The maximal subsemigroups of semigroups of transformations preserving or reversing the orientation on a finite chain

By ILINKA DIMITROVA (Blagoevgrad), VÍTOR H. FERNANDES (Caparica) and JORG KOPPITZ (Potsdam)

Abstract

The study of the semigroups $\mathcal{O} \mathcal{P}_{n}$, of all orientation-preserving transformations on an n-element chain, and $\mathcal{O R}_{n}$, of all orientation-preserving or orientationreversing transformations on an n-element chain, has began in [17] and [5]. In order to bring more insight into the subsemigroup structure of $\mathcal{O} \mathcal{P}_{n}$ and $\mathcal{O} \mathcal{R}_{n}$, we characterize their maximal subsemigroups.

Introduction and preliminaries

For $n \in \mathbb{N}$, let $X_{n}=\{1<2<\cdots<n\}$ be a finite chain with n elements. As usual, we denote by \mathcal{T}_{n} the monoid (under composition) of all full transformations of X_{n}.

We say that a transformation $\alpha \in \mathcal{T}_{n}$ is order-preserving [respectively, orderreversing] if $x \leq y$ implies that $x \alpha \leq y \alpha$ [respectively, $x \alpha \geq y \alpha$], for all $x, y \in X_{n}$. As usual, \mathcal{O}_{n} denotes the submonoid of \mathcal{T}_{n} of all order-preserving transformations of X_{n}. This monoid has been extensively studied, for instance in [1], [7], [13], [15], [20].

Let $a=\left(a_{1}, a_{2}, \ldots, a_{t}\right)$ be a sequence of $t(t \geq 1)$ elements from the chain X_{n}. We say that a is cyclic [respectively, anti-cyclic] if there exists no more than

[^0] and CAUL
one index $i \in\{1, \ldots, t\}$ such that $a_{i}>a_{i+1}$ [respectively, $\left.a_{i}<a_{i+1}\right]$, where a_{t+1} denotes a_{1}. Notice that the sequence a is cyclic [respectively, anti-cyclic] if and only if a is empty or there exists $i \in\{0,1, \ldots, t-1\}$ such that $a_{i+1} \leq a_{i+2} \leq$ $\cdots \leq a_{t} \leq a_{1} \leq \cdots \leq a_{i}\left[\right.$ respectively, $\left.a_{i+1} \geq a_{i+2} \geq \cdots \geq a_{t} \geq a_{1} \geq \cdots \geq a_{i}\right]$ (the index $i \in\{0,1, \ldots, t-1\}$ is unique unless a is constant and $t \geq 2$). We say that a transformation $\alpha \in \mathcal{T}_{n}$ is orientation-preserving [respectively, orientationreversing] if the sequence $(1 \alpha, 2 \alpha, \ldots, n \alpha)$ of its images is cyclic [respectively, anti-cyclic]. The notion of an orientation-preserving transformation was introduced by McAlister in [17] and, independently, by Catarino and Higgins in [5]. It is easy to show that the product of two orientation-preserving or of two orientation-reversing transformations is orientation-preserving, and the product of an orientation-preserving transformation by an orientation-reversing transformation is orientation-reversing (see [5]). We denote by $\mathcal{O} \mathcal{P}_{n}$ [respectively, $\mathcal{O R}_{n}$] the monoid of all orientation-preserving [respectively, orientation-preserving or orientation-reversing] full transformations. It is clear that $\mathcal{O} \mathcal{P}_{n}$ is a submonoid of $\mathcal{O} \mathcal{R}_{n}$.

Regarding the monoids $\mathcal{O} \mathcal{P}_{n}$ and $\mathcal{O} \mathcal{R}_{n}$, presentations for them were exhibited by Catarino in [4] and by Arthur and Ruškuc in [2], the Green's relations, their sizes and ranks, among other properties, were determined by Catarino and Higgins in [5] and a description of their congruences were given in [10] by Fernandes, Gomes and Jesus. In [22], Zhao, Bo and Mei characterized the locally maximal idempotent-generated subsemigroups of $\mathcal{O} \mathcal{P}_{n}$ (excluding the permutations).

In this paper, we aim to give more insight into the subsemigroup structure of the monoids $\mathcal{O} \mathcal{P}_{n}$ and $\mathcal{O} \mathcal{R}_{n}$ by characterizing the maximal subsemigroups of these monoids and of their ideals. By a maximal subsemigroup of a semigroup S we mean a maximal element, under set inclusion, of the family of all proper subsemigroups of S. In Section 1, we study the monoid $\mathcal{O} \mathcal{P}_{n}$ and its ideals. First, we describe all maximal subsemigroups of $\mathcal{O} \mathcal{P}_{n}$ (some of them are associated with the maximal subsemigroups of the additive group \mathbb{Z}_{n}). The main result of this section is the characterization of the maximal subsemigroups of the ideals of $\mathcal{O} \mathcal{P}_{n}$. In Section 2, we study the monoid $\mathcal{O R}_{n}$ and its ideals. Again, first we describe all maximal subsemigroups of $\mathcal{O} \mathcal{R}_{n}$ (some of them are associated with the maximal subsemigroups of the dihedral group \mathcal{D}_{n} of order $2 n$). The main result of this section is the characterization of the maximal subsemigroups of the ideals of $\mathcal{O} \mathcal{R}_{n}$, which are associated with the maximal subsemigroups of the ideals of $\mathcal{O} \mathcal{P}_{n}$.

The maximal subsemigroups of the monoid \mathcal{T}_{n} were described by BayraMOV [3] in 1966. Much more recently (2001), YaNG [21] classified the maximal
subsemigroups of the semigroup Sing_{n} of all singular full transformations of X_{n}. In 1985, Todorov and Kračolova [18] constructed four types of maximal subsemigroups of the ideals of \mathcal{T}_{n}. A complete description of the maximal subsemigroups of the ideals of \mathcal{T}_{n} was given in 2004 by Yang and Yang [19]. The maximal subsemigroups of the semigroup \mathcal{O}_{n} were characterized by Yang [20] in 2000. Gyudzhenov and Dimitrova (2006) completely described in [14] the maximal subsemigroups of the semigroup $\mathcal{O} \mathcal{D}_{n}$ of all order-preserving or order-reversing full transformations of X_{n}. In 2008, Dimitrova and Koppitz [6] classified the maximal subsemigroups of the ideals of \mathcal{O}_{n} as well as of the ideals of $\mathcal{O} \mathcal{D}_{n}$.

On the other hand, Ganyushkin and Mazorchuk [11] in 2003 gave a description of the maximal subsemigroups of the semigroup $\mathcal{P O I _ { n }}$ of all orderpreserving partial injections of X_{n} and, in 2009, Dimitrova and Koppitz [7] characterized the maximal subsemigroups of the ideals of the semigroup $\mathcal{P O I _ { n }}$ and of the ideals of the semigroup $\mathcal{P O D I}_{n}$ of all order-preserving or orderreversing partial injections of X_{n}.

For every transformation $\alpha \in \mathcal{T}_{n}$, we denote by $\operatorname{ker} \alpha$ and $\operatorname{im} \alpha$ the kernel and the image of α, respectively. The number $\operatorname{rank} \alpha=|\operatorname{ker} \alpha|=|\operatorname{im} \alpha|$ is called the rank of α. Given a subset U of \mathcal{T}_{n}, we denote by $E(U)$ its set of idempotents. The weight of an equivalence relation π on X_{n} is the number $\left|X_{n} / \pi\right|$. Let $A \subseteq X_{n}$ and let π be an equivalence relation on X_{n} of weight $|A|$. We say that A is a transversal of π (denoted by $A \# \pi$) if $|A \cap \bar{x}|=1$ for every equivalence class \bar{x} of π.

Since $\mathcal{O}_{n}, \mathcal{O} \mathcal{P}_{n}$ and $\mathcal{O} \mathcal{R}_{n}$ are regular submonoids of \mathcal{T}_{n}, the definition of the Green's relations \mathcal{L}, \mathcal{R} and \mathcal{H} on $\mathcal{O}_{n}, \mathcal{O} \mathcal{P}_{n}$ and $\mathcal{O} \mathcal{R}_{n}$ follow immediately from well known results on regular semigroups and from their descriptions on \mathcal{T}_{n}. We have $\alpha \mathcal{L} \beta \Longleftrightarrow \operatorname{im} \alpha=\operatorname{im} \beta$ and $\alpha \mathcal{R} \beta \Longleftrightarrow \operatorname{ker} \alpha=\operatorname{ker} \beta$, for every transformations α and β. Recall also that for the Green's relation \mathcal{J}, we have (on $\mathcal{O}_{n}, \mathcal{O P}_{n}$ and $\left.\mathcal{O} \mathcal{R}_{n}\right) \alpha \mathcal{J} \beta \Longleftrightarrow \operatorname{rank} \alpha=\operatorname{rank} \beta$, for every transformations α and β.

Given a semigroup S, we denote by L_{s}^{S}, R_{s}^{S} and H_{s}^{S} (or, if not ambiguous, simply by L_{s}, R_{s} and H_{s}) the \mathcal{L}-class, \mathcal{R}-class and \mathcal{H}-class, respectively, of an element $s \in S$.

For general background on Semigroup Theory, we refer the reader to Howie's book [16]. Regarding notions on Group Theory, the book [8] by Dummit and Foote is our reference.

1. Maximal subsemigroups of the ideals of $\mathcal{O} \mathcal{P}_{\boldsymbol{n}}$

Let $n \in \mathbb{N}$. The semigroup $\mathcal{O} \mathcal{P}_{n}$ is the union of its \mathcal{J}-classes $J_{1}, J_{2}, \ldots, J_{n}$, where

$$
J_{k}=\left\{\alpha \in \mathcal{O} \mathcal{P}_{n} \mid \operatorname{rank} \alpha=k\right\}
$$

for $k=1, \ldots, n$. It follows that the ideals of the semigroup $\mathcal{O} \mathcal{P}_{n}$ are unions of the \mathcal{J}-classes $J_{1}, J_{2}, \ldots, J_{k}$, i.e. the sets

$$
O P(n, k)=\left\{\alpha \in \mathcal{O} \mathcal{P}_{n} \mid \operatorname{rank} \alpha \leq k\right\}
$$

with $k=1, \ldots, n$. See [9 , Note of page 181].
Now, notice that for $\alpha \in O P(n, k)$, with $k=1, \ldots, n$, we have $L_{\alpha}^{O P(n, k)}=$ $L_{\alpha}^{\mathcal{O} \mathcal{P}_{n}}, R_{\alpha}^{O P(n, k)}=R_{\alpha}^{\mathcal{O} \mathcal{P}_{n}}$ and $H_{\alpha}^{O P(n, k)}=H_{\alpha}^{\mathcal{O} \mathcal{P}_{n}}$. Moreover, for $\alpha, \beta \in J_{k}$, with $k=1, \ldots, n$, the product $\alpha \beta$ belongs to J_{k} (if and only if $\alpha \beta \in R_{\alpha} \cap L_{\beta}$) if and only if $\operatorname{im} \alpha \# \operatorname{ker} \beta$. Thus, it is easy to show:

Lemma 1.1. Let $k \in\{1,2, \ldots, n\}$ and let $\alpha, \beta \in J_{k}$ be such that $\operatorname{im} \alpha \# \operatorname{ker} \beta$. Then $\alpha R_{\beta}^{\mathcal{O} \mathcal{P}_{n}}=R_{\alpha \beta}^{\mathcal{O} \mathcal{P}_{n}}=R_{\alpha}^{\mathcal{O} \mathcal{P}_{n}}, L_{\alpha}^{\mathcal{O} \mathcal{P}_{n}} \beta=L_{\alpha \beta}^{\mathcal{O} \mathcal{P}_{n}}=L_{\beta}^{\mathcal{O} \mathcal{P}_{n}}, \alpha H_{\beta}^{\mathcal{O} \mathcal{P}_{n}}=H_{\alpha}^{\mathcal{O} \mathcal{P}_{n}} \beta=$ $H_{\alpha \beta}^{\mathcal{O} \mathcal{P}_{n}}$ and $L_{\alpha}^{\mathcal{O} \mathcal{P}_{n}} R_{\beta}^{\mathcal{O} \mathcal{P}_{n}}=J_{k}$.

Next, recall that Catarino and Higgins [5] proved:
Proposition 1.2. Let $k \in\{1,2, \ldots, n\}$ and let $\alpha \in \mathcal{O} \mathcal{P}_{n}$ be an element of rank k. Then $\left|H_{\alpha}\right|=k$. Moreover, if α is an idempotent, then H_{α} is a cyclic group of order k.

Let G be a cyclic group of order k, with $k \in \mathbb{N}$. It is well known that there exists an one-to-one correspondence between the subgroups of G and the (positive) divisors of k.

Let us consider the following elements of $\mathcal{O} \mathcal{P}_{n}$:

$$
g=\left(\begin{array}{ccccc}
1 & 2 & \cdots & n-1 & n \\
2 & 3 & \cdots & n & 1
\end{array}\right) \in J_{n}
$$

and

$$
u_{i}=\left(\begin{array}{cccc|c|ccc}
1 & 2 & \cdots & i-1 & i & i+1 & \cdots & n \\
1 & 2 & \cdots & i-1 & i+1 & i+1 & \cdots & n
\end{array}\right) \in J_{n-1}
$$

for $i=1, \ldots, n$ (with $i=n$ we take $i+1=1$).
Notice that the group of units of $\mathcal{O} \mathcal{P}_{n}$ is the cyclic group $J_{n}=H_{g}^{\mathcal{O} \mathcal{P}_{n}}$ of order n.

We will use the following well known result (see [4], [17]).

Proposition 1.3. $\mathcal{O} \mathcal{P}_{n}=\left\langle u_{1}, g\right\rangle$.
Next, we present alternative generating sets of the monoid $\mathcal{O} \mathcal{P}_{n}$.
Proposition 1.4. Let $\alpha, \gamma \in \mathcal{O} \mathcal{P}_{n}$. If $\alpha \in J_{n-1}$ and γ is a permutation of order n then $\mathcal{O} \mathcal{P}_{n}=\langle\alpha, \gamma\rangle$.

Proof. Since $\gamma \in J_{n}$ has order n, we have $\langle\gamma\rangle=J_{n}$ and so $g \in\langle\gamma\rangle$. From $\alpha \in J_{n-1}$, it follows that there exist $1 \leq i, j \leq n$ such that $\operatorname{im} \alpha=X_{n} \backslash\{j\}$ and $(i, i+1) \in \operatorname{ker} \alpha$ (by taking $i+1=1$, if $i=n$). Put $s=i-j$, if $j<i$, and $s=n+i-j$, otherwise. Then, it is easy to show that $\beta=\alpha g^{s} \in H_{u_{i}}$. Now, as u_{i} is an idempotent of $\mathcal{O} \mathcal{P}_{n}$, by Proposition 1.2, it follows that u_{i} is a power of β. On the other hand, it is a routine matter to show that $u_{1}=g^{n+i-1} u_{i} g^{n-i+1}$. Thus, by Proposition 1.3, we deduce that $\mathcal{O} \mathcal{P}_{n}=\langle\alpha, \gamma\rangle$.

For a prime divisor p of n, we put $W_{p}=\left\langle g^{p}\right\rangle=\left\{1, g^{p}, g^{2 p}, \ldots, g^{\left(\frac{n}{p}-1\right) p}\right\}$, which is a cyclic group of order $\frac{n}{p}$. Furthermore, from well known results regarding finite cyclic groups, we have:

Lemma 1.5. The groups W_{p}, with p a prime divisor of n, are the maximal subsemigroups of J_{n}.

Now, we can describe the maximal subsemigroups of $\mathcal{O} \mathcal{P}_{n}$.
Theorem 1.6. Let S be a subsemigroup of the semigroup $\mathcal{O} \mathcal{P}_{n}$. Then S is maximal if and only if $S=O P(n, n-2) \cup J_{n}$ or $S=O P(n, n-1) \cup W_{p}$, for a prime divisor p of n.

Proof. Let S be a maximal subsemigroup of $\mathcal{O} \mathcal{P}_{n}$. Then, it is clear that $O P(n, n-2) \subseteq S$ and thus $S=O P(n, n-2) \cup T$, for some subset T of $J_{n-1} \cup J_{n}$. By Proposition 1.4, we have $T \cap J_{n-1}=\emptyset$ or T does not contain any element of J_{n} of order n. In the latter case, we must have $J_{n-1} \subseteq T$, by the maximality of S. This shows that $S=O P(n, n-1) \cup T^{\prime}$, for some subset T^{\prime} of J_{n}, whence T^{\prime} must be a maximal subsemigroup of J_{n}. Thus, by Lemma 1.5 , we have $T^{\prime}=W_{p}$, for some prime divisor p of n. On the other hand, if $T \cap J_{n-1}=\emptyset$ then $S \subseteq O P(n, n-2) \cup J_{n}$, whence $S=O P(n, n-2) \cup J_{n}$, by the maximality of S.

The converse part follows immediately from Proposition 1.4 and Lemma 1.5.

Let $n \geq 3$ and $1 \leq k \leq n-1$. In the remaining of this section, we consider the ideal $O P(n, k)$ of $\mathcal{O} \mathcal{P}_{n}$.

Clearly, the maximal subsemigroups of $O P(n, 1)$ are the sets of the form $O P(n, 1) \backslash\{\alpha\}$, for $\alpha \in O P(n, 1)$. Therefore, in what follows, we consider $k \geq 2$.

Notice that any element $\alpha \in \mathcal{O}_{n}$ of rank $k-1$, for $2 \leq k \leq n-1$, is expressible as a product of elements of \mathcal{O}_{n} of rank k (see [12]). On the other hand, any element $\beta \in \mathcal{O} \mathcal{P}_{n}$ admits a decomposition $\beta=g^{t} \alpha$, for some $1 \leq t \leq n$ and $\alpha \in \mathcal{O}_{n}$ (see [5]). Then, it is easy to deduce that any element of J_{k-1} is a product of elements of J_{k}, for $2 \leq k \leq n-1$. Thus, we have:

Lemma 1.7. $O P(n, k)=\left\langle J_{k}\right\rangle$.
Next, observe that for a transformation $\alpha \in \mathcal{O} \mathcal{P}_{n}$, it is easy to show that if $(1, n) \notin \operatorname{ker} \alpha$ then all kernel classes of α are intervals of X_{n} and, on the other hand, if $(1, n) \in \operatorname{ker} \alpha$ then all kernel classes of α are intervals of X_{n}, except the class containing 1 and n which is a union of two intervals of X_{n} (one containing 1 and the other n). Moreover, if α is not a constant, then $H_{\alpha}^{\mathcal{O} \mathcal{P}_{n}} \cap \mathcal{O}_{n}=\emptyset$ if and only if $(1, n) \in \operatorname{ker} \alpha$.

Proposition 1.8. Let C be any subset of J_{k} containing $J_{k} \cap \mathcal{O}_{n}$ and at least one element from each \mathcal{R}-class of $\mathcal{O} \mathcal{P}_{n}$ of rank k. Then $O P(n, k)=\langle C\rangle$.

Proof. First, let $\alpha \in C$ with kernel $\{\{1, k+1, \ldots, n\},\{2\}, \ldots,\{k\}\}$. Let β be an order-preserving transformation with image $\{1, \ldots, k\}$ such that im $\alpha \#$ ker β. Then, $\beta \in C, \operatorname{ker}(\alpha \beta)=\operatorname{ker} \alpha$ and $\operatorname{im}(\alpha \beta)=\operatorname{im} \beta$, from which it follows that the idempotent power of $\alpha \beta$ is the element $\left(\begin{array}{ccc|ccc}1 & \cdots & k & k+1 & \cdots & n \\ 1 & \cdots & k & 1 & \cdots & 1\end{array}\right) \in\langle C\rangle$. Therefore,

$$
\begin{aligned}
& \gamma=\left(\begin{array}{ccc|ccc}
1 & \cdots & k & k+1 & \cdots & n \\
2 & \cdots & k+1 & k+1 & \cdots & k+1
\end{array}\right)\left(\begin{array}{ccc|ccc}
1 & \cdots & k & k+1 & \cdots & n \\
1 & \cdots & k & 1 & \cdots & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc|ccc}
1 & \cdots & k-1 & k & k+1 & \cdots & n \\
2 & \cdots & k & 1 & 1 & \cdots & 1
\end{array}\right) \in\langle C\rangle,
\end{aligned}
$$

since the first element of the second member of these equalities is an orderpreserving transformation of rank k and so an element of C. Furthermore, as γ generates a cyclic group of order k, then the \mathcal{H}-class H_{γ} of $\mathcal{O} \mathcal{P}_{n}$ is contained in $\langle C\rangle$.

Now, $\varepsilon=\gamma^{k}=\left(\begin{array}{ccc|ccc}1 & \cdots & k & k+1 & \cdots & n \\ 1 & \cdots & k & k & \cdots & k\end{array}\right)$ is the idempotent of H_{γ} and let H be any \mathcal{H}-class of $\mathcal{O} \mathcal{P}_{n}$ contained in the \mathcal{R}-class $R_{\varepsilon}=R_{\gamma}$ of $\mathcal{O} \mathcal{P}_{n}$. Since the elements of H have the same kernel as $\varepsilon \in \mathcal{O}_{n}$, then H has an order-preserving element τ. From $\varepsilon \mathcal{R} \tau$ it follows that $\varepsilon \tau=\tau$, whence $\operatorname{im} \varepsilon \# \operatorname{ker} \tau$ and so, by Lemma 1.1, we have $H_{\varepsilon} \tau=H_{\tau}$. As $\tau \in C$ and $H_{\varepsilon} \subseteq\langle C\rangle$, we also have $H=$ $H_{\tau} \subseteq\langle C\rangle$. Hence $R_{\varepsilon} \subseteq\langle C\rangle$.

Next, let $\theta \in J_{k}$.
Suppose first that $(1, n) \notin \operatorname{ker} \theta$. Then, there exists an order-preserving transformation $\tau \in L_{\varepsilon} \cap R_{\theta}$. Since $\varepsilon \in L_{\varepsilon} \cap R_{\varepsilon}=L_{\tau} \cap R_{\varepsilon}$, we have $\tau \varepsilon=\tau$, whence $\operatorname{im} \tau \# \operatorname{ker} \varepsilon$ and so, by Lemma 1.1, we obtain $\tau R_{\varepsilon}=R_{\tau}=R_{\theta}$. As $\tau \in C$ and $R_{\varepsilon} \subseteq\langle C\rangle$, then the \mathcal{R}-class R_{θ} of $\mathcal{O} \mathcal{P}_{n}$ is contained in $\langle C\rangle$.

Finally, suppose that $(1, n) \in \operatorname{ker} \theta$ and let $\tau \in C \cap R_{\theta}$. Take an orderpreserving idempotent ε^{\prime} such that $\operatorname{im} \varepsilon^{\prime}=\operatorname{im} \tau$. Then, $\varepsilon^{\prime} \in L_{\varepsilon^{\prime}} \cap R_{\varepsilon^{\prime}}=L_{\tau} \cap R_{\varepsilon^{\prime}}$, whence $\tau \varepsilon^{\prime}=\tau$ and so $\operatorname{im} \tau \# \operatorname{ker} \varepsilon^{\prime}$. Thus, by Lemma 1.1, we have $\tau R_{\varepsilon^{\prime}}=R_{\tau}=$ R_{θ}. As $\tau \in C$ and $R_{\varepsilon^{\prime}} \subseteq\langle C\rangle$ (by the previous case), then the \mathcal{R}-class R_{θ} is also contained in $\langle C\rangle$.

Hence, we have proved that $J_{k} \subseteq\langle C\rangle$ and so, by Lemma 1.7, we obtain $O P(n, k)=\langle C\rangle$, as required.

Since $J_{k} \cap \mathcal{O}_{n} \subseteq\left\langle E\left(J_{k} \cap \mathcal{O}_{n}\right)\right\rangle$ (see [12]) and each \mathcal{R}-class of $\mathcal{O} \mathcal{P}_{n}$ contains at least one idempotent, we have:

Corollary 1.9. $O P(n, k)=\left\langle E\left(J_{k}\right)\right\rangle$.
Notice that it is easy to show that, in fact, each \mathcal{R}-class of $\mathcal{O} \mathcal{P}_{n}$ contained in J_{k} has at least two idempotents. Moreover, as $2 \leq k \leq n-1$, it also is easy to show that each \mathcal{L}-class of $\mathcal{O} \mathcal{P}_{n}$ contained in J_{k} also has at least two idempotents.

Next, we define a fundamental concept (first considered by Yang and Yang in [19]) for our description of the maximal subsemigroups of $O P(n, k)$.

Let Im_{k} be any non-empty family of subsets of X_{n} of cardinality k. Let Ker_{k} be any non-empty collection of equivalence relations on X_{n} of weight k. Let J be a non-empty proper subset of Im_{k} and let \mathcal{K} be a non-empty proper subset of Ker_{k}. The pair ($\left.\mathcal{J}, \mathcal{K}\right)$ is called a coupler of $\left(\operatorname{Im}_{k}, \operatorname{Ker}_{k}\right)$ if the following three conditions are satisfied:
(1) For every $A \in \mathcal{J}$ and $\pi \in \mathcal{K}, A$ is not a transversal of π;
(2) For every $B \in \operatorname{Im}_{k} \backslash \mathcal{J}$, there exists $\pi \in \mathcal{K}$ such that $B \# \pi$;
(3) For every $\rho \in \operatorname{Ker}_{k} \backslash \mathcal{K}$, there exists $A \in \mathcal{J}$ such that $A \# \rho$.

Now, let

$$
\operatorname{Im}_{k}\left(\mathcal{O} \mathcal{P}_{n}\right)=\left\{\operatorname{im} \alpha \mid \alpha \in \mathcal{O} \mathcal{P}_{n} \text { and } \operatorname{rank} \alpha=k\right\}
$$

(i.e. $\operatorname{Im}_{k}\left(\mathcal{O} \mathcal{P}_{n}\right)=\binom{X_{n}}{k}$, the family of all subsets of X_{n} of cardinality k) and let

$$
\operatorname{Ker}_{k}\left(\mathcal{O} \mathcal{P}_{n}\right)=\left\{\operatorname{ker} \alpha \mid \alpha \in \mathcal{O} \mathcal{P}_{n} \text { and } \operatorname{rank} \alpha=k\right\} .
$$

Then, to a coupler of $\left(\operatorname{Im}_{k}\left(\mathcal{O} \mathcal{P}_{n}\right), \operatorname{Ker}_{k}\left(\mathcal{O} \mathcal{P}_{n}\right)\right)$ we also call k-coupler of $\mathcal{O} \mathcal{P}_{n}$. Analogously, being $\operatorname{Im}_{k}\left(\mathcal{O}_{n}\right)=\left\{\operatorname{im} \alpha \mid \alpha \in \mathcal{O}_{n}\right.$ and $\left.\operatorname{rank} \alpha=k\right\}$ and $\operatorname{Ker}_{k}\left(\mathcal{O}_{n}\right)=$
$\left\{\operatorname{ker} \alpha \mid \alpha \in \mathcal{O}_{n}\right.$ and $\left.\operatorname{rank} \alpha=k\right\}$, we also call k-coupler of \mathcal{O}_{n} to a coupler of $\left(\operatorname{Im}_{k}\left(\mathcal{O}_{n}\right), \operatorname{Ker}_{k}\left(\mathcal{O}_{n}\right)\right)$ (notice that $\operatorname{Im}_{k}\left(\mathcal{O}_{n}\right)=\binom{X_{n}}{k}=\operatorname{Im}_{k}\left(\mathcal{O} \mathcal{P}_{n}\right)$ and $\left.\operatorname{Ker}_{k}\left(\mathcal{O}_{n}\right)=\left\{\pi \in \operatorname{Ker}_{k}\left(\mathcal{O} \mathcal{P}_{n}\right) \mid(1, n) \notin \pi\right\}\right)$.

Example 1.10. Consider the following transformations of $\mathcal{O} \mathcal{P}_{5}$ of rank 3:

$$
\begin{array}{llrl}
\alpha_{1} & =\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 1 & 1 & 2 & 3
\end{array}\right), & \alpha_{2}=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 1 & 2 & 2 & 4
\end{array}\right), \\
\alpha_{3} & =\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 1 & 2 & 5 & 5
\end{array}\right), & \alpha_{4}=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 3 & 3 & 3 & 4
\end{array}\right), \\
\alpha_{5} & =\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 3 & 3 & 5 & 5
\end{array}\right), & \alpha_{6}=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 4 & 5 & 5 & 5
\end{array}\right), \\
\alpha_{7} & =\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 2 & 2 & 3 & 4
\end{array}\right), & \alpha_{8}=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 2 & 3 & 3 & 5
\end{array}\right), \\
\alpha_{9} & =\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 2 & 4 & 5 & 5
\end{array}\right) & \text { and } & \alpha_{10}=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 5 & 3 & 4 & 5
\end{array}\right) .
\end{array}
$$

Then, we have $\left\{\operatorname{im} \alpha_{1}, \ldots, \operatorname{im} \alpha_{10}\right\}=\binom{X_{5}}{3}$, $\left\{\operatorname{ker} \alpha_{1}, \ldots, \operatorname{ker} \alpha_{10}\right\}=\operatorname{Ker}_{3}\left(\mathcal{O} \mathcal{P}_{5}\right)$ and $\left\{\operatorname{ker} \alpha_{1}, \ldots, \operatorname{ker} \alpha_{6}\right\}=\operatorname{Ker}_{3}\left(\mathcal{O}_{5}\right)$. Moreover, for instance,

- ($\left.\left\{\operatorname{im} \alpha_{1}, \operatorname{im} \alpha_{2}\right\},\left\{\operatorname{ker} \alpha_{1}, \operatorname{ker} \alpha_{2}, \operatorname{ker} \alpha_{3}, \operatorname{ker} \alpha_{4}, \operatorname{ker} \alpha_{10}\right\}\right)$ [Figure 1],
- $\left(\left\{\operatorname{im} \alpha_{7}, \operatorname{im} \alpha_{8}, \operatorname{im} \alpha_{9}, \operatorname{im} \alpha_{10}\right\},\left\{\operatorname{ker} \alpha_{4}, \operatorname{ker} \alpha_{5}, \operatorname{ker} \alpha_{6}\right\}\right)$ [Figure 2],
- ($\left.\left\{\operatorname{im} \alpha_{1}, \operatorname{im} \alpha_{7}, \operatorname{im} \alpha_{10}\right\},\left\{\operatorname{ker} \alpha_{2}, \operatorname{ker} \alpha_{4}, \operatorname{ker} \alpha_{5}\right\}\right)$ [Figure 3] and
- ($\left.\left\{\operatorname{im} \alpha_{6}, \operatorname{im} \alpha_{9}\right\},\left\{\operatorname{ker} \alpha_{3}, \operatorname{ker} \alpha_{5}, \operatorname{ker} \alpha_{6}, \operatorname{ker} \alpha_{9}, \operatorname{ker} \alpha_{10}\right\}\right)$ [Figure 4] are 3 -couplers of $\mathcal{O} \mathcal{P}_{5}$.

	$\operatorname{im} \alpha_{1}$	$\operatorname{im} \alpha_{2}$	$\operatorname{im} \alpha_{3}$	$\operatorname{im} \alpha_{4}$	$\operatorname{im} \alpha_{5}$	$\operatorname{im} \alpha_{6}$	$\operatorname{im} \alpha_{7}$	$\operatorname{im} \alpha_{8}$	$\operatorname{im} \alpha_{9}$	$\operatorname{im} \alpha_{10}$
$\operatorname{ker} \alpha_{1}$						$*$			$*$	$*$
$\operatorname{ker} \alpha_{2}$					$*$	$*$		$*$	$*$	
$\operatorname{ker} \alpha_{3}$				$*$	$*$		$*$	$*$		
$\operatorname{ker} \alpha_{4}$			$*$		$*$	$*$				
$\operatorname{ker} \alpha_{5}$		$*$	$*$	$*$	$*$					
$\operatorname{ker} \alpha_{6}$	$*$	$*$	$*$							
$\operatorname{ker} \alpha_{7}$		$*$		$*$					$*$	$*$
$\operatorname{ker} \alpha_{8}$	$*$	$*$						$*$	$*$	
$\operatorname{ker} \alpha_{9}$	$*$						$*$	$*$		
$\operatorname{ker} \alpha_{10}$				$*$			$*$			$*$

Figure 1

	$\operatorname{im} \alpha_{1}$	$\operatorname{im} \alpha_{2}$	$\operatorname{im} \alpha_{3}$	$\operatorname{im} \alpha_{4}$	$\operatorname{im} \alpha_{5}$	$\operatorname{im} \alpha_{6}$	$\operatorname{im} \alpha_{7}$	$\operatorname{im} \alpha_{8}$	$\operatorname{im} \alpha_{9}$	$\operatorname{im} \alpha_{10}$
$\operatorname{ker} \alpha_{1}$						$*$			$*$	$*$
$\operatorname{ker} \alpha_{2}$					$*$	$*$		$*$	$*$	
$\operatorname{ker} \alpha_{3}$				$*$	$*$		$*$	$*$		
$\operatorname{ker} \alpha_{4}$			$*$		$*$	$*$				
$\operatorname{ker} \alpha_{5}$		$*$	$*$	$*$	$*$					
$\operatorname{ker} \alpha_{6}$	$*$	$*$	$*$							
$\operatorname{ker} \alpha_{7}$		$*$		$*$					$*$	$*$
$\operatorname{ker} \alpha_{8}$	$*$	$*$						$*$	$*$	
$\operatorname{ker} \alpha_{9}$	$*$						$*$	$*$		
$\operatorname{ker} \alpha_{10}$				$*$			$*$			$*$

Figure 2

Figure 3

Figure 4

On the other hand,

- ($\left.\left\{\operatorname{im} \alpha_{1}, \operatorname{im} \alpha_{7}, \operatorname{im} \alpha_{10}\right\},\left\{\operatorname{ker} \alpha_{2}, \operatorname{ker} \alpha_{4}, \operatorname{ker} \alpha_{5}\right\}\right)$ [Figure 5]
- $\left(\left\{\operatorname{im} \alpha_{1}, \operatorname{im} \alpha_{2}\right\},\left\{\operatorname{ker} \alpha_{1}, \operatorname{ker} \alpha_{2}, \operatorname{ker} \alpha_{3}, \operatorname{ker} \alpha_{4}\right\}\right)$ [Figure 6]
are 3 -couplers of \mathcal{O}_{5}.

	$\operatorname{im} \alpha_{1}$	$\operatorname{im} \alpha_{2}$	$\operatorname{im} \alpha_{3}$	$\operatorname{im} \alpha_{4}$	$\operatorname{im} \alpha_{5}$	$\operatorname{im} \alpha_{6}$	$\operatorname{im} \alpha_{7}$	$\operatorname{im} \alpha_{8}$	$\operatorname{im} \alpha_{9}$	$\operatorname{im} \alpha_{10}$
$\operatorname{ker} \alpha_{1}$						$*$			$*$	$*$
$\operatorname{ker} \alpha_{2}$					$*$	$*$		$*$	$*$	
$\operatorname{ker} \alpha_{3}$				$*$	$*$		$*$	$*$		
$\operatorname{ker} \alpha_{4}$			$*$		$*$	$*$				
$\operatorname{ker} \alpha_{5}$		$*$	$*$	$*$	$*$					
$\operatorname{ker} \alpha_{6}$	$*$	$*$	$*$							

Figure 5

	$\operatorname{im} \alpha_{1}$	$\operatorname{im} \alpha_{2}$	$\operatorname{im} \alpha_{3}$	$\operatorname{im} \alpha_{4}$	$\operatorname{im} \alpha_{5}$	$\operatorname{im} \alpha_{6}$	$\operatorname{im} \alpha_{7}$	$\operatorname{im} \alpha_{8}$	$\operatorname{im} \alpha_{9}$	$\operatorname{im} \alpha_{10}$
$\operatorname{ker} \alpha_{1}$						$*$			$*$	$*$
$\operatorname{ker} \alpha_{2}$					$*$	$*$		$*$	$*$	
$\operatorname{ker} \alpha_{3}$				$*$	$*$		$*$	$*$		
$\operatorname{ker} \alpha_{4}$			$*$		$*$	$*$				
$\operatorname{ker} \alpha_{5}$		$*$	$*$	$*$	$*$					
$\operatorname{ker} \alpha_{6}$	$*$	$*$	$*$							

Figure 6
(As usual, the symbol $*$ inside a box means that the corresponding \mathcal{H}-class contains an idempotent.)

Next, we consider the following subsets of $O P(n, k)$:
(1) $S_{A}=O P(n, k-1) \cup\left(J_{k} \backslash L_{\alpha}^{\mathcal{O} \mathcal{P}_{n}}\right)$, with $\alpha \in \mathcal{O} \mathcal{P}_{n}$ such that $A=\operatorname{im} \alpha$, for each $A \in\binom{X_{n}}{k}$;
(2) $S_{\pi}=O P(n, k-1) \cup\left(J_{k} \backslash R_{\alpha}^{\mathcal{O} \mathcal{P}_{n}}\right)$, with $\alpha \in \mathcal{O} \mathcal{P}_{n}$ such that $\pi=\operatorname{ker} \alpha$, for each $\pi \in \operatorname{Ker}_{k}\left(\mathcal{O} \mathcal{P}_{n}\right)$;
(3) $S_{(\mathcal{J}, \mathcal{K})}=O P(n, k-1) \cup\left(\bigcup\left\{L_{\alpha}^{\mathcal{O} \mathcal{P}_{n}} \mid \alpha \in \mathcal{O} \mathcal{P}_{n}\right.\right.$ and $\left.\left.\operatorname{im} \alpha \in \mathcal{J}\right\}\right) \cup$ $\cup\left(\bigcup\left\{R_{\alpha}^{\mathcal{O} \mathcal{P}_{n}} \mid \alpha \in \mathcal{O} \mathcal{P}_{n}\right.\right.$ and ker $\left.\left.\alpha \in \mathcal{K}\right\}\right)$,
for each k-coupler ($\mathcal{J}, \mathcal{K})$ of $\mathcal{O} \mathcal{P}_{n}$.
It is routine matter to prove that each of these subsets is a (proper) subsemigroup of $O P(n, k)$.

Before we give the description of the maximal subsemigroups of the ideals of the semigroup $\mathcal{O} \mathcal{P}_{n}$, we recall a result presented in [6] by the first and third authors (see also [20]). Let $O(n, k)$ denote the ideal of \mathcal{O}_{n} of all elements of rank less than or equal to k, i.e. $O(n, k)=O P(n, k) \cap \mathcal{O}_{n}$. Thus, we have:

Theorem 1.11. Let $n \geq 3$ and $2 \leq k \leq n-1$. Then a subsemigroup of $O(n, k)$ is maximal if and only if it belongs to one of the following types:
(1) $S_{A} \cap \mathcal{O}_{n}$, with $A \in\binom{X_{n}}{k}$;
(2) $S_{\pi} \cap \mathcal{O}_{n}$, with $\pi \in \operatorname{Ker}_{k}\left(\mathcal{O}_{n}\right)$ such that π does not admit any interval of X_{n} as a transversal;
(3) $S_{(\mathcal{J}, \mathcal{K})}^{\prime}=O(n, k-1) \cup\left(\bigcup\left\{L_{\alpha}^{\mathcal{O}_{n}} \mid \alpha \in \mathcal{O}_{n}\right.\right.$ and $\left.\left.\operatorname{im} \alpha \in \mathcal{J}\right\}\right) \cup$ $\cup\left(\bigcup\left\{R_{\alpha}^{\mathcal{O}_{n}} \mid \alpha \in \mathcal{O}_{n}\right.\right.$ and $\left.\left.\operatorname{ker} \alpha \in \mathcal{K}\right\}\right)$, with $(\mathcal{J}, \mathcal{K})$ a k-coupler of \mathcal{O}_{n}.

Regarding the maximal subsemigroups of $O P(n, k)$, we first prove:
Lemma 1.12. Let S be a maximal subsemigroup of $O P(n, k)$. Then $S=\bigcup\left\{H_{\alpha}^{\mathcal{O} \mathcal{P}_{n}} \mid \alpha \in S\right\}$.

Proof. Let $T=\bigcup\left\{H_{\alpha}^{\mathcal{O} \mathcal{P}_{n}} \mid \alpha \in S\right\}$. Then clearly $S \subseteq T$. By Corollary 1.9, there exists $\varepsilon \in E\left(J_{k}\right)$ such that $\varepsilon \notin S$. Hence $H_{\varepsilon}^{\mathcal{O} \mathcal{P}_{n}} \cap S=\emptyset$ and so $T \neq O P(n, k)$. The result follows by proving that T is a subsemigroup of $O P(n, k)$. Clearly, by the maximality of S and Lemma 1.7, we have $O P(n, k-1) \subsetneq S$. So, it suffices to show that, for all $\alpha, \beta \in T \cap J_{k}$ such that $\alpha \beta \in J_{k}$, we get $\alpha \beta \in T$. Therefore, let $\alpha, \beta \in T \cap J_{k}$ be such that $\alpha \beta \in J_{k}$. Take $\alpha^{\prime}, \beta^{\prime} \in S$ such that $\alpha \in H_{\alpha^{\prime}}^{\mathcal{O} \mathcal{P}_{n}}$ and $\beta \in H_{\beta^{\prime}}^{\mathcal{O} \mathcal{P}_{n}}$. Then $\operatorname{im} \alpha^{\prime}=\operatorname{im} \alpha \# \operatorname{ker} \beta=\operatorname{ker} \beta^{\prime}$ and $\alpha \beta \in R_{\alpha}^{\mathcal{O} \mathcal{P}_{n}} \cap L_{\beta}^{\mathcal{O} \mathcal{P}_{n}}$, whence $\alpha^{\prime} \beta^{\prime} \in R_{\alpha^{\prime}}^{\mathcal{O} \mathcal{P}_{n}} \cap L_{\beta^{\prime}}^{\mathcal{O} \mathcal{P}_{n}}=R_{\alpha}^{\mathcal{O} \mathcal{P}_{n}} \cap L_{\beta}^{\mathcal{O} \mathcal{P}_{n}}=H_{\alpha \beta}^{\mathcal{O} \mathcal{P}_{n}}$ and so, as $\alpha^{\prime} \beta^{\prime} \in S$, we obtain $\alpha \beta \in H_{\alpha^{\prime} \beta^{\prime}}^{\mathcal{O} \mathcal{P}_{n}} \subseteq T$, as required.

Now, we have:
Theorem 1.13. Let $n \geq 3$ and $2 \leq k \leq n-1$. Then a subsemigroup of $O P(n, k)$ is maximal if and only if it belongs to one of the following types:
(1) S_{A}, with $A \in\binom{X_{n}}{k}$;
(2) S_{π}, with $\pi \in \operatorname{Ker}_{k}\left(\mathcal{O} \mathcal{P}_{n}\right)$;
(3) $S_{(\mathcal{J}, \mathcal{K})}$, with $(\mathcal{J}, \mathcal{K})$ a k-coupler of $\mathcal{O} \mathcal{P}_{n}$.

Proof. We begin by showing that each of these subsemigroups of $O P(n, k)$ is maximal.

First, let $A \in\binom{X_{n}}{k}$ and let $\alpha \in \mathcal{O} \mathcal{P}_{n}$ be such that $\operatorname{im} \alpha=A$. Take an idempotent $\varepsilon \in\left(J_{k} \backslash L_{\alpha}^{\mathcal{O} \mathcal{P}_{n}}\right) \cap R_{\alpha}^{\mathcal{O} \mathcal{P}_{n}}$. As $L_{\varepsilon}^{\mathcal{O P}_{n}} \subseteq S_{A}$ and, by Lemma 1.1, $L_{\varepsilon}^{\mathcal{O} \mathcal{P}_{n}} \alpha=L_{\alpha}^{\mathcal{O} \mathcal{P}_{n}}$, we have $\left\langle S_{A}, \alpha\right\rangle=O P(n, k)$. Thus, S_{A} is maximal.

Similarly, being $\pi \in \operatorname{Ker}_{k}\left(\mathcal{O} \mathcal{P}_{n}\right)$ and being $\alpha \in \mathcal{O} \mathcal{P}_{n}$ such that ker $\alpha=\pi$, the \mathcal{L}-class $L_{\alpha}^{\mathcal{O} \mathcal{P}_{n}}$ contains at least one idempotent $\varepsilon \in J_{k} \backslash R_{\alpha}^{\mathcal{O} \mathcal{P}_{n}}$ and so $R_{\varepsilon}^{\mathcal{O} \mathcal{P}_{n}} \subseteq S_{\pi}$ and, by Lemma 1.1, $\alpha R_{\varepsilon}^{\mathcal{O} \mathcal{P}_{n}}=R_{\alpha}^{\mathcal{O} \mathcal{P}_{n}}$, whence $\left\langle S_{\pi}, \alpha\right\rangle=O P(n, k)$. Thus, S_{π} is maximal.

Finally, regarding the subsemigroups of type (3), let (J, $\mathcal{K})$ be a k-coupler of $\mathcal{O} \mathcal{P}_{n}$. As \mathcal{J} and \mathcal{K} are proper subsets of $\binom{X_{n}}{k}$ and $\operatorname{Ker}_{k}\left(\mathcal{O} \mathcal{P}_{n}\right)$, respectively,
we may take $\gamma \in \mathcal{O} \mathcal{P}_{n}$ such that $\operatorname{im} \gamma \in\binom{X_{n}}{k} \backslash \mathcal{J}$ and $\operatorname{ker} \gamma \in \operatorname{Ker}_{k}\left(\mathcal{O} \mathcal{P}_{n}\right) \backslash \mathcal{K}$. Then, there exist $\alpha, \beta \in \mathcal{O} \mathcal{P}_{n}$ such that $\operatorname{im} \alpha \in \mathcal{J}, \operatorname{ker} \beta \in \mathcal{X}, \operatorname{im} \gamma \# \operatorname{ker} \beta$ and $\operatorname{im} \alpha \# \operatorname{ker} \gamma$. Now, by Lemma 1.1, we have $\gamma R_{\beta}^{\mathcal{O} \mathcal{P}_{n}}=R_{\gamma}^{\mathcal{O} \mathcal{P}_{n}}$. As $R_{\beta}^{\mathcal{O} \mathcal{P}_{n}} \subseteq S_{(\mathrm{J}, \mathcal{K})}$, we obtain $R_{\gamma}^{\mathcal{O} \mathcal{P}_{n}} \subseteq\left\langle S_{(J, \mathcal{K})}, \gamma\right\rangle$. On the other hand, by Lemma 1.1, we also have $L_{\alpha}^{\mathcal{O} \mathcal{P}_{n}} R_{\gamma}^{\mathcal{O} \mathcal{P}_{n}}=J_{k}$. Since $L_{\alpha}^{\mathcal{O} \mathcal{P}_{n}} \subseteq S_{(\mathcal{J}, \mathcal{K})}$, we deduce that $\left\langle S_{(\mathcal{J}, \mathcal{K})}, \gamma\right\rangle=O P(n, k)$. Thus, $S_{(J, \mathcal{K})}$ is maximal.

For the converse part, let S be a maximal subsemigroup of the ideal $O P(n, k)$.
If $S \cap R_{\alpha}^{\mathcal{O} \mathcal{P}_{n}}=\emptyset$, for some $\alpha \in J_{k}$, then $S=S_{\text {ker } \alpha}$, by the maximality of S. Similarly, if $S \cap L_{\alpha}^{\mathcal{O} \mathcal{P}_{n}}=\emptyset$, for some $\alpha \in J_{k}$, then $S=S_{\mathrm{im} \alpha}$. Thus, suppose that S has at least one element from each \mathcal{R}-class and each \mathcal{L}-class of $\mathcal{O} \mathcal{P}_{n}$ contained in J_{k}. If $S \cap \mathcal{O}_{n}=O(n, k)$ then $S=O P(n, k)$, by Proposition 1.8. Therefore $S \cap \mathcal{O}_{n} \subsetneq O(n, k)$. Let \bar{S} be a maximal subsemigroup of $O(n, k)$ such that $S \cap \mathcal{O}_{n} \subseteq \bar{S}$. By Theorem 1.11, we have three possible cases for \bar{S}.

First, suppose that $\bar{S}=S_{\pi} \cap \mathcal{O}_{n}$, for some $\pi \in \operatorname{Ker}_{k}\left(\mathcal{O}_{n}\right)$. As $\operatorname{Ker}_{k}\left(\mathcal{O}_{n}\right) \subseteq$ $\operatorname{Ker}_{k}\left(\mathcal{O} \mathcal{P}_{n}\right)$, we may take $\alpha \in S$ such that $\operatorname{ker} \alpha=\pi$. Moreover, we have $H_{\alpha}^{\mathcal{O} \mathcal{P}_{n}} \cap$ $\mathcal{O}_{n} \neq \emptyset$. Now, as $H_{\alpha}^{\mathcal{O} \mathcal{P}_{n}} \subseteq S$ (by Lemma 1.12), we have $\left(S \cap \mathcal{O}_{n}\right) \cap R_{\alpha}^{\mathcal{O}_{n}} \neq \emptyset$, whence $\bar{S} \cap R_{\alpha}^{\mathcal{O} \mathcal{P}_{n}} \neq \emptyset$ and so $S_{\pi} \cap R_{\alpha}^{\mathcal{O} \mathcal{P}_{n}} \neq \emptyset$, which is a contradiction. Thus, \bar{S} cannot be of this type.

Secondly, we suppose that $\bar{S}=S_{A_{1}} \cap \mathcal{O}_{n}$, for some $A_{1} \in\binom{X_{n}}{k}$. Let A_{2}, \ldots, A_{r} $(r \geq 2)$ be distinct elements of $\binom{X_{n}}{k}$ such that, for all $\alpha \in J_{k}, L_{\alpha}^{\mathcal{O} \mathcal{P}_{n}} \cap \mathcal{O}_{n} \cap S=\emptyset$ if and only if $\operatorname{im} \alpha \in\left\{A_{1}, \ldots, A_{r}\right\}$. For each $i \in\{1, \ldots, r\}$, let $\alpha_{i} \in \mathcal{O} \mathcal{P}_{n}$ be such that $\operatorname{im} \alpha_{i}=A_{i}$. Notice that, for $i \in\{1, \ldots, r\}$, as S has at least one element from each \mathcal{L}-class of $\mathcal{O} \mathcal{P}_{n}$ contained in J_{k}, in particular, we have $L_{\alpha_{i}}^{\mathcal{O} \mathcal{P}_{n}} \cap S \neq \emptyset$ and, on the other hand, as a consequence of Lemma 1.12, if $\alpha \in L_{\alpha_{i}}^{\mathcal{O} \mathcal{P}_{n}} \cap S$ then $(1, n) \in \operatorname{ker} \alpha$. Now, let

$$
\mathcal{K}=\left\{\operatorname{ker} \alpha \mid \alpha \in L_{\alpha_{i}}^{\mathcal{O} \mathcal{P}_{n}} \cap S, \text { for some } i \in\{1, \ldots, r\}\right\} .
$$

Notice that, clearly, $\mathcal{K} \neq \emptyset$. Also, let

$$
\mathcal{J}=\left\{\left.A \in\binom{X_{n}}{k} \right\rvert\, A \text { is not a transversal of } \pi \text {, for all } \pi \in \mathcal{K}\right\} .
$$

Observe that, as $(1, n) \in \pi$, for all $\pi \in \mathcal{K}$, then $\left\{\left.A \in\binom{X_{n}}{k} \right\rvert\, 1, n \in A\right\} \subseteq \mathcal{J}$ and so, in particular, $\mathcal{J} \neq \emptyset$. Furthermore, it is a routine matter to check that the pair $(\mathcal{J}, \mathcal{K})$ is a k-coupler of $\mathcal{O} \mathcal{P}_{n}$. Next, we show that $S \cap J_{k} \subseteq S_{(\mathcal{J}, \mathcal{K})}$. Take $\alpha \in S \cap J_{k}$. If $\operatorname{im} \alpha \in \mathcal{J}$, then $\alpha \in S_{(\mathcal{J}, \mathcal{K})}$, by definition. On the other hand, suppose that $\operatorname{im} \alpha \notin \mathcal{J}$. Then, there exists $\pi \in \mathcal{K}$ such that $\operatorname{im} \alpha \# \pi$. As $\pi \in \mathcal{K}$, then $\pi=\operatorname{ker} \beta$, for some $\beta \in L_{\alpha_{i}}^{\mathcal{O P}_{n}} \cap S$ and $i \in\{1, \ldots, r\}$. From im $\alpha \# \operatorname{ker} \beta$ it follows that $\alpha \beta \in R_{\alpha}^{\mathcal{O} \mathcal{P}_{n}} \cap L_{\beta}^{\mathcal{O} \mathcal{P}_{n}}=R_{\alpha}^{\mathcal{O} \mathcal{P}_{n}} \cap L_{\alpha_{i}}^{\mathcal{O} \mathcal{P}_{n}}$. Moreover, $\alpha \beta \in S$, whence
$\alpha \beta \in L_{\alpha_{i}}^{\mathcal{O} \mathcal{P}_{n}} \cap S$ and so ker $\alpha=\operatorname{ker}(\alpha \beta) \in \mathcal{K}$. Then $\alpha \in S_{(\mathcal{J}, \mathcal{K})}$, by definition. So, we have proved that $S \cap J_{k} \subseteq S_{(\mathcal{J}, \mathcal{K})}$. Therefore $S \subseteq S_{(\mathcal{J}, \mathcal{K})}$ and thus $S=S_{(\mathcal{J}, \mathcal{K})}$, by the maximality of S.

Finally, suppose that $\bar{S}=S_{\left(\mathcal{J}^{\prime}, \mathcal{K}^{\prime}\right)}^{\prime}$ (as defined in Theorem 1.11), for some k-coupler $\left(\mathcal{J}^{\prime}, \mathcal{K}^{\prime}\right)$ of \mathcal{O}_{n}. Let

$$
\mathcal{J}=\mathcal{J}^{\prime} \cap\left\{\operatorname{im} \alpha \mid \alpha \in S \text { and } \operatorname{ker} \alpha \in \operatorname{Ker}_{k}\left(\mathcal{O}_{n}\right) \backslash \mathcal{K}^{\prime}\right\}
$$

and

$$
\mathcal{K}=\left\{\pi \in \operatorname{Ker}_{k}\left(\mathcal{O} \mathcal{P}_{n}\right) \mid A \text { is not a transversal of } \pi, \text { for all } A \in \mathcal{J}\right\} .
$$

Clearly, $\mathcal{K}^{\prime} \subseteq \mathcal{K}$, whence $\mathcal{K} \neq \emptyset$. On the other hand, from the definition of \mathcal{J} and from $S \cap \mathcal{O}_{n} \subseteq S_{\left(\mathcal{J}^{\prime}, \mathcal{K}^{\prime}\right)}^{\prime}$, in view of Lemma 1.12, we may deduce that $R_{\beta}^{\mathcal{O} \mathcal{P}_{n}} \cap L_{\alpha}^{\mathcal{O} \mathcal{P}_{n}} \cap$ $S=\emptyset$, for all $\alpha, \beta \in J_{k}$ such that $\operatorname{ker} \beta \in \operatorname{Ker}_{k}\left(\mathcal{O}_{n}\right) \backslash \mathcal{K}^{\prime}$ and $\operatorname{im} \alpha \in\binom{X_{n}}{k} \backslash \mathcal{J}$. As S has at least one element from each \mathcal{R}-class of $\mathcal{O} \mathcal{P}_{n}$ contained in J_{k}, in particular, it follows that $\mathcal{J} \neq \emptyset$. Furthermore, it is a routine matter to check that the pair $(\mathcal{J}, \mathcal{K})$ is a k-coupler of $\mathcal{O} \mathcal{P}_{n}$. Next, we aim to prove that $S=S_{(\mathcal{J}, \mathcal{K})}$. Take $\alpha \in J_{k} \cap S$ and suppose that $\alpha \notin S_{(\mathcal{J}, \mathcal{K})}$. Then, $\operatorname{im} \alpha \in\binom{X_{n}}{k} \backslash \mathcal{J}$ and ker $\alpha \in \operatorname{Ker}_{k}\left(\mathcal{O} \mathcal{P}_{n}\right) \backslash \mathcal{K}$. Hence, there exists $A \in \mathcal{J}$ such that $A \#$ ker α and, by the definition of \mathcal{J}, we have $A=\operatorname{im} \beta$, for some $\beta \in S$ such that $\operatorname{ker} \beta \in \operatorname{Ker}_{k}\left(\mathcal{O}_{n}\right) \backslash \mathcal{K}^{\prime}$. Thus, from $\operatorname{im} \beta=A \#$ ker α, it follows that $\beta \alpha \in R_{\beta}^{\mathcal{O} \mathcal{P}_{n}} \cap L_{\alpha}^{\mathcal{O} \mathcal{P}_{n}} \cap S$ and so $R_{\beta}^{\mathcal{O} \mathcal{P}_{n}} \cap L_{\alpha}^{\mathcal{O} \mathcal{P}_{n}} \cap S \neq \emptyset$, with $\operatorname{ker} \beta \in \operatorname{Ker}_{k}\left(\mathcal{O}_{n}\right) \backslash \mathcal{K}^{\prime}$ and $\operatorname{im} \alpha \in\binom{X_{n}}{k} \backslash \mathcal{J}$, which contradicts the above deduction. Therefore, $\alpha \in S_{(\mathcal{J}, \mathcal{K})}$, whence $S \subseteq S_{(\mathcal{J}, \mathcal{K})}$ and then $S=S_{(\mathcal{J}, \mathcal{K})}$, by the maximality of S, as required.

2. Maximal subsemigroups of the ideals of $\mathcal{O} \mathcal{R}_{n}$

As for $\mathcal{O} \mathcal{P}_{n}$, the semigroup $\mathcal{O} \mathcal{R}_{n}$ is the union of its \mathcal{J}-classes $\bar{J}_{1}, \bar{J}_{2}, \ldots, \bar{J}_{n}$, where

$$
\bar{J}_{k}=\left\{\alpha \in \mathcal{O} \mathcal{R}_{n} \mid \operatorname{rank} \alpha=k\right\}
$$

for $k=1, \ldots, n$. Notice that $\bar{J}_{k} \cap \mathcal{O} \mathcal{P}_{n}$ is the \mathcal{J}-class J_{k} of $\mathcal{O} \mathcal{P}_{n}$, for $k=1, \ldots, n$, and $\bar{J}_{1}=J_{1}$ and $\bar{J}_{2}=J_{2}$. Observe also that, for $\alpha \in \mathcal{O} \mathcal{P}_{n}$, we have $L_{\alpha}^{\mathcal{O} \mathcal{P}_{n}}=$ $L_{\alpha}^{\mathcal{O} \mathcal{R}_{n}} \cap \mathcal{O} \mathcal{P}_{n}, R_{\alpha}^{\mathcal{O} \mathcal{P}_{n}}=R_{\alpha}^{\mathcal{O} \mathcal{R}_{n}} \cap \mathcal{O} \mathcal{P}_{n}$ and $H_{\alpha}^{\mathcal{O} \mathcal{P}_{n}}=H_{\alpha}^{\mathcal{O} \mathcal{R}_{n}} \cap \mathcal{O P}{ }_{n}$.

Analogously to $\mathcal{O} \mathcal{P}_{n}$, the ideals of the semigroup $\mathcal{O} \mathcal{R}_{n}$ are unions of the \mathcal{J}-classes $\bar{J}_{1}, \bar{J}_{2}, \ldots, \bar{J}_{k}$, i.e. the sets

$$
O R(n, k)=\left\{\alpha \in \mathcal{O} \mathcal{R}_{n} \mid \operatorname{rank} \alpha \leq k\right\}
$$

with $k=1, \ldots, n$.

For $\alpha \in O R(n, k)$, with $k=1, \ldots, n$, we also have $L_{\alpha}^{O R(n, k)}=L_{\alpha}^{\mathcal{O R}}{ }_{n}$, $R_{\alpha}^{O R(n, k)}=R_{\alpha}^{\mathcal{O} \mathcal{R}_{n}}$ and $H_{\alpha}^{O R(n, k)}=H_{\alpha}^{\mathcal{O} \mathcal{R}_{n}}$. Moreover, a result similar to Lemma 1.1 holds for elements of $\mathcal{O} \mathcal{R}_{n}$:

Lemma 2.1. Let $k \in\{1,2, \ldots, n\}$ and let $\alpha, \beta \in \bar{J}_{k}$ be such that $\operatorname{im} \alpha \# \operatorname{ker} \beta$. Then $\alpha R_{\beta}^{\mathcal{O} \mathcal{R}_{n}}=R_{\alpha \beta}^{\mathcal{O} \mathcal{R}_{n}}=R_{\alpha}^{\mathcal{O} \mathcal{R}_{n}}, L_{\alpha}^{\mathcal{O} \mathcal{R}_{n}} \beta=L_{\alpha \beta}^{\mathcal{O} \mathcal{R}_{n}}=L_{\beta}^{\mathcal{O} \mathcal{R}_{n}}, \alpha H_{\beta}^{\mathcal{O} \mathcal{R}_{n}}=H_{\alpha}^{\mathcal{O} \mathcal{R}_{n}} \beta=$ $H_{\alpha \beta}^{\mathcal{O} \mathcal{R}_{n}}$ and $L_{\alpha}^{\mathcal{O} \mathcal{R}_{n}} R_{\beta}^{\mathcal{O} \mathcal{R}_{n}}=\bar{J}_{k}$.

As $\mathcal{O} \mathcal{R}_{1}=\mathcal{O} \mathcal{P}_{1}$ and $\mathcal{O} \mathcal{R}_{2}=\mathcal{O} \mathcal{P}_{2}$, in what follows, we consider $n \geq 3$.
Next, recall that a dihedral group \mathcal{D}_{n} of order $2 n$ can abstractly be defined by the group presentation

$$
\left\langle x, y \mid x^{n}=y^{2}=1, x y=y x^{-1}\right\rangle
$$

Let

$$
h=\left(\begin{array}{ccccc}
1 & 2 & \cdots & n-1 & n \\
n & n-1 & \cdots & 2 & 1
\end{array}\right) \in \bar{J}_{n}
$$

Hence, we have $\bar{J}_{n}=\langle g, h\rangle$ and, as $g^{n}=h^{2}=(g h)^{2}=1$, it is easy to see that \bar{J}_{n} is a dihedral group of order $2 n$. Furthermore, Catarino and Higgins [5] proved:

Proposition 2.2. Let $k \in\{3, \ldots, n\}$ and let $\alpha \in \mathcal{O} \mathcal{R}_{n}$ be an element of rank k. Then $\left|H_{\alpha}\right|=2 k$. Moreover, if α is an idempotent, then H_{α} is a dihedral group of order $2 k$.

Thus, each \mathcal{H}-class of rank k of $\mathcal{O R}_{n}$ has k orientation-preserving transformations and k orientation-reversing transformations, for $k \in\{3, \ldots, n\}$.

Notice that, since $\bar{J}_{1}=J_{1}$ and $\bar{J}_{2}=J_{2}$, for $\alpha \in \bar{J}_{k}$ with $k=1,2$, we have $\left|H_{\alpha}^{\mathcal{O} \mathcal{R}_{n}}\right|=k$.

Let us consider again the dihedral group \mathcal{D}_{n} of order $2 n$. Observe that

$$
\mathcal{D}_{n}=\left\{1=x^{0}, x, x^{2}, \ldots, x^{n-1}\right\} \cup\left\{y, x y, x^{2} y, \ldots, x^{n-1} y\right\} .
$$

It is easy to show that the subgroups of \mathcal{D}_{n} are of the form $\left\langle x^{d}\right\rangle$ (a cyclic group of order n / d) and of the form $\left\langle x^{d}, x^{i} y\right\rangle$ (a dihedral group of order $2 n / d$), for each positive divisor d of n and each $0 \leq i<d$. It follows that $\langle x\rangle$ and $\left\langle x^{p}, x^{i} y\right\rangle$, with p a prime divisor of n and $0 \leq i<p$, are the maximal subsemigroups of \mathcal{D}_{n}.

Now, for a prime divisor p of n and $0 \leq i<p$, consider the dihedral group $V_{p, i}=\left\langle g^{p}, g^{i} h\right\rangle$ of order $2 n / p$. Then, the above observation can be rewrote as:

Lemma 2.3. The group $J_{n}=\langle g\rangle$ and the groups $V_{p, i}$, with p a prime divisor of n and $0 \leq i<p$, are the maximal subsemigroups of \bar{J}_{n}.

Next, we recall the following well known result (see [4], [17]).
Proposition 2.4. $\mathcal{O} \mathcal{R}_{n}=\left\langle u_{1}, g, h\right\rangle$.
In fact, more generally, we have:
Proposition 2.5. Let $\alpha \in \bar{J}_{n-1}, \gamma$ an element of J_{n} of order n and $\beta \in$ $\bar{J}_{n} \backslash J_{n}$. Then $\mathcal{O} \mathcal{R}_{n}=\langle\alpha, \gamma, \beta\rangle$.

Proof. If $\alpha \in \bar{J}_{n-1} \cap \mathcal{O} \mathcal{P}_{n}$ then, by Proposition 1.4, we have $\mathcal{O} \mathcal{P}_{n}=\langle\alpha, \gamma\rangle$. If $\alpha \in \bar{J}_{n-1} \backslash \mathcal{O} \mathcal{P}_{n}$ then $\alpha \beta \in \bar{J}_{n-1} \cap \mathcal{O} \mathcal{P}_{n}$ and, again by Proposition 1.4, we obtain $\mathcal{O} \mathcal{P}_{n}=\langle\alpha \beta, \gamma\rangle$. Therefore, $u_{1}, g \in\langle\alpha, \gamma, \beta\rangle$. As $\beta \in \bar{J}_{n} \backslash \mathcal{O} \mathcal{P}_{n}$, there exists $i \in\{1, \ldots, n\}$ such that $\beta=\left(\begin{array}{ccccccc}1 & 2 & \cdots & i-1 & i & \cdots & n-1 \\ i-1 & i-2 & \ldots & 1 & n & \cdots & i+1 \\ i\end{array}\right)$. On the other hand, the transformation

$$
\delta=\left(\begin{array}{cccccccc}
1 & 2 & \cdots & i-1 & i & \cdots & n-1 & n \\
n-i+2 & n-i+3 & \cdots & n & 1 & \cdots & n-i & n-i+1
\end{array}\right)
$$

is an element of $\mathcal{O} \mathcal{P}_{n}$ and $h=\beta \delta \in\langle\alpha, \gamma, \beta\rangle$. Therefore, by Proposition 2.4, we deduce that $\mathcal{O R}_{n}=\langle\alpha, \gamma, \beta\rangle$.

We have now all the ingredients to describe the maximal subsemigroups of $\mathcal{O} \mathcal{R}_{n}$.

Theorem 2.6. A subsemigroup S of the semigroup $\mathcal{O} \mathcal{R}_{n}$ is maximal if and only if $S=O R(n, n-2) \cup \bar{J}_{n}$ or $S=O R(n, n-1) \cup J_{n}$ or $S=O R(n, n-1) \cup V_{p, i}$, for some prime divisor p of n and $0 \leq i<p$.

Proof. Let S be a maximal subsemigroup of $\mathcal{O R}_{n}$. Then, by Proposition 2.5, we have $S=O R(n, n-2) \cup T$, for some $T \subset\left(\bar{J}_{n-1} \cup \bar{J}_{n}\right)$ such that $T \cap \bar{J}_{n-1}=\emptyset$ or T does not contain any element of J_{n} of order n or $T \cap\left(\bar{J}_{n} \backslash J_{n}\right)=\emptyset$. In the latter two cases, we must have $\bar{J}_{n-1} \subseteq T$, by the maximality of S. Thus, $S=O R(n, n-1) \cup T^{\prime}$, for some $T^{\prime} \subset \bar{J}_{n}$. Clearly, T^{\prime} must be a maximal subsemigroup of \bar{J}_{n}, whence $S=O R(n, n-1) \cup J_{n}$ or $S=O R(n, n-1) \cup V_{p, i}$, for some prime divisor p of n and $0 \leq i<p$, accordingly with Lemma 2.3. On the other hand, if $T \cap \bar{J}_{n-1}=\emptyset$ then $S \subseteq O R(n, n-2) \cup \bar{J}_{n}$ and so $S=O R(n, n-2) \cup \bar{J}_{n}$, by the maximality of S.

The converse part follows immediately from Proposition 2.5 and Lemma 2.3.

From now on we consider the ideals $O R(n, k)$ of $\mathcal{O} \mathcal{R}_{n}$, for $k \in\{1, \ldots, n-1\}$. Since $O R(n, 1)=O P(n, 1)$ and $O R(n, 2)=O P(n, 2)$, in what follows, we take $k \geq 3$.

Notice that, as $\alpha h \in O P(n, k)$, for all $\alpha \in O R(n, k) \backslash O P(n, k)$, by using Lemma 1.7, it is easy to conclude:

Lemma 2.7. $O R(n, k)=\left\langle\bar{J}_{k}\right\rangle$.
In fact, moreover, we have:
Proposition 2.8. $O R(n, k)=\left\langle J_{k}, \alpha\right\rangle$, for all $\alpha \in \bar{J}_{k} \backslash J_{k}$.
Proof. Let $\alpha \in \bar{J}_{k} \backslash J_{k}$ and take an idempotent $\varepsilon \in L_{\alpha}^{\mathcal{O} \mathcal{R}_{n}}$. Since im $\alpha=$ $\operatorname{im} \varepsilon \# \operatorname{ker} \varepsilon$, we have $\alpha R_{\varepsilon}^{\mathcal{O} \mathcal{R}_{n}}=R_{\alpha}^{\mathcal{O} \mathcal{R}_{n}}$, by Lemma 2.1. Hence, $\alpha\left(R_{\varepsilon}^{\mathcal{O} \mathcal{R}_{n}} \cap J_{k}\right)=$ $R_{\alpha}^{\mathcal{O} \mathcal{R}_{n}} \backslash J_{k}$ and so
$R_{\alpha}^{\mathcal{O} \mathcal{R}_{n}}=\left(R_{\alpha}^{\mathcal{O} \mathcal{R}_{n}} \cap J_{k}\right) \cup\left(R_{\alpha}^{\mathcal{O} \mathcal{R}_{n}} \backslash J_{k}\right)=\left(R_{\alpha}^{\mathcal{O} \mathcal{R}_{n}} \cap J_{k}\right) \cup \alpha\left(R_{\varepsilon}^{\mathcal{O} \mathcal{R}_{n}} \cap J_{k}\right) \subseteq\left\langle J_{k}, \alpha\right\rangle$.
Now, let ε^{\prime} be an idempotent of $R_{\alpha}^{\mathcal{O} \mathcal{R}_{n}}$ and take $\alpha^{\prime} \in H_{\varepsilon^{\prime}}^{\mathcal{O} \mathcal{R}_{n}} \backslash J_{k}$. Notice that $\alpha^{\prime} \in R_{\alpha}^{\mathcal{O} \mathcal{R}_{n}} \subseteq\left\langle J_{k}, \alpha\right\rangle$. As im $\varepsilon^{\prime} \# \operatorname{ker} \varepsilon^{\prime}=\operatorname{ker} \alpha^{\prime}$, we have $L_{\varepsilon^{\prime}}^{\mathcal{O} \mathcal{R}_{n}} \alpha^{\prime}=L_{\alpha^{\prime}}^{\mathcal{O} \mathcal{R}_{n}}=$ $L_{\varepsilon^{\prime}}^{\mathcal{O} \mathcal{R}_{n}}$, by Lemma 2.1. Thus $\left(L_{\varepsilon^{\prime}}^{\mathcal{O} \mathcal{R}_{n}} \cap J_{k}\right) \alpha^{\prime}=L_{\varepsilon^{\prime}}^{\mathcal{O} \mathcal{R}_{n}} \backslash J_{k}$, whence

$$
L_{\varepsilon^{\prime}}^{\mathcal{O} \mathcal{R}_{n}}=\left(L_{\varepsilon^{\prime}}^{\mathcal{O} \mathcal{R}_{n}} \cap J_{k}\right) \cup\left(L_{\varepsilon^{\prime}}^{\mathcal{O} \mathcal{R}_{n}} \backslash J_{k}\right)=\left(L_{\varepsilon^{\prime}}^{\mathcal{O} \mathcal{R}_{n}} \cap J_{k}\right) \cup\left(L_{\varepsilon^{\prime}}^{\mathcal{O} \mathcal{R}_{n}} \cap J_{k}\right) \alpha^{\prime} \subseteq\left\langle J_{k}, \alpha\right\rangle .
$$

Finally, as $\operatorname{im} \varepsilon^{\prime} \# \operatorname{ker} \varepsilon^{\prime}=\operatorname{ker} \alpha$, we have $L_{\varepsilon^{\prime}}^{\mathcal{O} \mathcal{R}_{n}} R_{\alpha}^{\mathcal{O} \mathcal{R}_{n}}=\bar{J}_{k}$, again by Lemma 2.1. Therefore, $\bar{J}_{k} \subseteq\left\langle J_{k}, \alpha\right\rangle$ and so, by Lemma 2.7, $O R(n, k)=\left\langle J_{k}, \alpha\right\rangle$, as required.

As an immediate consequence of Proposition 2.8, we have:
Corollary 2.9. $O R(n, k-1) \cup J_{k}$ is a maximal subsemigroup of $O R(n, k)$.
Also, combining Proposition 2.8 with Corollary 1.9, we have:
Corollary 2.10. $O R(n, k)=\left\langle E\left(J_{k}\right), \alpha\right\rangle$, for all $\alpha \in \bar{J}_{k} \backslash J_{k}$.
Before we present our description of the maximal subsemigroups of the ideals of $\mathcal{O} \mathcal{R}_{n}$, we prove the following result:

Lemma 2.11. Let S be a maximal subsemigroup of $\operatorname{OR}(n, k)$ containing at least one orientation-reversing transformation of rank k. Then $S=\bigcup\left\{H_{\alpha}^{\mathcal{O} R_{n}} \mid\right.$ $\left.\alpha \in S \cap \mathcal{O} \mathcal{P}_{n}\right\}$.

Proof. Let $\alpha \in S$. As clearly $O R(n, k-1) \subseteq S$, it suffices to consider $\alpha \in$ \bar{J}_{k}. Take $\beta \in H_{\alpha}^{\mathcal{O} R_{n}}$ and suppose that $\beta \notin S$. Hence, by the maximality of S, we have $O R(n, k)=\langle S, \beta\rangle$. Let $\varepsilon \in E\left(J_{k}\right)$. Then, there exist $t \geq 0, r_{0}, r_{1}, \ldots, r_{t} \geq 0$ and $\alpha_{1}, \ldots, \alpha_{t} \in S$ such that $\varepsilon=\beta^{r_{0}} \alpha_{1} \beta^{r_{1}} \alpha_{2} \cdots \beta^{r_{t-1}} \alpha_{t} \beta^{r_{t}}$. As $\alpha \mathcal{H} \beta$, it follows that $\tau=\alpha^{r_{0}} \alpha_{1} \alpha^{r_{1}} \alpha_{2} \cdots \alpha^{r_{t-1}} \alpha_{t} \alpha^{r_{t}} \mathcal{H} \varepsilon$. Furthermore, $\tau \in S$. Now, since ε is a
power of τ, it follows that also $\varepsilon \in S$. Thus $E\left(J_{k}\right) \subseteq S$. Since S also contains an orientation-reversing transformation of rank k, by Corollary 2.10, we have $S=$ $O R(n, k)$, a contradiction. Therefore $H_{\alpha}^{\mathcal{O} \mathcal{R}_{n}} \subseteq S$. This shows that $H_{\alpha}^{\mathcal{O} R_{n}} \subseteq S$ for all $\alpha \in S$, i.e. $\bigcup\left\{H_{\alpha}^{\mathcal{O} \mathcal{R}_{n}} \mid \alpha \in S\right\} \subseteq S$ and thus $\bigcup\left\{H_{\alpha}^{\mathcal{O} \mathcal{R}_{n}} \mid \alpha \in S\right\}=S$. Since each \mathcal{H}-class of $\mathcal{O} \mathcal{R}_{n}$ contains an orientation-preserving transformation, we obtain $S=\bigcup\left\{H_{\alpha}^{\mathcal{O} \mathcal{R}_{n}} \mid \alpha \in S \cap \mathcal{O} \mathcal{P}_{n}\right\}$, as required.

In general, if S^{\prime} is a subsemigroup of $O P(n, k)$ containing $O P(n, k-1)$, then (using an argument similar to that considered in the proof of Lemma 1.12) it is easy to show that $S=\bigcup\left\{H_{\alpha}^{\mathcal{O} \mathcal{R}_{n}} \mid \alpha \in S^{\prime}\right\}$ is a subsemigroup of $\operatorname{OR}(n, k)$. Furthermore, if $S^{\prime} \subsetneq O P(n, k)$ then also $S \subsetneq O R(n, k)$. In fact, in this case, by Corollary 1.9, there exists $\varepsilon \in E\left(J_{k}\right)$ such that $\varepsilon \notin S^{\prime}$. It follows that $H_{\varepsilon}^{\mathcal{O} \mathcal{R}_{n}} \cap S^{\prime}=\emptyset$ and so also $\varepsilon \notin S$.

Finally, we have:
Theorem 2.12. Let $n \geq 4$ and $3 \leq k \leq n-1$. Let S be a subsemigroup of $O R(n, k)$. Then, S is maximal if and only if $S=O R(n, k-1) \cup J_{k}$ or $S=$ $\bigcup\left\{H_{\alpha}^{\mathcal{O} R_{n}} \mid \alpha \in S^{\prime}\right\}$, for some maximal subsemigroup S^{\prime} of $O P(n, k)$.

Proof. First, let S be a maximal subsemigroup of $O R(n, k)$ and suppose that $S \neq O R(n, k-1) \cup J_{k}$. Then S must contain an orientation-reversing transformation of rank k and so $S=\bigcup\left\{H_{\alpha}^{\mathcal{O} \mathcal{R}_{n}} \mid \alpha \in S \cap \mathcal{O} \mathcal{P}_{n}\right\}$, by Lemma 2.11. Clearly, $S \cap \mathcal{O} \mathcal{P}_{n}$ is a proper subsemigroup of $O P(n, k)$, whence there exists a maximal subsemigroup S^{\prime} of $O P(n, k)$ such that $S \cap \mathcal{O} \mathcal{P}_{n} \subseteq S^{\prime}$. Then, as in the proof of Lemma 2.11, $\bigcup\left\{H_{\alpha}^{\mathcal{O} \mathcal{R}_{n}} \mid \alpha \in S^{\prime}\right\}$ is a proper subsemigroup of $\operatorname{OR}(n, k)$ and, as it contains S, it follows that $S=\bigcup\left\{H_{\alpha}^{\mathcal{O} \mathcal{R}_{n}} \mid \alpha \in S^{\prime}\right\}$, by the maximality of S.

Conversely, if $S=O R(n, k-1) \cup J_{k}$, then S is a maximal subsemigroup of $O R(n, k)$, by Corollary 2.9. Hence, let us suppose that $S=\bigcup\left\{H_{\alpha}^{\mathcal{O} \mathcal{R}_{n}} \mid \alpha \in S^{\prime}\right\}$, for some maximal subsemigroup S^{\prime} of $O P(n, k)$. Then, by the above observation, S is a proper subsemigroup of $O R(n, k)$. Moreover, S must contain an orientationreversing transformation of rank k. Let \hat{S} be a maximal subsemigroup of $O R(n, k)$ such that $S \subseteq \hat{S}$. Then \hat{S} also contains an orientation-reversing transformation of rank k and so, by Lemma 2.11, $\hat{S}=\bigcup\left\{H_{\alpha}^{\mathcal{O} \mathcal{R}_{n}} \mid \alpha \in \hat{S} \cap \mathcal{O P} \mathcal{P}_{n}\right\}$. On the other hand, $S^{\prime} \subseteq S \cap \mathcal{O} \mathcal{P}_{n} \subseteq \hat{S} \cap \mathcal{O} \mathcal{P}_{n} \subsetneq O P(n, k)$, whence $S^{\prime}=S \cap \mathcal{O} \mathcal{P}_{n}=\hat{S} \cap \mathcal{O} \mathcal{P}_{n}$, by the maximality of S^{\prime}. It follows that $S=\hat{S}$ and thus S is a maximal subsemigroup of $O R(n, k)$, as required.

Acknowledgements. The authors wish to thank the anonymous referees
for many useful comments and suggestions which improved substantially this paper.

References

[1] A. Ja. A ̆̌zens̆tat, Defining relations of the semigroup of endomorphisms of a finite linearly ordered set, Sibirsk. Matem. Z̆urn. 3 (1962), 161-169.
[2] R. E. Arthur and N. Ruškuc, Presentations for two extensions of the monoid of order-preserving mappings on a finite chain, Southeast Asian Bull. Math. 24 (2000), 1-7.
[3] P. A. Bayramov, On the problem of completeness in a symmetric semigroup of finite degree, Diskret. Analiz 8 (1966), 3-27 (in Russian).
[4] P. M. Catarino, Monoids of orientation-preserving transformations of a finite chain and their presentations, Semigroups and Applications, (J. M. Howie and N. Ruškuc, eds.), World Scientific, 1998, 39-46.
[5] P. M. Catarino and P. M. Higgins, The monoid of orientation-preserving mappings on a chain, Semigroup Forum 58 (1999), 190-206.
[6] I. Dimitrova and J. Koppitz, On the maximal subsemigroups of some transformation semigroups, Asian-Eur. J. Math. 1 (2008), 189-202.
[7] I. Dimitrova and J. Koppitz, The maximal subsemigroups of the ideals of some semigroups of partial injections, Discuss. Math. Gen. Algebra Appl. 29 (2009), 153-167.
[8] M. S. Dummit and R. M. Foote, Abstract Algebra, Prentice-Hall, Englewood Clifs, 1991.
[9] V. H. Fernandes, The monoid of all injective order-preserving partial transformations on a finite chain, Semigroup Forum 62 (2001), 178-204.
[10] V. H. Fernandes, G. M. S. Gomes and M. M. Jesus, Congruences on monoids of transformations preserving the orientation on a finite chain, J. Algebra 321 (2009), 743-757.
[11] O. Ganyushkin and V. Mazorchuk, On the structure of $I O_{n}$, Semigroup Forum 66 (2003), 455-483.
[12] G. U. Garba, On the idempotent ranks of certain semigroups of order-preserving transformations, Portugal. Math. 51 (1994), 185-204.
[13] G. M. S. Gomes and J. M. Howie, On the rank of certain semigroups of order-preserving transformations, Semigroup Forum 51 (1992), 275-282.
[14] I. Gyudzhenov and I. Dimitrova, On the maximal subsemigroups of the semigroup of all monotone transformations, Discuss. Math. Gen. Algebra Appl. 26 (2006), 199-217.
[15] J. M. Howie, Products of idempotents in certain semigroups of transformations, Proc. Edinburgh Math. Soc. 17 (1971), 223-236.
[16] J. M. Howie, Fundamentals of Semigroup Theory, Oxford University Press, 1995.
[17] D. McAlister, Semigroups generated by a group and an idempotent, Comm. Algebra 26 (1998), 515-547.
[18] K. Todorov and L. Krac̆olova, On the maximal subsemigroups of the ideals of finite symmetric semigroup, Simon Stevin 59 (1985), 129-140.
[19] H. Yang and X. Yang, Maximal subsemigroups of finite transformation semigroups $K(n, r)$, Acta Math. Sin. (Engl. Ser.) 20 (2004), 475-482.
[20] X. Yang, A classification of maximal subsemigroups of finite order-preserving transformation semigroups, Comm. Algebra 28 (2000), 1503-1513.
[21] X. Yang, Maximal subsemigroups of the finite singular transformation semigroup, Comm. Algebra 29 (2001), 1175-1182.
[22] P. Zhao, X. Bo and Y. Mei, Locally maximal idempotent-generated subsemigroups of singular orientation-preserving transformation semigroups, Semigroup Forum 77 (2008), 187-195.

ILINKA DIMITROVA
FACULTY OF MATHEMATICS AND NATURAL SCIENCE
SOUTH-WEST UNIVERSITY "NEOFIT RILSKI"
2700 BLAGOEVGRAD
BULGARIA
E-mail: ilinka_dimitrova@yahoo.com
VÍTOR H. FERNANDES
DEPARTAMENTO DE MATEMÁTICA
FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA
2829-516 CAPARICA
PORTUGAL
AND
CENTRO DE ÁLGEBRA DA UNIVERSIDADE DE LISBOA
AV. PROF. GAMA PINTO 2
1649-003 LISBOA
PORTUGAL
E-mail: vhf@fct.unl.pt
JÖRG KOPPITZ
INSTITUTE OF MATHEMATICS
UNIVERSITY OF POTSDAM
14469 POTSDAM
GERMANY
E-mail: koppitz@rz.uni-potsdam.de
(Received April 30, 2010; revised September 15, 2011)

[^0]: Mathematics Subject Classification: 20M20.
 Key words and phrases: finite transformation semigroup, orientation-preserving and orienta-tion-reversing transformations, maximal subsemigroups.
 The authors gratefully acknowledge support of FCT, within the project ISFL-1-143 of CAUL. The second author also acknowledges support of the project PTDC/MAT/69514/2006 of FCT

