					
$\ker \alpha_6$	*	*	*							

'igure t)
----------	---

1

(As usual, the symbol * inside a box means that the corresponding \mathcal{H} -class contains an idempotent.)

Next, we consider the following subsets of OP(n, k):

- (1) $S_A = OP(n, k-1) \cup (J_k \setminus L_{\alpha}^{\mathcal{OP}_n})$, with $\alpha \in \mathcal{OP}_n$ such that $A = \operatorname{im} \alpha$, for each $A \in \binom{X_n}{k}$;
- (2) $S_{\pi} = OP(n, k-1) \cup (J_k \setminus R_{\alpha}^{\mathcal{OP}_n})$, with $\alpha \in \mathcal{OP}_n$ such that $\pi = \ker \alpha$, for each $\pi \in \operatorname{Ker}_k(\mathcal{OP}_n)$;
- (3) $S_{(\mathfrak{I},\mathfrak{K})} = OP(n, k-1) \cup \left(\bigcup \{ L_{\alpha}^{\mathcal{OP}_n} \mid \alpha \in \mathcal{OP}_n \text{ and } \operatorname{im} \alpha \in \mathfrak{I} \} \right) \cup \cup \left(\bigcup \{ R_{\alpha}^{\mathcal{OP}_n} \mid \alpha \in \mathcal{OP}_n \text{ and } \operatorname{ker} \alpha \in \mathfrak{K} \} \right),$ for each k-coupler $(\mathfrak{I}, \mathfrak{K})$ of \mathcal{OP}_n .

It is routine matter to prove that each of these subsets is a (proper) subsemigroup of OP(n,k).

Before we give the description of the maximal subsemigroups of the ideals of the semigroup \mathcal{OP}_n , we recall a result presented in [6] by the first and third authors (see also [20]). Let O(n,k) denote the ideal of \mathcal{O}_n of all elements of rank less than or equal to k, i.e. $O(n,k) = OP(n,k) \cap \mathcal{O}_n$. Thus, we have:

Theorem 1.11. Let $n \ge 3$ and $2 \le k \le n-1$. Then a subsemigroup of O(n,k) is maximal if and only if it belongs to one of the following types:

(1)
$$S_A \cap \mathcal{O}_n$$
, with $A \in \binom{X_n}{k}$;

- (2) $S_{\pi} \cap \mathcal{O}_n$, with $\pi \in \operatorname{Ker}_k(\mathcal{O}_n)$ such that π does not admit any interval of X_n as a transversal;
- (3) $S'_{(\mathfrak{I},\mathfrak{K})} = O(n, k-1) \cup \left(\bigcup \{ L^{\mathcal{O}_n}_{\alpha} \mid \alpha \in \mathcal{O}_n \text{ and } \operatorname{im} \alpha \in \mathfrak{I} \} \right) \cup \cup \left(\bigcup \{ R^{\mathcal{O}_n}_{\alpha} \mid \alpha \in \mathcal{O}_n \text{ and } \operatorname{ker} \alpha \in \mathfrak{K} \} \right),$ with $(\mathfrak{I}, \mathfrak{K})$ a k-coupler of \mathcal{O}_n .

Regarding the maximal subsemigroups of OP(n, k), we first prove:

Lemma 1.12. Let S be a maximal subsemigroup of OP(n,k). Then $S = \bigcup \{ H_{\alpha}^{O\mathcal{P}_n} \mid \alpha \in S \}.$

PROOF. Let $T = \bigcup \{ H_{\alpha}^{\mathcal{OP}_n} \mid \alpha \in S \}$. Then clearly $S \subseteq T$. By Corollary 1.9, there exists $\varepsilon \in E(J_k)$ such that $\varepsilon \notin S$. Hence $H_{\varepsilon}^{\mathcal{OP}_n} \cap S = \emptyset$ and so $T \neq OP(n,k)$. The result follows by proving that T is a subsemigroup of OP(n,k). Clearly, by the maximality of S and Lemma 1.7, we have $OP(n,k-1) \subsetneq S$. So, it suffices to show that, for all $\alpha, \beta \in T \cap J_k$ such that $\alpha\beta \in J_k$, we get $\alpha\beta \in T$. Therefore, let $\alpha, \beta \in T \cap J_k$ be such that $\alpha\beta \in J_k$. Take $\alpha', \beta' \in S$ such that $\alpha \in H_{\alpha'}^{\mathcal{OP}_n}$ and $\beta \in H_{\beta'}^{\mathcal{OP}_n} \cap L_{\beta'}^{\mathcal{OP}_n} \cap L_{\beta}^{\mathcal{OP}_n} = H_{\alpha\beta}^{\mathcal{OP}_n} = H_{\alpha\beta}^{\mathcal{OP}_n}$ and so, as $\alpha'\beta' \in S$, we obtain $\alpha\beta \in H_{\alpha'\beta'}^{\mathcal{OP}_n} \subseteq T$, as required.

Now, we have:

Theorem 1.13. Let $n \ge 3$ and $2 \le k \le n-1$. Then a subsemigroup of OP(n,k) is maximal if and only if it belongs to one of the following types:

- (1) S_A , with $A \in \binom{X_n}{k}$;
- (2) S_{π} , with $\pi \in \operatorname{Ker}_k(\mathcal{OP}_n)$;
- (3) $S_{(\mathfrak{I},\mathfrak{K})}$, with $(\mathfrak{I},\mathfrak{K})$ a k-coupler of \mathcal{OP}_n .

PROOF. We begin by showing that each of these subsemigroups of OP(n,k) is maximal.

First, let $A \in \binom{X_n}{k}$ and let $\alpha \in \mathcal{OP}_n$ be such that im $\alpha = A$. Take an idempotent $\varepsilon \in (J_k \setminus L_{\alpha}^{\mathcal{OP}_n}) \cap R_{\alpha}^{\mathcal{OP}_n}$. As $L_{\varepsilon}^{\mathcal{OP}_n} \subseteq S_A$ and, by Lemma 1.1, $L_{\varepsilon}^{\mathcal{OP}_n} \alpha = L_{\alpha}^{\mathcal{OP}_n}$, we have $\langle S_A, \alpha \rangle = OP(n, k)$. Thus, S_A is maximal.

Similarly, being $\pi \in \operatorname{Ker}_k(\mathcal{OP}_n)$ and being $\alpha \in \mathcal{OP}_n$ such that $\ker \alpha = \pi$, the \mathcal{L} -class $L_{\alpha}^{\mathcal{OP}_n}$ contains at least one idempotent $\varepsilon \in J_k \setminus R_{\alpha}^{\mathcal{OP}_n}$ and so $R_{\varepsilon}^{\mathcal{OP}_n} \subseteq S_{\pi}$ and, by Lemma 1.1, $\alpha R_{\varepsilon}^{\mathcal{OP}_n} = R_{\alpha}^{\mathcal{OP}_n}$, whence $\langle S_{\pi}, \alpha \rangle = OP(n, k)$. Thus, S_{π} is maximal.

Finally, regarding the subsemigroups of type (3), let $(\mathfrak{I}, \mathcal{K})$ be a k-coupler of \mathcal{OP}_n . As \mathfrak{I} and \mathcal{K} are proper subsets of $\binom{X_n}{k}$ and $\operatorname{Ker}_k(\mathcal{OP}_n)$, respectively,

we may take $\gamma \in \mathcal{OP}_n$ such that $\operatorname{im} \gamma \in \binom{X_n}{k} \setminus \mathfrak{I}$ and $\operatorname{ker} \gamma \in \operatorname{Ker}_k(\mathcal{OP}_n) \setminus \mathcal{K}$. Then, there exist $\alpha, \beta \in \mathcal{OP}_n$ such that $\operatorname{im} \alpha \in \mathfrak{I}$, $\operatorname{ker} \beta \in \mathcal{K}$, $\operatorname{im} \gamma \# \operatorname{ker} \beta$ and $\operatorname{im} \alpha \# \operatorname{ker} \gamma$. Now, by Lemma 1.1, we have $\gamma R_{\beta}^{\mathcal{OP}_n} = R_{\gamma}^{\mathcal{OP}_n}$. As $R_{\beta}^{\mathcal{OP}_n} \subseteq S_{(\mathfrak{I},\mathcal{K})}$, we obtain $R_{\gamma}^{\mathcal{OP}_n} \subseteq \langle S_{(\mathfrak{I},\mathcal{K})}, \gamma \rangle$. On the other hand, by Lemma 1.1, we also have $L_{\alpha}^{\mathcal{OP}_n} R_{\gamma}^{\mathcal{OP}_n} = J_k$. Since $L_{\alpha}^{\mathcal{OP}_n} \subseteq S_{(\mathfrak{I},\mathcal{K})}$, we deduce that $\langle S_{(\mathfrak{I},\mathcal{K})}, \gamma \rangle = OP(n,k)$. Thus, $S_{(\mathfrak{I},\mathcal{K})}$ is maximal.

For the converse part, let S be a maximal subsemigroup of the ideal OP(n, k).

If $S \cap R_{\alpha}^{\mathcal{OP}_n} = \emptyset$, for some $\alpha \in J_k$, then $S = S_{\ker \alpha}$, by the maximality of S. Similarly, if $S \cap L_{\alpha}^{\mathcal{OP}_n} = \emptyset$, for some $\alpha \in J_k$, then $S = S_{\operatorname{im} \alpha}$. Thus, suppose that S has at least one element from each \mathcal{R} -class and each \mathcal{L} -class of \mathcal{OP}_n contained in J_k . If $S \cap \mathcal{O}_n = O(n,k)$ then S = OP(n,k), by Proposition 1.8. Therefore $S \cap \mathcal{O}_n \subsetneq O(n,k)$. Let \overline{S} be a maximal subsemigroup of O(n,k) such that $S \cap \mathcal{O}_n \subseteq \overline{S}$. By Theorem 1.11, we have three possible cases for \overline{S} .

First, suppose that $\bar{S} = S_{\pi} \cap \mathcal{O}_n$, for some $\pi \in \operatorname{Ker}_k(\mathcal{O}_n)$. As $\operatorname{Ker}_k(\mathcal{O}_n) \subseteq$ $\operatorname{Ker}_k(\mathcal{OP}_n)$, we may take $\alpha \in S$ such that ker $\alpha = \pi$. Moreover, we have $H_{\alpha}^{\mathcal{OP}_n} \cap \mathcal{O}_n \neq \emptyset$. Now, as $H_{\alpha}^{\mathcal{OP}_n} \subseteq S$ (by Lemma 1.12), we have $(S \cap \mathcal{O}_n) \cap R_{\alpha}^{\mathcal{OP}_n} \neq \emptyset$, whence $\bar{S} \cap R_{\alpha}^{\mathcal{OP}_n} \neq \emptyset$ and so $S_{\pi} \cap R_{\alpha}^{\mathcal{OP}_n} \neq \emptyset$, which is a contradiction. Thus, \bar{S} cannot be of this type.

Secondly, we suppose that $\overline{S} = S_{A_1} \cap \mathcal{O}_n$, for some $A_1 \in \binom{X_n}{k}$. Let A_2, \ldots, A_r $(r \geq 2)$ be distinct elements of $\binom{X_n}{k}$ such that, for all $\alpha \in J_k$, $L_{\alpha}^{\mathcal{OP}_n} \cap \mathcal{O}_n \cap S = \emptyset$ if and only if im $\alpha \in \{A_1, \ldots, A_r\}$. For each $i \in \{1, \ldots, r\}$, let $\alpha_i \in \mathcal{OP}_n$ be such that im $\alpha_i = A_i$. Notice that, for $i \in \{1, \ldots, r\}$, as S has at least one element from each \mathcal{L} -class of \mathcal{OP}_n contained in J_k , in particular, we have $L_{\alpha_i}^{\mathcal{OP}_n} \cap S \neq \emptyset$ and, on the other hand, as a consequence of Lemma 1.12, if $\alpha \in L_{\alpha_i}^{\mathcal{OP}_n} \cap S$ then $(1, n) \in \ker \alpha$. Now, let

$$\mathcal{K} = \{ \ker \alpha \mid \alpha \in L_{\alpha_i}^{\mathcal{OP}_n} \cap S, \text{ for some } i \in \{1, \dots, r\} \}.$$

Notice that, clearly, $\mathcal{K} \neq \emptyset$. Also, let

 $\mathcal{I} = \{ A \in \binom{X_n}{k} \mid A \text{ is not a transversal of } \pi, \text{ for all } \pi \in \mathcal{K} \}.$

Observe that, as $(1, n) \in \pi$, for all $\pi \in \mathcal{K}$, then $\{A \in \binom{X_n}{k} \mid 1, n \in A\} \subseteq \mathfrak{I}$ and so, in particular, $\mathfrak{I} \neq \emptyset$. Furthermore, it is a routine matter to check that the pair $(\mathfrak{I}, \mathcal{K})$ is a k-coupler of \mathcal{OP}_n . Next, we show that $S \cap J_k \subseteq S_{(\mathfrak{I}, \mathcal{K})}$. Take $\alpha \in S \cap J_k$. If $\operatorname{im} \alpha \in \mathfrak{I}$, then $\alpha \in S_{(\mathfrak{I}, \mathcal{K})}$, by definition. On the other hand, suppose that $\operatorname{im} \alpha \notin \mathfrak{I}$. Then, there exists $\pi \in \mathcal{K}$ such that $\operatorname{im} \alpha \# \pi$. As $\pi \in \mathcal{K}$, then $\pi = \ker \beta$, for some $\beta \in L_{\alpha_i}^{\mathcal{OP}_n} \cap S$ and $i \in \{1, \ldots, r\}$. From $\operatorname{im} \alpha \# \ker \beta$ it follows that $\alpha\beta \in R_{\alpha}^{\mathcal{OP}_n} \cap L_{\beta}^{\mathcal{OP}_n} = R_{\alpha}^{\mathcal{OP}_n} \cap L_{\alpha_i}^{\mathcal{OP}_n}$. Moreover, $\alpha\beta \in S$, whence

 $\alpha\beta \in L_{\alpha_i}^{\mathcal{OP}_n} \cap S$ and so ker $\alpha = \ker(\alpha\beta) \in \mathcal{K}$. Then $\alpha \in S_{(\mathcal{I},\mathcal{K})}$, by definition. So, we have proved that $S \cap J_k \subseteq S_{(\mathcal{I},\mathcal{K})}$. Therefore $S \subseteq S_{(\mathcal{I},\mathcal{K})}$ and thus $S = S_{(\mathcal{I},\mathcal{K})}$, by the maximality of S.

Finally, suppose that $\bar{S} = S'_{(\mathcal{I}',\mathcal{K}')}$ (as defined in Theorem 1.11), for some k-coupler $(\mathcal{I}',\mathcal{K}')$ of \mathcal{O}_n . Let

$$\mathfrak{I} = \mathfrak{I}' \cap \{ \operatorname{im} \alpha \mid \alpha \in S \text{ and } \ker \alpha \in \operatorname{Ker}_k(\mathcal{O}_n) \setminus \mathfrak{K}' \}$$

and

 $\mathcal{K} = \{ \pi \in \operatorname{Ker}_k(\mathcal{OP}_n) \mid A \text{ is not a transversal of } \pi, \text{ for all } A \in \mathcal{I} \}.$

Clearly, $\mathcal{K}' \subseteq \mathcal{K}$, whence $\mathcal{K} \neq \emptyset$. On the other hand, from the definition of \mathfrak{I} and from $S \cap \mathcal{O}_n \subseteq S'_{(\mathfrak{I}',\mathcal{K}')}$, in view of Lemma 1.12, we may deduce that $R_\beta^{\mathcal{OP}_n} \cap L_\alpha^{\mathcal{OP}_n} \cap S = \emptyset$, for all $\alpha, \beta \in J_k$ such that $\ker \beta \in \operatorname{Ker}_k(\mathcal{O}_n) \setminus \mathcal{K}'$ and $\operatorname{im} \alpha \in \binom{X_n}{k} \setminus \mathfrak{I}$. As S has at least one element from each \mathcal{R} -class of \mathcal{OP}_n contained in J_k , in particular, it follows that $\mathfrak{I} \neq \emptyset$. Furthermore, it is a routine matter to check that the pair $(\mathfrak{I}, \mathcal{K})$ is a k-coupler of \mathcal{OP}_n . Next, we aim to prove that $S = S_{(\mathfrak{I}, \mathcal{K})}$. Take $\alpha \in J_k \cap S$ and suppose that $\alpha \notin S_{(\mathfrak{I}, \mathcal{K})}$. Then, $\operatorname{im} \alpha \in \binom{X_n}{k} \setminus \mathfrak{I}$ and $\ker \alpha \in \operatorname{Ker}_k(\mathcal{OP}_n) \setminus \mathcal{K}$. Hence, there exists $A \in \mathfrak{I}$ such that $A \# \ker \alpha$ and, by the definition of \mathfrak{I} , we have $A = \operatorname{im} \beta$, for some $\beta \in S$ such that $\ker \beta \in \operatorname{Ker}_k(\mathcal{O}_n) \setminus \mathcal{K}'$. Thus, from $\operatorname{im} \beta = A \# \ker \alpha$, it follows that $\beta \alpha \in R_\beta^{\mathcal{OP}_n} \cap L_\alpha^{\mathcal{OP}_n} \cap S$ and so $R_\beta^{\mathcal{OP}_n} \cap L_\alpha^{\mathcal{OP}_n} \cap S \neq \emptyset$, with $\ker \beta \in \operatorname{Ker}_k(\mathcal{O}_n) \setminus \mathcal{K}'$ and $\operatorname{im} \alpha \in \binom{X_n}{k} \setminus \mathfrak{I}$, which contradicts the above deduction. Therefore, $\alpha \in S_{(\mathfrak{I},\mathcal{K})}$, whence $S \subseteq S_{(\mathfrak{I},\mathcal{K})}$ and then $S = S_{(\mathfrak{I},\mathcal{K})}$, by the maximality of S, as required. \square

2. Maximal subsemigroups of the ideals of \mathcal{OR}_n

As for \mathcal{OP}_n , the semigroup \mathcal{OR}_n is the union of its \mathcal{J} -classes $\bar{J}_1, \bar{J}_2, \ldots, \bar{J}_n$, where

$$\bar{J}_k = \{ \alpha \in \mathcal{OR}_n \mid \operatorname{rank} \alpha = k \}$$

for k = 1, ..., n. Notice that $\overline{J}_k \cap \mathcal{OP}_n$ is the \mathcal{J} -class J_k of \mathcal{OP}_n , for k = 1, ..., n, and $\overline{J}_1 = J_1$ and $\overline{J}_2 = J_2$. Observe also that, for $\alpha \in \mathcal{OP}_n$, we have $L_{\alpha}^{\mathcal{OP}_n} = L_{\alpha}^{\mathcal{OR}_n} \cap \mathcal{OP}_n$, $R_{\alpha}^{\mathcal{OP}_n} = R_{\alpha}^{\mathcal{OR}_n} \cap \mathcal{OP}_n$ and $H_{\alpha}^{\mathcal{OP}_n} = H_{\alpha}^{\mathcal{OR}_n} \cap \mathcal{OP}_n$.

Analogously to \mathcal{OP}_n , the ideals of the semigroup \mathcal{OR}_n are unions of the \mathcal{J} -classes $\bar{J}_1, \bar{J}_2, \ldots, \bar{J}_k$, i.e. the sets

$$OR(n,k) = \{ \alpha \in \mathcal{OR}_n \mid \operatorname{rank} \alpha \le k \},\$$

with $k = 1, \ldots, n$.

For $\alpha \in OR(n,k)$, with k = 1, ..., n, we also have $L_{\alpha}^{OR(n,k)} = L_{\alpha}^{\mathcal{OR}_n}$, $R_{\alpha}^{OR(n,k)} = R_{\alpha}^{\mathcal{OR}_n}$ and $H_{\alpha}^{OR(n,k)} = H_{\alpha}^{\mathcal{OR}_n}$. Moreover, a result similar to Lemma 1.1 holds for elements of \mathcal{OR}_n :

Lemma 2.1. Let $k \in \{1, 2, ..., n\}$ and let $\alpha, \beta \in \overline{J}_k$ be such that im $\alpha \# \ker \beta$. Then $\alpha R_{\beta}^{\mathcal{OR}_n} = R_{\alpha\beta}^{\mathcal{OR}_n} = R_{\alpha}^{\mathcal{OR}_n}, L_{\alpha}^{\mathcal{OR}_n}\beta = L_{\alpha\beta}^{\mathcal{OR}_n} = L_{\beta}^{\mathcal{OR}_n}, \alpha H_{\beta}^{\mathcal{OR}_n} = H_{\alpha}^{\mathcal{OR}_n}\beta = H_{\alpha\beta}^{\mathcal{OR}_n}$ and $L_{\alpha\beta}^{\mathcal{OR}_n} R_{\beta\beta}^{\mathcal{OR}_n} = \overline{J}_k$.

As $\mathcal{OR}_1 = \mathcal{OP}_1$ and $\mathcal{OR}_2 = \mathcal{OP}_2$, in what follows, we consider $n \geq 3$.

Next, recall that a dihedral group \mathcal{D}_n of order 2n can abstractly be defined by the group presentation

$$\langle x, y \mid x^n = y^2 = 1, xy = yx^{-1} \rangle.$$

Let

$$h = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ n & n-1 & \cdots & 2 & 1 \end{pmatrix} \in \bar{J}_n.$$

Hence, we have $\bar{J}_n = \langle g, h \rangle$ and, as $g^n = h^2 = (gh)^2 = 1$, it is easy to see that \bar{J}_n is a dihedral group of order 2n. Furthermore, CATARINO and HIGGINS [5] proved:

Proposition 2.2. Let $k \in \{3, ..., n\}$ and let $\alpha \in OR_n$ be an element of rank k. Then $|H_{\alpha}| = 2k$. Moreover, if α is an idempotent, then H_{α} is a dihedral group of order 2k.

Thus, each \mathcal{H} -class of rank k of \mathcal{OR}_n has k orientation-preserving transformations and k orientation-reversing transformations, for $k \in \{3, \ldots, n\}$.

Notice that, since $\overline{J}_1 = J_1$ and $\overline{J}_2 = J_2$, for $\alpha \in \overline{J}_k$ with k = 1, 2, we have $|H_{\alpha}^{\mathcal{OR}_n}| = k$.

Let us consider again the dihedral group \mathcal{D}_n of order 2n. Observe that

$$\mathcal{D}_n = \{1 = x^0, x, x^2, \dots, x^{n-1}\} \cup \{y, xy, x^2y, \dots, x^{n-1}y\}.$$

It is easy to show that the subgroups of \mathcal{D}_n are of the form $\langle x^d \rangle$ (a cyclic group of order n/d) and of the form $\langle x^d, x^i y \rangle$ (a dihedral group of order 2n/d), for each positive divisor d of n and each $0 \leq i < d$. It follows that $\langle x \rangle$ and $\langle x^p, x^i y \rangle$, with p a prime divisor of n and $0 \leq i < p$, are the maximal subsemigroups of \mathcal{D}_n .

Now, for a prime divisor p of n and $0 \le i < p$, consider the dihedral group $V_{p,i} = \langle g^p, g^i h \rangle$ of order 2n/p. Then, the above observation can be rewrote as:

Lemma 2.3. The group $J_n = \langle g \rangle$ and the groups $V_{p,i}$, with p a prime divisor of n and $0 \leq i < p$, are the maximal subsemigroups of \overline{J}_n .

Next, we recall the following well known result (see [4], [17]).

Proposition 2.4. $\mathcal{OR}_n = \langle u_1, g, h \rangle.$

In fact, more generally, we have:

Proposition 2.5. Let $\alpha \in \overline{J}_{n-1}$, γ an element of J_n of order n and $\beta \in \overline{J}_n \setminus J_n$. Then $\mathcal{OR}_n = \langle \alpha, \gamma, \beta \rangle$.

PROOF. If $\alpha \in \overline{J}_{n-1} \cap \mathcal{OP}_n$ then, by Proposition 1.4, we have $\mathcal{OP}_n = \langle \alpha, \gamma \rangle$. If $\alpha \in \overline{J}_{n-1} \setminus \mathcal{OP}_n$ then $\alpha\beta \in \overline{J}_{n-1} \cap \mathcal{OP}_n$ and, again by Proposition 1.4, we obtain $\mathcal{OP}_n = \langle \alpha\beta, \gamma \rangle$. Therefore, $u_1, g \in \langle \alpha, \gamma, \beta \rangle$. As $\beta \in \overline{J}_n \setminus \mathcal{OP}_n$, there exists $i \in \{1, \ldots, n\}$ such that $\beta = \begin{pmatrix} 1 & 2 & \cdots & i-1 & i & \cdots & n-1 & n \\ i & -1 & i & -2 & \cdots & 1 & n & \cdots & i+1 & i \end{pmatrix}$. On the other hand, the transformation

$$\delta = \begin{pmatrix} 1 & 2 & \cdots & i-1 & i & \cdots & n-1 & n \\ n-i+2 & n-i+3 & \cdots & n & 1 & \cdots & n-i & n-i+1 \end{pmatrix}$$

is an element of \mathcal{OP}_n and $h = \beta \delta \in \langle \alpha, \gamma, \beta \rangle$. Therefore, by Proposition 2.4, we deduce that $\mathcal{OR}_n = \langle \alpha, \gamma, \beta \rangle$.

We have now all the ingredients to describe the maximal subsemigroups of \mathcal{OR}_n .

Theorem 2.6. A subsemigroup S of the semigroup \mathcal{OR}_n is maximal if and only if $S = OR(n, n-2) \cup \overline{J}_n$ or $S = OR(n, n-1) \cup J_n$ or $S = OR(n, n-1) \cup V_{p,i}$, for some prime divisor p of n and $0 \le i < p$.

PROOF. Let S be a maximal subsemigroup of \mathcal{OR}_n . Then, by Proposition 2.5, we have $S = OR(n, n-2) \cup T$, for some $T \subset (\bar{J}_{n-1} \cup \bar{J}_n)$ such that $T \cap \bar{J}_{n-1} = \emptyset$ or T does not contain any element of J_n of order n or $T \cap (\bar{J}_n \setminus J_n) = \emptyset$. In the latter two cases, we must have $\bar{J}_{n-1} \subseteq T$, by the maximality of S. Thus, $S = OR(n, n-1) \cup T'$, for some $T' \subset \bar{J}_n$. Clearly, T' must be a maximal subsemigroup of \bar{J}_n , whence $S = OR(n, n-1) \cup J_n$ or $S = OR(n, n-1) \cup V_{p,i}$, for some prime divisor p of n and $0 \le i < p$, accordingly with Lemma 2.3. On the other hand, if $T \cap \bar{J}_{n-1} = \emptyset$ then $S \subseteq OR(n, n-2) \cup \bar{J}_n$ and so $S = OR(n, n-2) \cup \bar{J}_n$, by the maximality of S.

The converse part follows immediately from Proposition 2.5 and Lemma 2.3. $\hfill \Box$

From now on we consider the ideals OR(n,k) of OR_n , for $k \in \{1, \ldots, n-1\}$. Since OR(n,1) = OP(n,1) and OR(n,2) = OP(n,2), in what follows, we take $k \ge 3$.

Notice that, as $\alpha h \in OP(n,k)$, for all $\alpha \in OR(n,k) \setminus OP(n,k)$, by using Lemma 1.7, it is easy to conclude:

Lemma 2.7. $OR(n,k) = \langle \overline{J}_k \rangle$.

In fact, moreover, we have:

Proposition 2.8. $OR(n,k) = \langle J_k, \alpha \rangle$, for all $\alpha \in \overline{J}_k \setminus J_k$.

PROOF. Let $\alpha \in \overline{J}_k \setminus J_k$ and take an idempotent $\varepsilon \in L_{\alpha}^{\mathcal{OR}_n}$. Since im $\alpha =$ im $\varepsilon \# \ker \varepsilon$, we have $\alpha R_{\varepsilon}^{\mathcal{OR}_n} = R_{\alpha}^{\mathcal{OR}_n}$, by Lemma 2.1. Hence, $\alpha (R_{\varepsilon}^{\mathcal{OR}_n} \cap J_k) =$ $R_{\alpha}^{\mathcal{OR}_n} \setminus J_k$ and so

$$R_{\alpha}^{\mathcal{OR}_n} = (R_{\alpha}^{\mathcal{OR}_n} \cap J_k) \cup (R_{\alpha}^{\mathcal{OR}_n} \setminus J_k) = (R_{\alpha}^{\mathcal{OR}_n} \cap J_k) \cup \alpha(R_{\varepsilon}^{\mathcal{OR}_n} \cap J_k) \subseteq \langle J_k, \alpha \rangle.$$

Now, let ε' be an idempotent of $R_{\alpha}^{\mathcal{OR}_n}$ and take $\alpha' \in H_{\varepsilon'}^{\mathcal{OR}_n} \setminus J_k$. Notice that $\alpha' \in R_{\alpha}^{\mathcal{OR}_n} \subseteq \langle J_k, \alpha \rangle$. As $\operatorname{im} \varepsilon' \# \ker \varepsilon' = \ker \alpha'$, we have $L_{\varepsilon'}^{\mathcal{OR}_n} \alpha' = L_{\alpha'}^{\mathcal{OR}_n} = L_{\varepsilon'}^{\mathcal{OR}_n}$, by Lemma 2.1. Thus $(L_{\varepsilon'}^{\mathcal{OR}_n} \cap J_k)\alpha' = L_{\varepsilon'}^{\mathcal{OR}_n} \setminus J_k$, whence

$$L_{\varepsilon'}^{\mathcal{OR}_n} = (L_{\varepsilon'}^{\mathcal{OR}_n} \cap J_k) \cup (L_{\varepsilon'}^{\mathcal{OR}_n} \setminus J_k) = (L_{\varepsilon'}^{\mathcal{OR}_n} \cap J_k) \cup (L_{\varepsilon'}^{\mathcal{OR}_n} \cap J_k) \alpha' \subseteq \langle J_k, \alpha \rangle.$$

Finally, as $\operatorname{im} \varepsilon' \# \ker \varepsilon' = \ker \alpha$, we have $L_{\varepsilon'}^{\mathcal{OR}_n} R_{\alpha}^{\mathcal{OR}_n} = \overline{J}_k$, again by Lemma 2.1. Therefore, $\overline{J}_k \subseteq \langle J_k, \alpha \rangle$ and so, by Lemma 2.7, $OR(n,k) = \langle J_k, \alpha \rangle$, as required.

As an immediate consequence of Proposition 2.8, we have:

Corollary 2.9. $OR(n, k-1) \cup J_k$ is a maximal subsemigroup of OR(n, k).

Also, combining Proposition 2.8 with Corollary 1.9, we have:

Corollary 2.10. $OR(n,k) = \langle E(J_k), \alpha \rangle$, for all $\alpha \in \overline{J}_k \setminus J_k$.

Before we present our description of the maximal subsemigroups of the ideals of \mathcal{OR}_n , we prove the following result:

Lemma 2.11. Let S be a maximal subsemigroup of OR(n,k) containing at least one orientation-reversing transformation of rank k. Then $S = \bigcup \{H_{\alpha}^{\mathcal{OR}_n} \mid \alpha \in S \cap \mathcal{OP}_n\}$.

PROOF. Let $\alpha \in S$. As clearly $OR(n, k-1) \subseteq S$, it suffices to consider $\alpha \in \overline{J}_k$. Take $\beta \in H_{\alpha}^{\mathcal{OR}_n}$ and suppose that $\beta \notin S$. Hence, by the maximality of S, we have $OR(n,k) = \langle S,\beta \rangle$. Let $\varepsilon \in E(J_k)$. Then, there exist $t \geq 0, r_0, r_1, \ldots, r_t \geq 0$ and $\alpha_1, \ldots, \alpha_t \in S$ such that $\varepsilon = \beta^{r_0} \alpha_1 \beta^{r_1} \alpha_2 \cdots \beta^{r_{t-1}} \alpha_t \beta^{r_t}$. As $\alpha \mathcal{H}\beta$, it follows that $\tau = \alpha^{r_0} \alpha_1 \alpha^{r_1} \alpha_2 \cdots \alpha^{r_{t-1}} \alpha_t \alpha^{r_t} \mathcal{H}\varepsilon$. Furthermore, $\tau \in S$. Now, since ε is a

27

power of τ , it follows that also $\varepsilon \in S$. Thus $E(J_k) \subseteq S$. Since S also contains an orientation-reversing transformation of rank k, by Corollary 2.10, we have S = OR(n,k), a contradiction. Therefore $H_{\alpha}^{\mathcal{OR}_n} \subseteq S$. This shows that $H_{\alpha}^{\mathcal{OR}_n} \subseteq S$ for all $\alpha \in S$, i.e. $\bigcup \{H_{\alpha}^{\mathcal{OR}_n} \mid \alpha \in S\} \subseteq S$ and thus $\bigcup \{H_{\alpha}^{\mathcal{OR}_n} \mid \alpha \in S\} = S$. Since each \mathcal{H} -class of \mathcal{OR}_n contains an orientation-preserving transformation, we obtain $S = \bigcup \{H_{\alpha}^{\mathcal{OR}_n} \mid \alpha \in S \cap \mathcal{OP}_n\}$, as required.

In general, if S' is a subsemigroup of OP(n, k) containing OP(n, k-1), then (using an argument similar to that considered in the proof of Lemma 1.12) it is easy to show that $S = \bigcup \{H_{\alpha}^{\mathcal{OR}_n} \mid \alpha \in S'\}$ is a subsemigroup of OR(n, k). Furthermore, if $S' \subsetneq OP(n, k)$ then also $S \subsetneq OR(n, k)$. In fact, in this case, by Corollary 1.9, there exists $\varepsilon \in E(J_k)$ such that $\varepsilon \notin S'$. It follows that $H_{\varepsilon}^{\mathcal{OR}_n} \cap S' = \emptyset$ and so also $\varepsilon \notin S$.

Finally, we have:

Theorem 2.12. Let $n \ge 4$ and $3 \le k \le n-1$. Let S be a subsemigroup of OR(n,k). Then, S is maximal if and only if $S = OR(n,k-1) \cup J_k$ or $S = \bigcup \{H_{\alpha}^{\mathcal{OR}_n} \mid \alpha \in S'\}$, for some maximal subsemigroup S' of OP(n,k).

PROOF. First, let S be a maximal subsemigroup of OR(n, k) and suppose that $S \neq OR(n, k-1) \cup J_k$. Then S must contain an orientation-reversing transformation of rank k and so $S = \bigcup \{H_{\alpha}^{\mathcal{OR}_n} \mid \alpha \in S \cap \mathcal{OP}_n\}$, by Lemma 2.11. Clearly, $S \cap \mathcal{OP}_n$ is a proper subsemigroup of OP(n, k), whence there exists a maximal subsemigroup S' of OP(n, k) such that $S \cap \mathcal{OP}_n \subseteq S'$. Then, as in the proof of Lemma 2.11, $\bigcup \{H_{\alpha}^{\mathcal{OR}_n} \mid \alpha \in S'\}$ is a proper subsemigroup of OR(n, k)and, as it contains S, it follows that $S = \bigcup \{H_{\alpha}^{\mathcal{OR}_n} \mid \alpha \in S'\}$, by the maximality of S.

Conversely, if $S = OR(n, k - 1) \cup J_k$, then S is a maximal subsemigroup of OR(n, k), by Corollary 2.9. Hence, let us suppose that $S = \bigcup \{H_{\alpha}^{O\mathcal{R}_n} \mid \alpha \in S'\}$, for some maximal subsemigroup S' of OP(n, k). Then, by the above observation, S is a proper subsemigroup of OR(n, k). Moreover, S must contain an orientation-reversing transformation of rank k. Let \hat{S} be a maximal subsemigroup of OR(n, k) such that $S \subseteq \hat{S}$. Then \hat{S} also contains an orientation-reversing transformation of rank k. Let \hat{S} be a maximal subsemigroup of OR(n, k) such that $S \subseteq \hat{S}$. Then \hat{S} also contains an orientation-reversing transformation of rank k and so, by Lemma 2.11, $\hat{S} = \bigcup \{H_{\alpha}^{O\mathcal{R}_n} \mid \alpha \in \hat{S} \cap O\mathcal{P}_n\}$. On the other hand, $S' \subseteq S \cap O\mathcal{P}_n \subseteq \hat{S} \cap O\mathcal{P}_n \subsetneq OP(n, k)$, whence $S' = S \cap O\mathcal{P}_n = \hat{S} \cap O\mathcal{P}_n$, by the maximality of S'. It follows that $S = \hat{S}$ and thus S is a maximal subsemigroup of OR(n, k), as required.

ACKNOWLEDGEMENTS. The authors wish to thank the anonymous referees

for many useful comments and suggestions which improved substantially this paper.

References

- A. JA. AĬZENŠTAT, Defining relations of the semigroup of endomorphisms of a finite linearly ordered set, Sibirsk. Matem. Žurn. 3 (1962), 161–169.
- [2] R. E. ARTHUR and N. RUŠKUC, Presentations for two extensions of the monoid of order-preserving mappings on a finite chain, Southeast Asian Bull. Math. 24 (2000), 1–7.
- [3] P. A. BAYRAMOV, On the problem of completeness in a symmetric semigroup of finite degree, *Diskret. Analiz* 8 (1966), 3–27 (in *Russian*).
- [4] P. M. CATARINO, Monoids of orientation-preserving transformations of a finite chain and their presentations, Semigroups and Applications, (J. M. Howie and N. Ruškuc, eds.), *World Scientific*, 1998, 39–46.
- [5] P. M. CATARINO and P. M. HIGGINS, The monoid of orientation-preserving mappings on a chain, Semigroup Forum 58 (1999), 190–206.
- [6] I. DIMITROVA and J. KOPPITZ, On the maximal subsemigroups of some transformation semigroups, Asian-Eur. J. Math. 1 (2008), 189–202.
- [7] I. DIMITROVA and J. KOPPITZ, The maximal subsemigroups of the ideals of some semigroups of partial injections, *Discuss. Math. Gen. Algebra Appl.* 29 (2009), 153–167.
- [8] M. S. DUMMIT and R. M. FOOTE, Abstract Algebra, Prentice-Hall, Englewood Clifs, 1991.
- [9] V. H. FERNANDES, The monoid of all injective order-preserving partial transformations on a finite chain, *Semigroup Forum* **62** (2001), 178–204.
- [10] V. H. FERNANDES, G. M. S. GOMES and M. M. JESUS, Congruences on monoids of transformations preserving the orientation on a finite chain, J. Algebra 321 (2009), 743–757.
- [11] O. GANYUSHKIN and V. MAZORCHUK, On the structure of IO_n , Semigroup Forum 66 (2003), 455–483.
- [12] G. U. GARBA, On the idempotent ranks of certain semigroups of order-preserving transformations, *Portugal. Math.* 51 (1994), 185–204.
- [13] G. M. S. GOMES and J. M. HOWIE, On the rank of certain semigroups of order-preserving transformations, *Semigroup Forum* 51 (1992), 275–282.
- [14] I. GYUDZHENOV and I. DIMITROVA, On the maximal subsemigroups of the semigroup of all monotone transformations, Discuss. Math. Gen. Algebra Appl. 26 (2006), 199–217.
- [15] J. M. HOWIE, Products of idempotents in certain semigroups of transformations, Proc. Edinburgh Math. Soc. 17 (1971), 223–236.
- [16] J. M. HOWIE, Fundamentals of Semigroup Theory, Oxford University Press, 1995.
- [17] D. MCALISTER, Semigroups generated by a group and an idempotent, Comm. Algebra 26 (1998), 515–547.
- [18] K. TODOROV and L. KRAČOLOVA, On the maximal subsemigroups of the ideals of finite symmetric semigroup, Simon Stevin 59 (1985), 129–140.
- [19] H. YANG and X. YANG, Maximal subsemigroups of finite transformation semigroups K(n,r), Acta Math. Sin. (Engl. Ser.) **20** (2004), 475–482.
- [20] X. YANG, A classification of maximal subsemigroups of finite order-preserving transformation semigroups, Comm. Algebra 28 (2000), 1503–1513.

29

- [21] X. YANG, Maximal subsemigroups of the finite singular transformation semigroup, Comm. Algebra **29** (2001), 1175–1182.
- [22] P. ZHAO, X. Bo and Y. MEI, Locally maximal idempotent-generated subsemigroups of singular orientation-preserving transformation semigroups, *Semigroup Forum* 77 (2008), 187–195.

ILINKA DIMITROVA FACULTY OF MATHEMATICS AND NATURAL SCIENCE SOUTH-WEST UNIVERSITY "NEOFIT RILSKI" 2700 BLAGOEVGRAD BULGARIA

 $\textit{E-mail: ilinka_dimitrova@yahoo.com}$

VÍTOR H. FERNANDES DEPARTAMENTO DE MATEMÁTICA FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE NOVA DE LISBOA 2829-516 CAPARICA PORTUGAL AND CENTRO DE ÁLGEBRA DA UNIVERSIDADE DE LISBOA AV. PROF. GAMA PINTO 2 1649-003 LISBOA PORTUGAL

E-mail: vhf@fct.unl.pt

JÖRG KOPPITZ INSTITUTE OF MATHEMATICS UNIVERSITY OF POTSDAM 14469 POTSDAM GERMANY

E-mail: koppitz@rz.uni-potsdam.de

(Received April 30, 2010; revised September 15, 2011)