Common dynamics of two Pisot substitutions with the same incidence matrix

By TAREK SELLAMI (Sfax and Marseille)

Abstract

The matrix of a substitution is not sufficient to completely determine the dynamics associated with it, even in the simplest cases since there are many words with the same abelianization. In this paper we study the common points of the canonical broken lines associated with two different irreducible Pisot unimodular substitutions σ_{1} and σ_{2} having the same incidence matrix. We prove that if 0 is an inner point to the Rauzy fractal associated with the substitution σ_{1} and σ_{1} verifies the Pisot conjecture then these common points can be generated with a substitution on an alphabet of socalled balanced pairs, and we obtain in this way the intersection of the interior of two Rauzy fractals.

1. Introduction

Let σ_{1} and σ_{2} be two different irreducible Pisot substitutions having the same incidence matrix. Although the fixed points of the substitutions have the same letter frequencies, they usually have different properties, e.g., their Rauzy fractals can be very different (The Rauzy fractal is defined by projection of the canonical stepped line, associated with a fixed or periodic point of substitution σ_{i} on the contracting space of the incidence matrix $M_{\sigma_{i}}$, see Section 2 for definition).

A classic example is given by the Tribonacci substitution and the flipped

[^0]Tribonacci substitution, i.e.,

$$
\sigma_{1}:\left\{\begin{array}{l}
a \rightarrow a b \\
b \rightarrow a c \\
c \rightarrow a
\end{array} \quad \text { and } \quad \sigma_{2}:\left\{\begin{array}{l}
a \rightarrow a b \\
b \rightarrow c a \\
c \rightarrow a
\end{array}\right.\right.
$$

The incidence matrix of σ_{1} and σ_{2} is $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$. The dominant eigenvalue satisfies the relation $X^{3}-X^{2}-X-1=0$.

The standard example of a Rauzy fractal is given by the first substitution σ_{1}, it was first studied by RAUZY [17]. It is a topological disc [16], simply connected. It is a well-known fact that the second fractal is not simply connected [21], compare Figure 1.

Figure 1. The Rauzy fractals of σ_{1} and σ_{2}
In [23] Victor Sirvent studies the common point of the broken lines of these two Tribonacci substitutions. He defines a dynamical system associated with the product of the prefix automata associated with each one of these substitutions. He shows its self-similar structure and uses it to study the topological and dynamical properties of its geometric realization in the plane and on the two-dimensional torus. In this case the topological structure of the realized symbolic space is a dendrite. The realized dynamic is a domain exchange map on the dendrite (see Figure 2). In [24], Bernd Sing and Victor Sirvent extend this result and study a sequence of dynamical systems defined on sets \mathcal{F}_{k}, a part from the common dynamics of flipped irreducible Pisot substitutions with the same incidence matrix. This common dynamics \mathcal{F}_{k}, is given through the family
of the product automata $\left(\mathcal{U}_{1} \times \mathcal{U}_{2}\right)(k)$ of the prefix automata associated with the substitution $\left(\sigma_{1}\right)^{k}$ and $\left(\sigma_{2}\right)^{k}$ for $k \geq 1$, with the property $\mathcal{F}_{k} \subset \mathcal{F}_{p}$ if and only if k divides p, see [24]. They study the adic system associated with the substitutions σ_{1} and σ_{2}. Since the adic systems considered here have geometric realizations given by solutions to graph-directed iterated functions systems, Sing and Sirvent study the topological and measure-theoretic properties of the solution of those iterated functions systems which describe the common dynamics. They show that these sets \mathcal{F}_{k} have zero Lebesque measure. They also prove that the closure of the union of all the sets \mathcal{F}_{k} for all $k \geq 1$ is contained in the intersection of the two Rauzy fractals $\mathcal{R}_{\sigma_{1}}$ and $\mathcal{R}_{\sigma_{2}}$ associated with σ_{1} and σ_{2}. See [24, Theorem 1].

Figure 2. Geometric realization of the first common dynamics \mathcal{F}_{1}.

In this paper we study the common dynamics of two unimodular irreducible Pisot substitutions σ_{1} and σ_{2} having the same incidence matrix M.

We first prove that if the origin is an inner point of the Rauzy fractal associated with the substitution σ_{1}, then the intersection has nonempty interior and has a positive measure.

Proposition 1. Let σ_{1} and σ_{2} be two unimodular irreducible Pisot substitution with the same incidence matrix. We denote by $\mathcal{R}_{\sigma_{1}}$ and $\mathcal{R}_{\sigma_{2}}$ their two associated Rauzy fractals. Suppose that 0 is an inner point to $\mathcal{R}_{\sigma_{1}}$, then the intersection of $\mathcal{R}_{\sigma_{1}}$ and $\mathcal{R}_{\sigma_{2}}$ has nonempty interior and has a positive measure.

We study the closure of the intersection of the interior of two Rauzy fractals. This set is obtained by taking the closure of the projection of the common points from the two stepped lines associated with the fixed points of σ_{1} and σ_{2} respectively. We then prove, under the additional assumption that σ_{1} verifies the Pisot conjecture, that these common points from the two stepped lines can be obtained as a fixed point of a new substitution Σ on a different alphabet.

By projecting these common points onto the stable space of the matrix M and taking the closure of this set, we obtain a new Rauzy fractal associated with the substitution Σ. This means that the closure of the intersection of the interior of two Rauzy fractals is again a Rauzy fractal.

The Pisot conjecture states that all substitutive systems associated with unimodular irreducible Pisot substitution have pure discrete spectra. An equivalent definition is that the Rauzy fractal of an unimodular irreducible Pisot substitution generates a lattice tiling of the contractive plane of M_{σ}. It is equivalent to the fact that the associated substitutive dynamical system is measure-theoretically isomorphic to a toral translation. There exists a variety of conditions which imply the Pisot conjecture, we state for unimodular irreducible Pisot substitution a finiteness property analogues to the well-known (F) property in beta-numeration, which is a sufficient condition to get a tiling. In particular, the finiteness property (F) is equivalent to the fact that 0 is an exclusive inner point of the Rauzy fractal. Notice that an exclusive inner point to a Rauzy fractal is a point from one subtile which does not belong to any other tile from the multiple tiling (for more details see [21, chapter 4]).

Definition 1.1. We say that a set is substitutive if it is the closure of the projection of the vertices of a stepped line associated with a substitution Σ on a contracting space of the incidence matrix of Σ.

Remark 1.1. A substitutive set can be expressed as the attractor of some directed iterated functional system (GIFS).

The main result of this paper is the following:
Theorem 1.1. Let σ_{1} and σ_{2} be two unimodular irreducible Pisot substitutions with the same incidence matrix. Let $\mathcal{R}_{\sigma_{1}}$ and $\mathcal{R}_{\sigma_{2}}$ be the two associated Rauzy fractals; suppose that 0 is an inner point of $\mathcal{R}_{\sigma_{1}}$. Then the closure of the intersection of the interiors of $\mathcal{R}_{\sigma_{1}}$ and $\mathcal{R}_{\sigma_{2}}$ has non-empty interior, and it is a substitutive set. There is a terminating algorithm to obtain the substitution for the intersection.

Remark 1.2. The fact that 0 is an inner point to the Rauzy fractal implies the-at the substitution satisfies the Pisot conjecture, see [21].

In Section 2, we introduce the notations that we will use in the sequel. We explain the projection method to obtain the Rauzy fractal associated with an unimodular Pisot substitution. In section 3 we recall some important properties of Rauzy fractals. A Rauzy fractal is the closure of its interior in all cases. Using
a theorem of Lagarias and Wang, Sirvent and Wang prove in [25] that the Rauzy fractal is the closure of its interior in the irreducible case. Ei, Ito and RaO extend this result to the reducible case [11]. In Section 4, we prove at first that if the origin is an inner point to the Rauzy fractal of σ_{1}, then the intersection of the interior of the two associated Rauzy fractals is nonempty and has positive measure. We then generalize the result of Sirvent and Sing and we characterize the common dynamics of two Rauzy fractals with the same incidence matrix. We obtain a method to characterize all the common points of two stepped lines associated with σ_{1} and σ_{2} respectively. We prove that if σ_{1} satisfies the Pisot conjecture, then the closure of the intersection of the interior of the two Rauzy fractals associated with σ_{1} and σ_{2} is a Rauzy fractal. We define an algorithm to obtain the substitution associated with the common points. In Section 5 we give a few examples and make some remarks.

2. Substitutions and Rauzy fractals

2.1. General setting. Let $\mathcal{A}:=\left\{a_{1}, \ldots, a_{d}\right\}$ be a finite set of cardinality d called alphabet. The free monoid \mathcal{A}^{*} on the alphabet \mathcal{A} with empty word ε is defined as the set of finite words on the alphabet \mathcal{A}, that is $\mathcal{A}^{*}:=\bigcup_{k \in \mathbb{N}} \mathcal{A}^{k}$, endowed with the concatenation as binary operation. We denote by $\mathcal{A}^{\mathbb{N}}$ the set of infinite sequence on \mathcal{A}. The topology of $\mathcal{A}^{\mathbb{N}}$ is the product topology of discrete topology on each copy of \mathcal{A}.

The length of a word $w \in \mathcal{A}^{n}$ with $n \in \mathbb{N}$ is defined as $|w|=n$. For any letter $a \in \mathcal{A}$, we define the number of occurrences of a in $w=w_{1} w_{2} \ldots w_{n-1} w_{n}$ by $|w|_{a}=\sharp\left\{i \mid w_{i}=a\right\}$.

Let $l: \mathcal{A}^{*} \rightarrow \mathbb{Z}^{d}: w \mapsto\left(|w|_{a}\right)_{a \in \mathcal{A}} \in \mathbb{Z}^{d}$ be the natural homomorphism obtained by abelianization of the free monoid, called the abelianization map.

A substitution over the alphabet \mathcal{A} is an endomorphism of the free monoid \mathcal{A}^{*} such that the image of each letter of \mathcal{A} is a nonempty word.
A substitution σ is primitive if there exists an integer k such that, for each pair $(a, b) \in \mathcal{A}^{2},\left|\sigma^{k}(a)\right|_{b}>0$. We will always suppose that the substitution is primitive, this implies that for all letter $j \in \mathcal{A}$ the length of the successive iterations $\sigma^{k}(j)$ tends to infinity.

A substitution σ naturally extends to the set $\mathcal{A}^{\mathbb{N}}$ of infinite sequences by setting

$$
\sigma\left(u_{0} u_{1} u_{2} \ldots\right)=\sigma\left(u_{0}\right) \sigma\left(u_{1}\right) \sigma\left(u_{2}\right) \ldots
$$

We associate to every substitution σ its incidence matrix M which is the $d \times d$ matrix obtained by abelianization, i.e. $M_{i, j}=|\sigma(j)|_{i}$. We have that $l(\sigma(w))=$ $M l(w)$ for all $w \in \mathcal{A}^{*}$.

Remark 2.1. The incidence matrix of a primitive substitution is a primitive matrix, so by the Perron-Frobenius theorem, it has a simple real positive dominant eigenvalue β.

2.2. Rauzy fractals.

Definition 2.1. A Pisot number is an algebraic integer $\beta>1$ such that each Galois conjugate $\beta^{(i)}$ of β satisfies $\left|\beta^{(i)}\right|<1$.

We say that σ is an irreducible Pisot substitution if there exists one eigenvalue of M which is strictly greater than 1 and all other eigenvalues are strictly less than 1 in modulus. An equivalent definition is that the largest eigenvalue is a Pisot number, and the characteristic polynomial is irreducible. A substitution is unimodular if the determinant of its incidence matrix equals ± 1.

One can prove that any irreducible Pisot substitution is a primitive substitution (see [14]).

Remark 2.2. Note that there exist substitutions whose largest eigenvalue is Pisot but whose incidence matrix has eigenvalues that are not conjugate to the dominant eigenvalue. An example is $1 \rightarrow 12,2 \rightarrow 3,3 \rightarrow 4,4 \rightarrow 5,5 \rightarrow 1$. The characteristic polynomial is reducible. Such substitutions are called Pisot reducible.

Definition 2.2. Let σ be a substitution and $u \in \mathcal{A}^{\mathbb{N}}, u$ is a fixed point of σ if $\sigma(u)=u$. The infinite word u is a periodic point of σ if there exists $k \in \mathbb{N}$ such that $\sigma^{k}(u)=u$.

Let σ be a primitive substitution, then there exists a finite number of periodic points (see [9]). We associate to any periodic point u of the substitution a symbolic dynamical system $\left(\Omega_{u}, S\right)$ where S is the shift map on $\mathcal{A}^{\mathbb{N}}$ given by $S\left(a_{0} a_{1} \ldots\right)=$ $a_{1} a_{2} \ldots$ and Ω_{u} is the closure of $\left\{S^{m}(u): m \geq 0\right\}$ in $\mathcal{A}^{\mathbb{N}}$.

Remark 2.3. If σ is a primitive substitution then the symbolic dynamical system $\left(\Omega_{u}, S\right)$ does not depend on u; we denote it by $\left(\Omega_{\sigma}, S\right)$.

In the word of substitutions, geometrical objects appeared in 1982 in the work of RAUZY [17]. The motivation of Rauzy was to build a domain exchange in \mathbb{R}^{2} that generalizes the theory of interval exchange transformations. Thurston [22]

Common dynamics of two Pisot substitutions with the same incidence matrix
introduced the same geometrical object in the context of numeration systems in non-integer bases.

To build a Rauzy fractal we restrict to the case of a unit Pisot substitution. We will use the projection method to obtain the Rauzy fractal.

Definition 2.3. A stepped line $L=\left(x_{n}\right)$ in \mathbb{R}^{d} is a sequence (it could be finite or infinite) of points in \mathbb{R}^{d} such that $x_{n+1}-x_{n}$ belongs to a finite set.
A canonical stepped line is a stepped line such that $x_{0}=0$ and for all $n \geq 0$, $x_{n+1}-x_{n}$ belongs to the canonical basis of \mathbb{R}^{d}.

Using the abelianization map, to any finite or infinite word W, we can associate a canonical stepped line in \mathbb{R}^{d} as the sequence $\left(l\left(V_{n}\right)\right)$, where V_{n} are the prefixes of length n of W.

We introduce a suitable decomposition of the space. We denote m the algebraic degree of the Pisot number β; one has $m \leq d$, since the characteristic polynomial of M may be reducible. We denote E_{s}, the beta-contracting space of the matrix M generated by the eigenspaces associated to the beta-conjugates. Let E_{u} be the beta-expanding line of M, i.e., the real line generated by the beta-eigenvector u_{β}. Let E_{n} be the invariant space of M that satisfies $\mathbb{R}^{d}=E_{s} \oplus E_{u} \oplus E_{n}$. It is trivial if and only if the substitution is irreducible.

Let $\pi_{s}: \mathbb{R}^{d} \rightarrow E_{s}$ be the linear projection on the contracting space, along $E_{u} \oplus E_{n}$, according to the natural decomposition $\mathbb{R}^{d}=E_{s} \oplus E_{u} \oplus E_{n}$.
2.3. Definition of the Rauzy fractal. An interesting property of the canonical stepped line associated with a periodic point of irreducible Pisot substitution is that it remains within bounded distance from the expanding direction given by the right Perron-Frobenius eigenvector of M. In the reducible case, the discrete line may have other expanding directions, but the projection of the discrete line by π_{s} still provides a bounded set; for more details we refer to [11].

Definition 2.4. Let σ be a primitive unimodular Pisot substitution with dominant eigenvalue β. The Rauzy fractal of σ is the closure of the projection of the vertices of the canonical stepped line associated with any periodic point $u=\left(u_{k}\right)_{k \in \mathbb{N}}$ of σ on the beta-contracting space E_{s}, i.e.,

$$
\mathcal{R}_{\sigma}:=\overline{\left\{\pi_{s}\left(l\left(u_{0} \ldots u_{k-1}\right)\right), k \in \mathbb{N}\right\}} .
$$

For each $i \in \mathcal{A}$ the subtiles of the central tile \mathcal{R}_{σ} are naturally defined, depending on the letter associated with the vertex of the stepped line that is projected. On these sets, for $i \in \mathcal{A}$:

$$
\mathcal{R}_{\sigma}(i):=\overline{\left\{\pi_{s}\left(l\left(u_{0} \ldots u_{k-1}\right), k \in \mathbb{N}, u_{k}=i\right\}\right.}
$$

Remark 2.4. It follows from the primitivity of the substitution σ that the definition of \mathcal{R}_{σ} and $\mathcal{R}_{\sigma}(i)(i \in \mathcal{A})$ does not depend on the choice of the periodic point $u \in \mathcal{A}^{\mathbb{N}}$ see [2].

We define the subgroup L of \mathbb{Z}^{d} as:

$$
L=\left\{\sum_{i=1}^{d} n_{i} e_{i}: \sum_{i=1}^{d} n_{i}=0, n_{i} \in \mathbb{Z}\right\}
$$

Let Γ be the projection of L on the stable space, i.e., $\Gamma=\pi_{s}(L)$. In the irreducible case, the translation by Γ of the Rauzy fractal covers the stable space. Hence the Rauzy fractal has positive measure. The projection from the orbit of the periodic point to the Rauzy fractal extends by continuity to all of Ω_{u}; if we take the quotient by Γ, this projection gives a semi conjugacy between $\left(\Omega_{u}, S\right)$ and the translation by $\pi_{s}\left(e_{i}\right)$ on $\mathcal{R}_{\sigma} / \Gamma$, where e_{i} is any vector in the canonical base.

Figure 3. The projection method to get the Rauzy fractal.

3. Properties of Rauzy fractals

The objective of this section is to recall some results about Rauzy fractals associated with Pisot substitutions. An important property of a Rauzy fractal is that it is the closure of its interior. In [25] V. Sirvent and Y. Wang prove in the irreducible case that the Rauzy fractal has positive Lebesque measure [25, Proposition 2.8] and it is the closure of its interior. In the reducible case

Common dynamics of two Pisot substitutions with the same incidence matrix
H. Ei, S. Ito and H. Rao, prove in [11] that the Rauzy fractal associated to a reducible Pisot substitution is non empty, it is the closure of its interior and $\partial \mathcal{R}_{\sigma}(i)$ has Lebesgue measure 0 , where $\partial \mathcal{R}_{\sigma}(i)$ denotes the boundary of $\mathcal{R}_{\sigma}(i)$ see [11, Theorem 1.6].

In both cases, the authors use a theorem of Jeffrey C. Lagarias and Yang Wang, proved in their paper Substitution Delone Sets [13]. For the sake of completeness, we briefly recall the setting of their paper.

Substitution Delone set families are families of Delone sets $\chi=\left(X_{1}, \ldots, X_{d}\right)$ which satisfy the inflation functional equation.

Inflation functional equation. The family $\left(X_{1}, \ldots, X_{d}\right), X_{i} \subset \mathbb{R}^{d}$, satisfy the system of equations

$$
X_{i}=\bigvee_{j=1}^{d}\left(A\left(X_{j}\right)+\mathcal{D}_{i j}\right), \quad 1 \leq i \leq d
$$

Where A is an expanding matrix, i.e. all of the eigenvalues of A fall outside the unit circle. The $\mathcal{D}_{i j}$ are finite sets of vectors in \mathbb{R}^{d} and \bigvee denotes union that counts multiplicity. In [13], Lagarias and Wang characterizes families $\chi=\left(X_{1}, \ldots, X_{d}\right)$ that satisfy an inflation functional equation, in which X_{i} is a multiset whose underlying set is discrete. Then they study the inflation functional equation for such solution χ to exist.

The subdivision matrix associated is $B=\left[\sharp \mathcal{D}_{j i}\right]_{1 \leq i, j \leq d}$, where $\sharp \mathcal{D}_{j i}$ denotes the cardinality. Let us denote by $\rho(B)$ the modulus of the maximal eigenvalue of B. A multiset X is weakly uniformly discrete if there is a positive radius r and a finite constant $m \geq 1$ such that each ball of radius r contains at most m point of X, counting multiplicities.

A necessary condition for the inflation functional equation with primitive subdivision matrix to have a solution $\chi=\left(X_{1}, \ldots, X_{n}\right)$ with some X_{i} weakly uniformly discrete is that

$$
\rho(B) \leq|\operatorname{det} A| .
$$

Multi-tile functional equation. The family of compact set $\left(\mathcal{R}_{1}, \ldots, \mathcal{R}_{d}\right)$ satisfy the system of equations

$$
A\left(\mathcal{R}_{i}\right)=\bigcup_{j=1}^{d}\left(\mathcal{R}_{j}+\mathcal{D}_{j i}\right)
$$

A necessary condition for the multi-tile functional equation with primitive subdivision matrix to have $\tau=\left(\mathcal{R}_{1}, \ldots, \mathcal{R}_{d}\right)$ with some T_{i} with positive Lebesgue measure is that

$$
\rho(B) \geq|\operatorname{det} A| .
$$

The following theorem is a partial result of Theorem 5.1 in [13]
Theorem 3.1. Consider an inflation functional equation that has a primitive subdivision matrix B^{T} such that

$$
\rho(B)=|\operatorname{det} A|
$$

If there exist a family of Delone sets $\left(X_{1}, \ldots, X_{d}\right)$ which is solution of the inflation function equation, then
(i) the unique compact solution $\left(\mathcal{R}_{1}, \ldots, \mathcal{R}_{d}\right)$ of the multi-tile functional equation consists of sets \mathcal{R}_{i} that have positive Lebesque measure, $1 \leq i \leq d$.
(ii) $\mathcal{R}_{i}=\overline{\mathcal{R}_{i}^{\circ}}$ and $\partial \mathcal{R}_{i}$ has Lebesque measure 0 .

Sirvent and Wang in [25], prove that the Rauzy fractal \mathcal{R} associated to a fixed point of primitive, unimodular and irreducible Pisot substitution has nonempty interior and it is the closure of its interior. They use in their proof a construction of Rauzy fractal using valuation see [25]. They write the decomposition of the Rauzy fractal with its subtiles $\left(\mathcal{R}_{1}, \ldots, \mathcal{R}_{d}\right)$, which is the attractor of the strongly connected graph directed IFS. They apply the theorem of Lagarias and Wang, they verify that a Rauzy fractal verifies a multi-tile functional equation, with

$$
\mathcal{D}_{i j}:=\left\{B^{-1}\left(\Delta\left([\pi(j)]_{k-1}\right)\right):(i, j) \in F_{i}\right\} .
$$

Where $\Delta(U)=\left[E_{1}(U), \ldots, E_{r}(U)\right]$ with E_{i} is the valuation map $E_{i}: \mathcal{A}^{*} \rightarrow \mathbb{C}$ having the property $E(U V)=E(U)+E(V)$ and $E(\sigma(U))=w E(U)$, with w is a constant. It is shown in Holton and Zamboni [12] that in the valuation the constant w must be an eigenvalue of the incidence matrix M, and there exists an w-eigenvector $v=\left[v_{1}, \ldots, v_{n}\right]^{T}$ such that $E(U)=\sum_{i=1}^{n}|U|_{i} v_{i}$ for all $U \in \mathcal{A}^{*}$ (for more detail see [25]). They prove that all $\mathcal{D}_{i j}^{m}$ are ϵ_{0}-separated.

In the reducible case, Ei, Ito and Rao apply the theorem of Lagarias and Wang to subtiles of Rauzy fractals, using a construction with stepped surfaces and dual substitutions. A natural decomposition of the image of letter can be seen as prefix-suffix decomposition, this means $\sigma(i)$ can be written as $\sigma(i)=P_{k}^{(i)} W_{k}^{(i)} S_{k}^{(i)}$, where $P_{k}^{(i)}$ and $S_{k}^{(i)}$ are prefix and suffix of $\sigma(i)$. Then we obtain the following theorem:

Theorem 3.2. Let σ be an unimodular Pisot substitution and M its incidence matrix. Then the subtiles $\left\{\mathcal{R}_{i}\right\}_{i=1}^{d}$ are compact and satisfy the following set equations

$$
M^{-1} \mathcal{R}_{i}=\left(\bigcup_{j=1}^{d} \bigcup_{W_{k}^{(j)}=i} \mathcal{R}_{j}+M^{-1} \pi_{s}\left(f\left(P_{k}^{(j)}\right)\right)\right)
$$

Common dynamics of two Pisot substitutions with the same incidence matrix
The action of M^{-1} on the stable space E_{s} is a linear map, and hence it is equivalent to a $(m-1) \times(m-1)$ real matrix, with m is the degree of the Pisot number (we are in the reducible case). We denote this matrix by A. Since M is an unimodular Pisot matrix, we have that A is expanding and $|\operatorname{det} A|=\lambda$ is the Perron-Frobenius eigenvalue of M. Ei, Ito and Rao define

$$
\mathcal{D}_{j i}:=\left\{M^{-1} \pi_{s}\left(f\left(P_{k}^{(j)}\right)\right\}, \quad 1 \leq i, j \leq d\right.
$$

where π_{s} is the linear projection in the contracting plane E_{s}, along $E_{u} \oplus E_{n}$. The set $\mathcal{D}_{j i}$ are completely determined by the substitution σ. Then $\mathcal{R}_{1}, \ldots, \mathcal{R}_{d}$ are the unique invariant set of the multi-tile functional equation. With stepped surfaces, authors define in [11] a family $\left\{X_{1}, \ldots, X_{d}\right\}$ as solution of the inflation functional equation, for more details see [11]. By the theorem of Lagarias and Wang we obtain immediately the following theorem in the case of unimodular Pisot substitution:

Theorem 3.3. Let σ be an unimodular Pisot substitution (reducible or irreducible), then
(i) The interiors of the subtiles \mathcal{R}_{i} are not empty.
(ii) $\mathcal{R}_{i}=\overline{\mathcal{R}_{i}^{\circ}}$ and ∂R_{i} has Lebesgue measure 0 .

4. Intersection of Rauzy fractals

Let σ_{1} and σ_{2} be two unimodular irreducible Pisot substitutions with the same incidence matrix. We consider their respective Rauzy fractals $\mathcal{R}_{\sigma_{1}}$ and $\mathcal{R}_{\sigma_{2}}$. The intersection of $\mathcal{R}_{\sigma_{1}}$ and $\mathcal{R}_{\sigma_{2}}$ is non-empty since it contains 0 , and it is a compact set as intersection of two compacts sets.

Proposition 2. Let σ_{1} and σ_{2} be two substitutions with the same incidence matrix. We consider $\mathcal{R}_{\sigma_{1}}$ (resp. $\mathcal{R}_{\sigma_{2}}$) the Rauzy fractal associated with σ_{1} (resp. $\left.\sigma_{2}\right)$. Then the boundary of the intersection of $\mathcal{R}_{\sigma_{1}}$ and $\mathcal{R}_{\sigma_{2}}$ is included in the union of the boundaries of $\mathcal{R}_{\sigma_{1}}$ and $\mathcal{R}_{\sigma_{2}}$ and has zero measure.

Proof. Trivial.
4.1. Intersection and positive measure. We suppose that 0 is an inner point to $\mathcal{R}_{\sigma_{1}}$. We note \mathcal{E} the closure of the intersection of the interior of $\mathcal{R}_{\sigma_{1}}$ and the interior of $\mathcal{R}_{\sigma_{2}}$.

Figure 4. Sets of common points of the Rauzy fractals of Tribonacci and the flipped Tribonacci substitutions.

Proposition 3. Let σ_{1} and σ_{2} be two unimodular irreducible Pisot substitution with the same incidence matrix. We consider $\mathcal{R}_{\sigma_{1}}$ and $\mathcal{R}_{\sigma_{2}}$ their associated Rauzy fractal. We suppose that 0 is an inner point to $\mathcal{R}_{\sigma_{1}}$. Then the set \mathcal{E} has non-empty interior and strictly positive Lebesgue measure.

Proof. Because 0 is an inner point of $\mathcal{R}_{\sigma_{1}}$. Then there exists an open set U such that $0 \in U \subset \mathcal{R}_{1}$. The Rauzy fractal is the closure of its interior [21] and 0 is a point of $\mathcal{R}_{\sigma_{2}}$, hence there exists a sequence of points $\left(x_{n}\right)_{n \in \mathbb{N}}$ from the interior of $\mathcal{R}_{\sigma_{2}}$ that converges to 0 . Thus there exist open sets V_{n} such that $x_{n} \in V_{n} \subset \mathcal{R}_{\sigma_{2}}$. Since $\left(x_{n}\right)$ converges to 0 , there exists $N \in \mathbb{N}$ such that $x_{N} \in U$. The open set $U \cap V_{N}$ is non-empty and $U \cap V_{N} \subset \mathcal{R}_{\sigma_{1}} \cap \mathcal{R}_{\sigma_{2}}$. This implies that \mathcal{E} contains a non-empty open set, hence it has strictly positive Lebesgue measure.
4.2. The main result: Morphism generating the common points of two Pisot substitutions with the same incidence matrix. Let σ_{1} and σ_{2} be two unimodular irreducible Pisot substitution with the same incidence matrix. We consider $\mathcal{R}_{\sigma_{1}}$ and $\mathcal{R}_{\sigma_{2}}$ their two associated Rauzy fractal. We suppose that σ_{1} satisfies the Pisot conjecture, and 0 is an inner point to $\mathcal{R}_{\sigma_{1}}$. We denote by \mathcal{E} the closure of the intersection of the interior of $\mathcal{R}_{\sigma_{1}}$ and $\mathcal{R}_{\sigma_{2}}$.

Let $\left(\Omega_{\sigma_{1}}, S\right)$ (resp. $\left(\Omega_{\sigma_{2}}, S\right)$) be the symbolic dynamical systems associated with σ_{1} (resp. σ_{2}). The projection of the stepped line associated with a fixed point of an unimodular irreducible substitution, can be seen as a map from the orbit $\left\{S^{n}(u)\right\}$ of the fixed point to the Rauzy fractal. This map can be extended
by continuity to a map $\pi: \Omega_{u} \rightarrow \mathcal{R}$. We consider π_{1} (resp. π_{2}) the resulting map from the symbolic dynamical system $\left(\Omega_{\sigma_{1}}, S\right)$ (resp. $\left(\Omega_{\sigma_{2}}, S\right)$) onto the Rauzy fractal $\mathcal{R}_{\sigma_{1}}\left(\right.$ resp. $\left.\mathcal{R}_{\sigma_{2}}\right)$.

In this section we will prove that \mathcal{E} can be generated by a substitution which is obtained via an algorithm that generates the common point of the interior of $\mathcal{R}_{\sigma_{1}}$ and $\mathcal{R}_{\sigma_{2}}$.

Definition 4.1. For a dynamical system (X, T) if A is a subset of X, and $x \in A$, we define the first return time of x as $n_{x}=\inf \left\{n \in \mathbb{N}^{*} \mid T^{n}(x) \in A\right\}$ (it is infinite if the orbit of x does not come back to A). We define the induced map of T on A (or first return map) as the map $x \mapsto T^{n_{x}}(x)$ if the first return time is finite, otherwise it is not defined. We denote this map by T_{A}.

Definition 4.2. A sequence $u=\left(u_{n}\right)$ is minimal (or uniformly recurrent) if every word occurring in u occurs in an infinite number of positions with bounded gaps, that is, if for every factor W, there exists s such that for every n, W is a factor of $u_{n} \ldots u_{n+s-1}$.

Lemma 4.1. Let σ be an irreducible Pisot substitution, and \mathcal{R}_{σ} its associated Rauzy fractal. If σ satisfies the Pisot conjecture, then \mathcal{R}_{σ} is a fundamental domain of E_{s} for the projection of Γ on the stable space up to a set of measure zero.

Proof. The proof is given in [21, chapter 4].
Lemma 4.2. Suppose that σ_{1} verifies the Pisot conjecture and 0 is an inner point to its associated Rauzy fractal. Let W be a non-empty open set in \mathcal{E}, define $V_{1}:=\pi_{1}^{-1}(W) \subset \Omega_{\sigma_{1}}$ and $V_{2}:=\pi_{2}^{-1}(W) \subset \Omega_{\sigma_{2}}$. For any $y \in W$, such that $y=\pi_{1}\left(v_{1}\right)=\pi_{2}\left(v_{2}\right)$, any return time of v_{2} to V_{2} is a return time of v_{1} to V_{1}.

Proof. We consider $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$ such that $\pi_{1}\left(v_{1}\right)=\pi_{2}\left(v_{2}\right)$. Let n be a return time of v_{2}. By definition, $\pi_{1}\left(S^{n} v_{1}\right)=\pi_{1}\left(v_{1}\right)-\pi_{s}\left(l\left(P_{n}\right)\right)$ where P_{n} is the prefix of length n of v_{1}. Similarly, we have $\pi_{2}\left(S^{n} v_{2}\right)=\pi_{2}\left(v_{2}\right)-\pi_{s}\left(l\left(P_{n}^{\prime}\right)\right)$, where P_{n}^{\prime} is the prefix of length n of v_{2}. Hence $\pi_{1}\left(S^{n} v_{1}\right)=\pi_{2}\left(S^{n} v_{2}\right)+\pi_{s}\left[l\left(P_{n}^{\prime}\right)-l\left(P_{n}\right)\right]$. This means that there exists $\gamma \in \Gamma$ such that $\pi_{1}\left(S^{n} v_{1}\right)=\pi_{2}\left(S^{n} v_{2}\right)+\pi_{s}(\gamma)$.

By hypothesis $S^{n} v_{2} \in V_{2}$ and $\pi_{2}\left(S^{n} v_{2}\right)$ is an inner point of \mathcal{E}. This implies that $\pi_{2}\left(S^{n} v_{2}\right)$ is an inner point of $\mathcal{R}_{\sigma_{1}}$. Since $\pi_{1}\left(S^{n} v_{1}\right) \in \mathcal{R}_{\sigma_{1}}$, and by hypothesis $\mathcal{R}_{\sigma_{1}}$ is a fundamental domain, this means that the interior of $\mathcal{R}_{\sigma_{1}}$ cannot meet $\mathcal{R}_{\sigma_{1}}+\pi_{s}(\gamma)$ where $\gamma \in \Gamma$, unless $\pi_{s}(\gamma)=0$. So we have $\pi_{1}\left(S^{n} v_{1}\right)=\pi_{2}\left(S^{n} v_{2}\right)$. Hence if n is a first return time to V_{2}, it is a return time to V_{1}.

Definition 4.3. Let U and V be two finite words, we say that $\binom{U}{V}$ is balanced pair if $l(U)=l(V)$, where l is the abelianization map from \mathcal{A}^{*} in \mathbb{Z}^{d}.

Definition 4.4. A minimal balanced pair is a balanced pair, such that for every strict prefix U_{k}, V_{k} of U and V, respectively, of length $k, l\left(U_{k}\right) \neq l\left(V_{k}\right)$.

Lemma 4.3. Let σ_{1} and σ_{2} be two unimodular irreducible Pisot substitutions with the same incidence matrix. Let $\mathcal{R}_{\sigma_{1}}$ and $\mathcal{R}_{\sigma_{2}}$ be their two associated Rauzy fractals; suppose that σ_{1} satisfies the Pisot conjecture and 0 is an inner point of $\mathcal{R}_{\sigma_{1}}$. Let u and v be two fixed points of σ_{1} and σ_{2} respectively. There exists a finite set E of minimal balanced pairs, $E=\left\{\binom{U_{1}}{V_{1}}, \ldots,\binom{U_{p}}{V_{p}}\right\}$, such that the double sequence $\binom{u}{v}$ can be decomposed with elements from E.

Proof. By definition, $\pi_{1}(u)=\pi_{2}(v)=0$. We consider the open set $\pi_{2}^{-1}(\mathcal{E}) \in$ $\Omega_{\sigma_{2}}$. Since ($\Omega_{\sigma_{2}}, S$) is a minimal system any point has a return time to $\pi_{2}^{-1}(\mathcal{E})$. There is a constant which bounds the return time of any point to $\pi_{2}^{-1}(\mathcal{E})$.

Let n_{1} be the first return time, From Lemma 4.2, n_{1} is a return time of u to $\pi_{1}^{-1}(\mathcal{E})$, which implies that $S^{n_{1}}(u) \in \pi_{1}^{-1}(\mathcal{E})$. We obtain two prefixes U and V of u and v respectively such that $l(U)=l(V)$. We obtain a first balanced pair $\binom{U}{V}$.

The same argument show that there is an infinite sequence of common return time to the intersection and the difference between two consecutive return time to the intersection is bounded. Hence the double sequence $\binom{u}{v}$ can be decomposed in minimal balanced pairs of bounded length.

We can decompose the first balanced pair $\binom{U}{V}$ into minimal balanced pairs. U and V have bounded length, then the minimal balanced pairs obtained after decomposition are finite and have bounded length.
Consider the image of each of these minimal pairs by σ_{1} and σ_{2}. Each minimal balanced pair will appear, we consider the image of each new minimal balanced pair by σ_{1} and σ_{2} and iterate. All the minimal balanced pairs will appear after bounded finite time.

Theorem 4.4. Let σ_{1} and σ_{2} be two unimodular irreducible Pisot substitutions with the same incidence matrix. Let $\mathcal{R}_{\sigma_{1}}$ and $\mathcal{R}_{\sigma_{2}}$ be their two associated Rauzy fractals; suppose that 0 is an inner point of $\mathcal{R}_{\sigma_{1}}$. We denote by \mathcal{E} the closure of the intersection of the interiors of $\mathcal{R}_{\sigma_{1}}$ and $\mathcal{R}_{\sigma_{2}}$. Then \mathcal{E} has non-empty interior, and it is a substitutive set associated to a Pisot substitution Σ on the alphabet of minimal balanced pairs.

Proof. Let us prove now that these common points can be obtained as the projection of a fixed point of a new substitution defined on the set of the minimal balanced pairs. We give an algorithm to obtain this morphism. From Proposition 4.3, there exist two finite words W_{1} and W_{2} being prefixes of u and v respectively, such that $l\left(W_{1}\right)=l\left(W_{2}\right)$. We can decompose the balanced
pair $\binom{W_{1}}{W_{2}}$ into minimal balanced pairs. Let $\binom{v_{1}}{v_{2}}$ be the first minimal balanced pair. Then, $\binom{\sigma_{1}\left(v_{1}\right)}{\sigma_{2}\left(v_{2}\right)}$ is a balanced pair because σ_{1} and σ_{2} have the same matrix. We consider the decomposition of this balanced pair $\binom{\sigma_{1}\left(v_{1}\right)}{\sigma_{2}\left(v_{2}\right)}$ into minimal balanced pairs. This means that we can write $\binom{\sigma_{1}\left(v_{1}\right)}{\sigma_{2}\left(v_{2}\right)}=\binom{u_{1} \ldots u_{k}}{w_{1} \ldots w_{k}}$ where $l\left(u_{1}\right)=l\left(w_{1}\right), \ldots, l\left(u_{k}\right)=l\left(w_{k}\right)$.

Since the set of common return times is bounded, by iteration with σ_{1} and σ_{2} we obtain in bounded finite time the set of all minimal balanced pairs. We can define the substitution Σ over the finite set of minimal balanced pairs:

$$
\Sigma:\binom{U}{V} \longmapsto\binom{\sigma_{1}(U)}{\sigma_{2}(V)}
$$

The set \mathcal{E} is obtained as the closure of the projection of the stepped line associated with the fixed point of Σ on the stable space associated with the initial substitution σ_{1}. The interior is clearly substitutive with respect to the substitution Σ.

Lemma 4.5. The substitution Σ is a Pisot substitution.

Proof. Let λ be the Perron Frobenius eigenvalue of the incidence matrix of σ_{1}. Let u and v be the two fixed points of σ_{1} and σ_{2} respectively. We consider the double sequence $\binom{u}{v}$, the fixed point of Σ which begin with A.

We can define two lengths for a prefix of the double sequence $\binom{u}{v}$. One associated to the alphabet E of minimal balanced pair, we denote it $|\cdot|_{E}$. The second one, we can see the double sequence $\binom{u}{v}$ as a sequence on the initial alphabet of the substitution σ_{1} and $\sigma_{2}, \mathcal{A} \times \mathcal{A}$ we denote it $|\cdot|_{\mathcal{A}}$.

Let N be the maximal length of balanced pairs, and $c=\frac{1}{N}$, we obtain

$$
c\left|\Sigma^{n}(A)\right|_{\mathcal{A}} \leq\left|\Sigma^{n}(A)\right|_{E} \leq\left|\Sigma^{n}(A)\right|_{\mathcal{A}}
$$

The length of $\left|\Sigma^{n}(A)\right|_{\mathcal{A}}$ has an exponential growth, taking the logarithm we obtain

$$
\frac{\ln C}{n}+\frac{\ln \left|\Sigma^{n}(A)\right|_{\mathcal{A}}}{n} \leq \frac{\ln \left|\Sigma^{n}(A)\right|_{E}}{n} \leq \frac{\left|\Sigma^{n}(A)\right|_{\mathcal{A}}}{n}
$$

We consider the projection of the minimal balanced pair A on its first coordinate, we obtain $A=\binom{a_{1}}{a_{2}}$. We know that $\left|\Sigma^{n}(A)\right|_{\mathcal{A}}=\left|\sigma_{1}^{n}\left(a_{1}\right)\right|=\left|\sigma_{2}^{n}\left(a_{2}\right)\right|$ and $\left|\sigma_{1}^{n}\left(a_{1}\right)\right|$ grows with λ^{n}. We take the limit when $n \rightarrow+\infty$, we deduce

$$
\lim _{n \rightarrow \infty} \frac{\ln \left|\Sigma^{n}(a)\right|_{E}}{n}=\lambda
$$

where λ is the Perron Frobenius eigenvalue of the incidence matrix of σ_{1}. We conclude that Σ is a Pisot substitution. We remark that Σ is reducible in almost cases.

5. Examples

5.1. Algorithm defining the intersection of two Rauzy fractals. We can deduce an effective algorithm to obtain the substitution Σ of the common points of the two substitutions σ_{1} and σ_{2} with the same incidence matrix. The substitution Σ is defined over the alphabet of minimal balanced pairs. At first we take the fixed points u and v of each substitutions σ_{1} and σ_{2}. There is always a power σ_{i}^{k} and at least one symbol $a \in \mathcal{A}$ such that $\sigma_{i}^{k}(a)$ starts with a. This means there is a power σ_{i}^{k} with at least one fixed point.

Let $\binom{U}{V}$ be the first minimal balanced pair. In the case where the fixed points u and v begin with the same letter a, we obtain the first minimal pair $\binom{a}{a}$. We iterate this first minimal balanced pair with the two substitutions σ_{1} and σ_{2}, this means that $\binom{U}{V} \rightarrow\binom{\sigma_{1}(U)}{\sigma_{2}(V)}$. The substitutions σ_{1} and σ_{2} have the same incidence matrix, then the pair $\binom{\sigma_{1}(a)}{\sigma_{2}(a)}$ is a balanced pair. We can decompose this new balanced pair with minimal balanced pairs. If we obtain a new minimal balanced pair we iterate it with the same procedure. And we continue this until obtaining all minimal balanced pairs. The set of minimal balanced pairs is finite and bounded, and we obtain all minimal balanced pairs after a finite time which depend on the return times of the minimal balanced pairs.

We associate to each minimal balanced pair a capital letter. We take the image of each element of the finite set of minimal balanced pairs. The substitution Σ is defined as $\Sigma:\binom{U}{V} \longmapsto\binom{\sigma_{1}(U)}{\sigma_{2}(V)}$. The balanced pair $\binom{\sigma_{1}(U)}{\sigma_{2}(V)}$ can be decomposed with minimal balanced pairs, and we can write the image of each minimal balanced pair with concatenated minimal balanced pairs.
5.1.1. Example 1. We consider the two substitutions τ_{1} and τ_{2} defined as:

$$
\tau_{1}:\left\{\begin{array}{l}
a \rightarrow a b a \\
b \rightarrow a b
\end{array} \quad \text { and } \quad \tau_{2}:\left\{\begin{array}{l}
a \rightarrow a a b \\
b \rightarrow b a
\end{array}\right.\right.
$$

The Rauzy fractal of τ_{2} is the closure of a countable union of disjoint intervals and the Rauzy fractal of τ_{1} is an interval, see [15]. We will try to describe an algorithm to obtain the morphism of the common points of these two Rauzy fractals. In this example, the first minimal balanced pair that we can consider is the beginning of the two fixed points associated with τ_{1} and τ_{2} it will be $\binom{a}{a}$.
We represent the image of the first element of this pair by τ_{1} and the second one by τ_{2}. We obtain : $\binom{a}{a} \xrightarrow{\tau_{1}, \tau_{2}}\binom{a b a}{a a b}$.
We denote by A the minimal balanced pair $\binom{a}{a}$ and by B the minimal balanced pair $\binom{b a}{a b}$.

Common dynamics of two Pisot substitutions with the same incidence matrix $\quad 57$

Hence we obtain $A \rightarrow A B$.
The second step is to consider the same process with the new balanced pair $\binom{b a}{a b}$. We consider the image of this balanced pair with the two substitution τ_{1} and τ_{2}, and we obtain:

$$
\binom{b a}{a b} \xrightarrow{\tau_{1}, \tau_{2}}\binom{a b a b a}{a a b b a}
$$

We obtain an other balanced pair $\binom{b}{b}$ and we denote by C the projection over this new balanced pair. We get the image of B which is $A B C A$. We continue with this algorithm and we obtain the image of the balanced pair $\binom{b}{b}$ is the new balanced pair $\binom{a b}{b a}$. We therefore obtain that the image of the letter C is a new letter D. Finally the image of the letter D is $D A A C$. On total, we obtain an alphabet \mathcal{B} on 4 letters and we can define the morphism ϕ as :

$$
\Sigma:\left\{\begin{array}{l}
A \rightarrow A B \\
B \rightarrow A B C A \\
C \rightarrow D \\
D \rightarrow D A A C
\end{array}\right.
$$

We now consider the projection θ of the letters A, B, C, D in the sets of balanced pairs $E=\left\{\binom{a}{a},\binom{b a}{a b},\binom{b}{b},\binom{a b}{b a}\right\}$
We then get: $\binom{\tau_{1}^{n}(a)}{\tau_{2}^{n}(a)}=\theta\left(\Sigma^{n}(A)\right)$.
The morphism Σ generates all the common points of the two Rauzy fractals associated with τ_{1} and τ_{2}.

Figure 5. The Rauzy fractals of τ_{1} and τ_{2}.

Figure 6. Common points of τ_{1} and τ_{2} with distinction of blocks defined with Σ

The characteristic polynomial of τ_{1} is $x^{2}-3 x+1$. The characteristic polynomial associated with the substitution Σ is $(x-1)(x+1)\left(x^{2}-3 x+1\right)$.
5.1.2. Example 2. For the two substitutions Tribonacci and the flipped Tribonacci, the whole procedure is more complicated (see Figure[7]). We can define the morphism Σ_{1} which generates all the common points as follows:

$$
\Sigma_{1}:\left\{\begin{array}{l}
A \rightarrow A B \\
B \rightarrow C \\
C \rightarrow A D \\
D \rightarrow A E \\
E \rightarrow F \\
F \rightarrow A D D G A \\
G \rightarrow A H \\
H \rightarrow I D \\
I \rightarrow A D J \\
J \rightarrow A H K \\
K \rightarrow I D G A
\end{array}\right.
$$

The set E of minimal balanced pairs is:

$$
\begin{aligned}
E=\left\{\binom{a}{a},\binom{b}{b},\binom{a c}{c a},\binom{b a}{a b},\binom{c a b}{b c a}\right. & ,\binom{a a b a c}{c a a a b},\binom{c a b}{a b c},\binom{a b a c}{b c a a} \\
& \left.\binom{a b a c a}{c a a a b},\binom{c a b a a b}{a b a b c a},\binom{a b a b a c}{b c a a a b .}\right\}
\end{aligned}
$$

The characteristic polynomial of σ_{1} is $x^{3}-x^{2}-x-1$. The characteristic polynomial associated with the substitution Σ_{1} is $\left(x^{3}-x^{2}-x-1\right)\left(x^{3}+x^{2}+x-1\right)$ $\left(x^{5}-x^{4}+x^{3}-2 x^{2}+x-1\right)$.

Remark 5.1. Let σ_{1} and σ_{2} be the two Tribonacci substitutions see page 2. We consider U and V their two fixed points. Then the letter c do not occur in the same position in U and V.

Proof. The minimal balanced pairs represent a decomposition of the two fixed points U and V. We remark that in these finite minimal pairs there is no c which appears in the same position. One can then deduce that the letter c does not appear in the same position in two fixed points U and V.

Figure 7. The sets of common points of the Tribonacci substitution and the flipped substitution. Each color stands for a different letter of \mathcal{B} and shows the dynamics of the morphism Σ_{1}.
5.1.3. Example 3. Now we will consider a more general example defined as follows :

$$
\delta_{i}^{1}:\left\{\begin{array}{l}
a \rightarrow a^{i} b \\
b \rightarrow a^{i-1} c \\
c \rightarrow a
\end{array} \quad \text { and } \quad \delta_{i}^{2}:\left\{\begin{array}{l}
a \rightarrow a b a^{i-1} \\
b \rightarrow a c a^{i-2} \\
c \rightarrow a
\end{array}\right.\right.
$$

δ_{i}^{1} and δ_{i}^{2} have the same incidence matrix. We can define the morphism of their common points for all $i \geq 3$ as :

$$
\Sigma_{i}:\left\{\begin{array}{l}
A \rightarrow A B \\
B \rightarrow A C \\
C \rightarrow(A A D)^{i-1}\left[A A E(A A D)^{i}\right]^{i-2} A A E(A A D)^{i-1} A \\
D \rightarrow A F \\
E \rightarrow(A A D)^{i-3} A \\
F \rightarrow(A A D)^{i-1}\left[A A E(A A D)^{i}\right]^{i-3} A A E(A A D)^{i-1} A
\end{array}\right.
$$

The characteristic polynomial of δ_{i}^{1} is $x^{3}-i x^{2}-(i-1) x-1$. The characteristic polynomial associated with the substitution Σ_{i} is $\left(x^{3}-i x^{2}-(i-1) x-1\right)\left(x^{3}+\right.$ $\left.(i-1) x^{2}+i x-1\right)$.

Figure 8. The Rauzy fractals of δ_{3}^{1} and δ_{3}^{2}.
The set E_{i} of minimal balanced pairs is defined as:

$$
\begin{aligned}
E_{i}=\left\{\binom{a}{a},\binom{a^{i-1} b}{b a^{i-1}},\binom{a^{i-1} b\left(a^{i} b\right)^{i-2} a^{i-1} c}{c a^{i-1}\left(b a^{i}\right)^{i-2} b a^{i-1}},\right. & \binom{a^{i-2} b}{b a^{i-2}},\binom{a^{i-3} c}{c a^{i-3}} \\
& \left.\binom{a^{i-1} b\left(a^{i} b\right)^{i-3} a^{i-1} c}{c a^{i-1}\left(b a^{i}\right)^{i-3} b a^{i-1}}\right\}
\end{aligned}
$$

Figure 9. Sets of common points of δ_{3}^{1} and δ_{3}^{2}.

Common dynamics of two Pisot substitutions with the same incidence matrix
Remark 5.2. The property 0 being an inner point cannot be removed. We take this example of substitutions with the same incidence matrix but having the intersection reduced to the origin.

We can give an example where the intersection is reduced to the origin. We consider the two substitutions χ_{1} and χ_{2} defined as follows:

$$
\chi_{1}:\left\{\begin{array}{l}
a \rightarrow a a b \\
b \rightarrow a b
\end{array} \quad \text { and } \quad \chi_{2}:\left\{\begin{array}{l}
a \rightarrow b a a \\
b \rightarrow b a
\end{array}\right.\right.
$$

Figure 10. The Rauzy fractals of χ_{1} and χ_{2}.
We consider u_{1} and u_{2} the two fixed points associated with χ_{1} and χ_{2} respectively. If $a . x$ is a prefix of u_{1} then $b . x$ is a prefix of u_{2}. We use an inductive argument. For $x=a$ it is verified for $n=1$. We suppose now that $a . x$ is a prefix of u_{1} and that $b . x$ is a prefix of u_{2} with $|x|=n$. Then $\chi_{1}(a . x)=a a b \chi_{1}(x)$ is prefix of $u_{1}, \chi_{2}(b . x) . b=b a \chi_{2}(x) b$ is a prefix of u_{2} if and only if $\chi_{1}(x)=\chi_{2}(x) b$. Furthermore, the two letters, a and b we have:

- $x=a: b \cdot \chi_{1}(a)=b a a b=\chi_{2}(a) b$.
- $x=b: b \cdot \chi_{1}(b)=b a b=\chi_{2}(b) b$.

We consider now $x=x_{1} x_{2} \ldots x_{n}$ with $x_{i} \in\{a, b\}$. We have the following expansion:

$$
\begin{aligned}
b \cdot \chi_{1}(x)=b \cdot \chi_{1}\left(x_{1} x_{2} \ldots x_{n}\right) & =b \cdot \chi_{1}\left(x_{1}\right) \ldots \chi_{1}\left(x_{n}\right) \\
& =\chi_{2}\left(x_{1}\right) \cdot b \cdot \chi_{1}\left(x_{2}\right) \ldots \chi_{1}\left(x_{n}\right) \\
& \vdots \\
& =\chi_{2}\left(x_{1}\right) \chi_{2}\left(x_{2}\right) \ldots \chi_{2}\left(x_{n}\right) \cdot b
\end{aligned}
$$

We have therefore show that there exists an infinite word u such that $u_{1}=a . u$ and $u_{2}=$ b.u.

Remark 5.3. We are interested to study the closure of the intersection of the interior of two Rauzy fractals associated to two unimodular irreducible Pisot substitutions with the same incidence matrix. We prove that the closure of the
intersection of their interiors is a substitutive set. An important question is if we can obtain the intersection of two Rauzy fractals. We do not know if the intersection of two Rauzy fractals is equal to the closure of the intersection of their interior. It obviously contains this closure, but it might also contain an additional part with empty interior.

References

[1] S. Akiyama, Pisot numbers and greedy algorithm, Number theory. Diophantine, computational and algebraic aspects, Proceedings of the international conference, Eger, Hungary, July 29-August 2, 1996, (Győry, Kálmán et al., ed.), de Gruyter, Berlin, 1998, 9-21.
[2] P. Arnoux and S. Ito, Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin 8 (2001), 181-207.
[3] P. Arnoux, J. Bernat and X. Bressaud, Geometrical model for substitutions, Exp. Math. 20, no. 1 (2011), 97-127.
[4] M. Barge and B. Diamond, Coincidence for substitutions of Pisot type, Bull. Soc. Math. Fr. 130 (2002), 619-626.
[5] M. Barge and J. Kwapisz, Geometric theory of unimodular Pisot substitutions, Amer. J. Math. 128, no. 5 (2006), 1219-1282.
[6] V. Berthé, A. Siegel and J. Thuswaldner, Substitutions, Rauzy Fractals and Tiling, Combinatorics, Automata and Number Theory, Encyclopedia of Mathematics and And Applications 135, (V. Berthé and M. Rigo, eds.), Cambridge University Press, Cambridge, 2010, 248-323.
[7] V. Canterini and A. Siegel, Automate des préfixes-suffixes associé une substitution primitive, J. Théor. Nombres Bordeaux 13, no. 2 (2001), 353-369.
[8] F. M. Dekking, Recurrent sets, Adv. in Math. 44, no. 1 (1982), 78-104, MR 84:52023.
[9] P. FogG, Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Mathematics, 1794, Springer-Verlag, Berlin, 2002.
[10] C. Frougny and B. Solomyak, Finite beta-expansions, Ergodic Theory Dynam. Systems 12 (1992), 45-82.
[11] H. Ei, S. Ito and H. Rao, Atomic surfaces, tiling and coincidences II. reducible case, Ann. Inst. Fourier, Grenoble 56, no. 6 (2006), 2285-2313.
[12] C. Holton and L. Zamboni, Geometric realization of substitutions, Bull. Soc. Math. France 126 (1998), 149-179.
[13] J. C. Lagarias and Y. Wang, Substitution delone sets, Discrete Comput. Geom. 29, no. 2 (2003), 175-209.
[14] J. M. Luck, C. Godrèche, A. Janner and T. Janssen, The nature of the atomic surfaces of quasiperiodic self similar structures, J. Phys. A: Math. Gen. 26 (1993), 1951-1999.
[15] A. Messaoudi, Propriétés arithmétiques et dynamiques du fractal de Rauzy, J. Théor. Nombres Bordeaux 10 (1998), 135-162.
[16] A. Messaoudi, Frontière du fractal de Rauzy et système de numération complexe, Acta Arith. 95 (2000), 195-224.
[17] G. Rauzy, Nombre algébrique et substitution, Bull. Soc. Math. France 110 (1982), 147-178.
[18] M. Queffelec, Substitution dynamical system, Spectral analysis, Lecture Notes in Mathematics, 1294, Springer-Verlag, Berlin, 1987.
[19] T. Sellami, Geometry of the common dynamics of Pisot substitutions with the same incidence matrix, C. R. Math. Acd. Sci. Paris 348, no. 17-18 (2010), 1005-1008.
[20] A. Siegel, Autour des fractals de Rauzy, Journées Femmes et Mathématiques, Paris 3 (2002).
[21] A. Siegel and J. Thuswaldner, Topological properties of Rauzy fractal, Mém. Soc. Math. Fr. (N.S.) 118 (2009), 140.
[22] W. P. Thurston, Groups, tilings and finite state automata, AMS Colloquium Lecture Notes, American Mathematical Society, Boulder, 1989.
[23] V. Sirvent, The common dynamics of the tribonacci substitutions, Bull. Belg. Math. Soc. 7 (2000), 571-582.
[24] B. Sing and V. Sirvent, Geometry of the common dynamics of flipped Pisot substitution, Monatsh. Math. 155 (2008), 431448.
[25] V. Sirvent and Y. Wang, Self affine tiling via substitution dynamical systems and Rauzy fractal, Pacific J. Math. 206, no. 2 (2002), 465485.

TAREK SELLAMI
INSTITUT DE MATHÉMATIQUES DE LUMINY
CNRS U.M.R. 6206, 163, AVENUE DE LUMINY
CASE 907, 13288 MARSEILLE CEDEX 09
FRANCE
AND
DÉPARTEMENT DE MATHÉMATIQUES
FACULTÉ DES SCIENCES DE SFAX
BP 802, 3018 SFAX
TUNISIE
E-mail: sellami@iml.univ-mrs.fr

[^0]: Mathematics Subject Classification: 28A80, 37B10.
 Key words and phrases: Symbolic dynamical system, substitutions, Rauzy fractals, discrete geometry.

