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Two generator p-groups of nilpotency class 2 and their
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and ROBERT FITZGERALD MORSE (Evansville)

Abstract. We give a classification of 2-generator p-groups of nilpotency class 2.

Using this classification, we give a formula for the number of such groups of order pn

in terms of the partitions of n of length 3, and find formulas for the number and size of

their conjugacy classes.

1. Introduction

In [1], Bacon and Kappe give a classification of 2-generator p-groups of

nilpotency class 2 with the goal of computing their nonabelian tensor squares;

that classification was also an attempt to correct errors found in [11]. Later

[6], Kappe, Visscher, and Sarmin extended the classification to the case of 2-

groups. The idea in these classifications is to start with a generator b of minimal

order, and then add a second generator a of minimal order among those that

generate the group together with b; then one looks at the intersections 〈a〉∩ [G,G]

and 〈b〉 ∩ [G,G] and proceeds by considering the different possibilities.

These classifications were used to compute the nonabelian tensor squares of

these groups [1], [2], [6], as well as identifying those that are capable [2], [7], [8].

When the first author was developing a formula to count the conjugacy classes

of the 2-generator 2-groups of class 2, she discovered that the classification was

incomplete; based on her example, we also discovered that the classification for

the p-groups, p > 2, was likewise incomplete.
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One goal of this paper is to correct these omissions with a complete classi-

fication. Our approach to classifying these groups is to exploit the fact they are

all central extensions of a cyclic p-group by an abelian p-group of rank 2. This

viewpoint simplifies the counting of conjugacy classes, our second goal, and the

resulting classification also makes it straightforward to count all the groups of

this class of order pn for any given n. Our count agrees with the one recently

obtained by C. Voll using zeta functions [12], providing independent verification

of our classification.

As the second and third authors were preparing a separate work concerned

with the computation of the nonabelian tensor squares and other functors for

these groups, a paper by Miech [9] was brought to our attention. In this paper,

Miech uses an approach very similar to ours to classify the 2-generated p-groups

with cyclic commutator subgroup for odd p. His classification is somewhat more

complex than ours because of the need for more parameters to account for the

groups of class 3 and higher that occur, and seems difficult to extend to the p = 2

case. Where Miech’s classification overlaps with ours, the two agree.

Since both the classification theorem and our formula for counting the con-

jugacy classes of these group are self-contained and straightforward we state them

now.

Theorem 1.1. Let p be a prime and n > 2 a positive integer. Every 2-

generator p-group of order pn and class 2 corresponds to an ordered 5-tuple of

integers, (α, β, γ; ρ, σ), such that:

(i) α ≥ β ≥ γ ≥ 1,

(ii) α+ β + γ = n,

(iii) 0 ≤ ρ ≤ γ and 0 ≤ σ ≤ γ,

where (α, β, γ; ρ, σ) corresponds to the group presented by

G =
〈
a, b | [a, b]pγ

= [a, b, a] = [a, b, b] = 1, ap
α

= [a, b]p
ρ

, bp
β

= [a, b]p
σ〉
.

Moreover:

(1) If α > β, then G is isomorphic to:

(a) (α, β, γ; ρ, γ) when ρ ≤ σ.

(b) (α, β, γ; γ, σ) when 0 ≤ σ < σ + α− β ≤ ρ or σ < ρ = γ.

(c) (α, β, γ; ρ, σ) when 0 ≤ σ < ρ < min(γ, σ + α− β).

(2) If α = β > γ, or α = β = γ and p > 2, then G is isomorphic

to (α, β, γ;min(ρ, σ), γ).
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(3) If α = β = γ and p = 2, then G is isomorphic to:

(a) (α, β, γ;min(ρ, σ), γ) when 0 ≤ min(ρ, σ) < γ − 1.

(b) (α, β, γ; γ − 1, γ − 1) when ρ = σ = γ − 1.

(c) (α, β, γ; γ, γ) when min(ρ, σ) ≥ γ − 1 and max(ρ, σ) = γ.

The groups listed in 1(a)–3(c) are pairwise nonisomorphic.

It is family 1(c) that is missing in the classifications from [1], [6]. In addition,

we discovered that the families of 2-groups given in [6] were not disjoint, listing

the groups (γ, γ, γ; γ, γ) twice for each γ > 0. We will discuss this in more detail

in the final section.

A direct application of the classification is to identify the orders of the con-

jugacy classes, the number of conjugacy classes of each order, and total number

of conjugacy classes of any 2-generator p-group of class 2. These counts depend

only on the order of the group and of its derived subgroup. This information is

useful in studying class functions and group representations: for example, it was

used to compute the irreducible characters for these groups in [10].

Denote the number of conjugacy classes of G of order pδ by Cδ(G) and denote

the number of all conjugacy classes of G by C(G).

Theorem 1.2. Let G be a 2-generator p-group of order pn and class 2 with

derived subgroup of order pγ .

(i) All conjugacy classes of G have order pδ for some δ ∈ {0, . . . , γ} and for each

δ ∈ {0, . . . , γ}

Cδ(G) =

{
pn−2γ if δ = 0,

pn−2γ−1φ(pδ)(p+ 1) if δ ∈ {1, . . . , γ}
where φ is Euler’s Totient function, i.e. φ(m) is the number of integers k with

1 ≤ k ≤ m such that k and m are coprime.

(ii) The group G has

C(G) = pn−γ
(
1 + p−1 − p−(γ+1)

)
(1.3)

conjugacy classes.

By a result of P. Hall (see [4] Kapital V, Satz 15.2), any p-group G of order

pn has

pe + (p2 − 1)
(
m+ k(p− 1)

)
(1.4)

conjugacy classes, where e ∈ {0, 1}, e ≡ n (mod 2), and m = bn/2c. The nonne-

gative integer k was called the abundance of G in [5], and is denoted by a(G). As
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an immediate consequence of Theorem 1.2 we obtain a formula for the abundance

of a 2-generator p-groups of class 2 by equating (1.3) and (1.4) and solving for

a(G). The formula is given in Corollary 5.12.

The paper is structured as follows. In the next section we fix our notation,

establish some preliminary results, and outline our strategy for classifying the 2-

generator p-groups of class 2. In Section 3 we prove Theorem 1.1, and in Section 4

we enumerate the number of groups of order pn in our class for fixed p and n. In

Section 5 we prove Theorem 1.2. In the last section, we describe how to translate

the descriptions in the previously published classifications into our 5-parameter

classification.

2. Preliminaries

We write our groups multiplicatively, with 1 denoting the identity of the

group. We say a group is “nilpotent of class 2” to mean the nilpotency class is

exactly 2 (that is, 1 6= [G,G] ⊆ Z(G)). We let Cm represent the cyclic group of

order m. The commutator of x and y is [x, y] = x−1y−1xy. If G is nilpotent of

class at most 2, then the commutator bracket is alternating bilinear; from this,

we obtain the well-known formula (xy)k = xkyk[y, x](
k
2), where

(
k
2

)
= k(k−1)

2 for

all integers k, and one easily shows that the order of [x, y] in G divides the orders

of xZ(G) and yZ(G) in G/Z(G).

Let G be a 2-generator p-group of order pn and class 2. Then G′ is a central

subgroup of G that is isomorphic to Cpγ with γ ≥ 1, and G/G′ is isomorphic to

Cpα × Cpβ with n = α + β + γ. Without loss of generality assume α ≥ β. Let

{a, b} be a transversal of G/G′. Then ap
α

and bp
β

are elements of G′ and we have

[ap
α

, b] = 1 = [a, b]p
α

and [a, bp
β

] = 1 = [a, b]p
β

.

Hence pγ , the order of G′, divides both pα and pβ . It follows that 1 ≤ γ ≤ β ≤ α.

From this analysis we may view any 2-generator p-group G of order pn and

class 2 as a central extension of the form

1 −−−−→ Cpγ
ψ−−−−→ G

η−−−−→ Cpα × Cpβ −−−−→ 1, (2.1)

where n = α+ β + γ and α ≥ β ≥ γ ≥ 1. Therefore to enumerate all 2-generator

p-groups of class 2 of order pn we must consider all positive partitions (α, β, γ) of n

of length 3. We denote by Gp(α, β, γ) the set of nonisomorphic central extensions

of the form (2.1) of nilpotency class 2. Any group in Gp(α, β, γ) is 2-generated
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and has order pn, where n = α+ β + γ. For each positive partition (α, β, γ) of n,

the group

G = 〈a, b | apα

= bp
β

= [a, b]p
γ

= 1, [a, b, a] = [a, b, b] = 1〉

is in Gp(α, β, γ), so the latter is not empty. Denote by Gpn the disjoint union of

the Gp(α, β, γ) over all positive partitions of length 3 of n so that Gpn is the set

of nonisomorphic 2-generator p-groups of nilpotency class exactly 2 and order pn.

Let G be a 2-generator p-group of class 2. Then G has a polycyclic series

G > G1 > G′ = 1 such that 〈aG1〉 = G/G1
∼= Cpα , 〈bG′〉 = G1/G

′ ∼= Cpβ , and

〈[a, b]〉 = G′ ∼= Cpγ . Then a, b, [a, b] is a polycyclic generating sequence for G and

each element g ∈ G can be written uniquely as

aibj [a, b]k (2.2)

where 0 ≤ i < pα, 0 ≤ j < pβ and 0 ≤ k < pγ . We use this representation of

elements of G to count specific elements such as the central elements.

Proposition 2.3. Let G be an element Gp(α, β, γ). Then Z(G), the center

of G, has order pn−2γ .

Proof. It follows from the class of G and the order of G′ that [ap
γ

, b] =

[a, bp
γ

] = [a, b]p
γ

= 1. Hence all elements in the center of G have the form

aip
γ

bjp
γ

[a, b]k where 1 ≤ i ≤ pα−γ , 1 ≤ j ≤ pβ−γ , and 1 ≤ k ≤ pγ . Hence there

are pα−γpβ−γpγ = pα+β−γ = pn−2γ different elements in the center. ¤

3. The groups in Gp(α, β, γ)

In this section we determine the nonisomorphic types within each Gp(α, β, γ).

We will show that each isomorphism class is determined by a pair of nonnegative

integers ρ and σ, with 0 ≤ ρ ≤ γ and 0 ≤ σ ≤ γ; by placing some conditions

on ρ and σ, we can identify each group with a unique ordered 5-tuples of the form

(α, β, γ; ρ, σ).

In what follows, we will write “0 ≤ ρ, σ ≤ γ” to mean that 0 ≤ ρ ≤ γ and

0 ≤ σ ≤ γ both hold.

For any extension

1 −−−−→ N
ψ−−−−→ G

η−−−−→ K −−−−→ 1,

the relations of G are the relations of N (under the injection ψ), the action of

K on N via the transversal function τ : K → G and the injection ψ, and the
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relations determined by the relations of K. If r = k1 · · · kn is a relator of K then

τ(r) need not be the identity in G; it is corrected by an element of the center

of N . Hence τ(r) · ψ(c) = 1 for some c ∈ Z(N) is a relator in G.

From (2.1), we conclude that if G ∈ Gp(α, β, γ), then the action of Cpα ×Cpβ

on Cpγ is trivial. Let 〈c′〉 ∼= Cpγ and let ψ(〈c′〉) ≤ G be generated by ψ(c′) = c.

Let 〈a′〉 × 〈b′〉 ∼= Cpα ×Cpβ with relators [a′, b′], a′p
α

, b′p
β

. Following our general

analysis above and setting τ(a′) = a and τ(b′) = b, the relations of any group in

Gp(α, β, γ) are cp
γ

= 1, [a, b] = ci, ap
α

= cj , bp
β

= ck, ca = c, and cb = c. Since

G′ must be cyclic of order pγ , we will have gcd(i, p) = 1.

Some values i, j, and k give isomorphic groups. Our goal is to select exactly

those values of i, j, and k that enumerate all of the nonisomorphic groups in

Gp(α, β, γ) with no repetitions. We assume that 0 < i, j, k ≤ pγ .

We begin by making some simplifications. The proposition below shows that

the isomorphism type of G depends only on the largest powers of p that divide j

and k.

Proposition 3.1. Fix α ≥ β ≥ γ, and let i, j, k be positive integers,

0 < i, j, k ≤ pγ , with gcd(i, p) = 1. Write j = upρ, k = vpσ, with gcd(uv, p) = 1,

and 0 ≤ ρ, σ ≤ γ. If we let G,H ∈ Gp(α, β, γ) be the groups

G =
〈
a, b, c | ca = c, cb = c, [a, b] = ci, ap

α

= cj , bp
β

= ck
〉
,

H =
〈
x, y, z | zx = z, zy = z, [x, y] = z, xpα

= zp
ρ

, xpβ

= zp
σ〉
,

then G is isomorphic to H.

Proof. If ρ = σ = γ, then j = k = pγ . Set a1 = a, b1 = b, and c1 = ci; then

the elements a1, b1, c1 of G satisfy the same relations as x, y, z ∈ H, and hence

we have a homomorphism from H onto G that maps x 7→ a1, y 7→ b1, and z 7→ c1.

Since the two groups have the same order, this map is an isomorphism.

If ρ < σ = γ, then pick s such that is ≡ u (mod pγ−ρ), and set a1 = a,

b1 = bs, and c1 = cis. Then [a1, b1] = cis = c1, a
pα

1 = cj = cup
ρ

= cisp
ρ

= cp
ρ

1 ,

and bp
β

1 = cp
γ

= cp
γ

1 , so again we have a homomorphism from H onto G, which

proves the two groups are isomorphic.

If σ < ρ = γ, then pick r such that ir ≡ v (mod pγ−σ), set a1 = ar, b1 = b,

and c1 = cir; again, we obtain a homomorphism from H onto G, showing that G

is isomorphic to H.

Finally, assume that ρ, σ < γ. Pick r such that ir ≡ v (mod pγ−σ), s such

that is ≡ u (mod pγ−ρ), and set t ≡ irs (mod pγ). Let a1 = ar, b1 = bs, and

c1 = ct. The nontrivial relations to check are:

[a1, b1] = [a, b]rs = cirs = ct = c1 = ca1
1 = cb11 ,
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ap
α

1 = arp
α

= crup
ρ

= crisp
ρ

= ctp
ρ

= cp
ρ

1 ,

bp
β

1 = bsp
β

= csvp
σ

= csrip
σ

= ctp
σ

= cp
σ

1 .

Therefore, there is a homomorphism from H onto G, and hence G is isomorphic

to H, as claimed. ¤

Thus we see that the isomorphism type of a 2-generator p-group of class 2

depends on five parameters: α and β, which determine the isomorphism type of

Gab; γ, which gives the isomorphism type of [G,G]; and on parameters ρ and σ

that determine the relations of ap
α

and bp
β

with [a, b]. We establish the following

notation:

Definition 3.2. Let α ≥ β ≥ γ ≥ 1 be positive integers, and let ρ, σ be

integers, 0 ≤ ρ, σ ≤ γ. We will use the ordered 5-tuple (α, β, γ; ρ, σ) to denote

the group G ∈ Gp(α, β, γ) presented by

G =
〈
a, b, c | [a, b] = c, ca = c, cb = c, ap

α

= cp
ρ

, bp
β

= cp
σ〉
.

Proposition 3.1 guarantees that every group in Gp(α, β, γ) is isomorphic to

at least one group of the form (α, β, γ; ρ, σ). We still need to determine which

choices of ρ and σ may lead to isomorphic groups. The goal of the next few results

is to help discover when (α, β, γ; ρ, σ) is isomorphic to (α, β, γ; ρ̄, σ̄).

The following result may be deduced from the main result of [3], or obtained

directly:

Lemma 3.3. Let p be a prime, and let α ≥ β > 0 be integers. Let A =

Cpα × Cpβ , with a and b generating the respective cyclic factors. Then every

automorphism of A is of the form

a 7→ akb`, b 7→ asp
α−β

bt,

where k is determined modulo pα; `, s, and t are determined modulo pβ ; and

kt− `spα−β is relatively prime to p.

Theorem 3.4. Let p be a prime, and fix α ≥ β ≥ γ ≥ 1. Let ρ, σ, ρ̄, σ̄ be

integers, 0 ≤ ρ, σ, ρ̄, σ̄ ≤ γ, and let G be the group (α, β, γ; ρ, σ). Then G is iso-

morphic to the group (α, β, γ; ρ̄, σ̄) if and only if there exist integers k, `, s, t, v, w

such that gcd(p, kt − `spα−β) = 1 and gcd(p, vw) = 1, with (akb`)p
α

= cvp
r

and

(asp
α−β

bt)p
β

= cwps

.
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Proof. Let H be the group (α, β, γ; ρ̄, σ̄), and suppose that there is an

isomorphism f : H → G. To avoid possible confusion, denote the generators of H

by aH , bH , and cH . The isomorphism f induces an isomorphism f : Hab → Gab,

so we know there exist integers k, `, s, t, x, y with gcd(p, kt− `spα−β) = 1 such

that f(aH) = akb`cx and f(bH) = asp
α−β

btcy. We also know that f restricts to

an isomorphism from [H,H] to [G,G], so f(cH) = cv for some integer v that is

relatively prime to p. Since c is central and α ≥ β ≥ γ, we have:

(akb`)p
α

= (akb`cx)p
α

= f(ap
α

H ) = f(cp
ρ̄

H ) = cvp
ρ̄

,

and (asp
α−β

bt)p
β

= (asp
α−β

btcy)p
β

= f(bp
β

H ) = f(cp
σ̄

H ) = cvp
σ̄

.

Setting w = v proves the necessity.

Conversely, suppose we have integers k, `, s, t, v, and w with the given proper-

ties. Set a1 = akb`, b1 = asp
α−β

bt, and c1 = c. Since gcd(p, kt− `spα−β) = 1, the

images of a1 and b1 generate Gab. By Proposition 3.1, there is an isomorphism

between H = (α, β, γ; ρ̄, σ̄) and 〈a1, b1, c1〉; since the latter generate G, we obtain

the desired isomorphism. ¤

Thus, to determine whether the group (α, β, γ; ρ, σ) is isomorphic to the

group (α, β, γ; ρ̄, σ̄), it suffices to check if there exist integers k, `, s, t, v, w,

with gcd(p, kt − `spα−β) = gcd(p, vw) = 1 such that (akb`)p
α

= cwpρ̄

and

(asp
α−β

bt)p
β

= cvp
σ̄

. Conversely, if we find all possible exponents wpρ̄ and vpσ̄

for suitable choices of k, `, s, t (and by Proposition 3.1 it suffices to determine

the highest powers of p that divide those exponents), we will determine all such

isomorphisms.

Suppose G is the group (α, β, γ; ρ, σ) with 0 ≤ ρ, σ ≤ γ. For future reference,

we have the following computations:

(
akb`

)pα

= akp
α

b`p
α

[b, a]k`(
pα

2 ) = ckp
ρ+`pσ+α−β−k`(p

α

2 ), (3.5)

and (
asp

α−β

bt
)pβ

= asp
α

btp
β

[b, a]stp
α−β(p

β

2 ) = csp
ρ+tpσ−stpα−β(p

β

2 ). (3.6)

We only need to determine the largest powers of p that divide the exponents of c

in the above expressions. The binomial coefficients and the factor pα−β lead us

to consider separate cases: when α > β; when α = β and either β > γ or p > 2;

and when α = β = γ and p = 2. We treat each of these cases in turn.

Theorem 3.7. Let p be a prime, and fix α > β ≥ γ ≥ 1. The groups

(α, β, γ; ρ, σ) and (α, β, γ; ρ̄, σ̄), where 0 ≤ ρ, σ, ρ̄, σ̄ ≤ γ, are isomorphic if and

only if:
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(i) ρ = ρ̄ and σ = σ̄; or

(ii) ρ = ρ̄, σ ≥ ρ, and σ̄ ≥ ρ̄; or

(iii) σ = σ̄, ρ ≥ σ + (α− β), and ρ̄ ≥ σ̄ + (α− β).

In particular, the group (α, β, γ; ρ, σ) is isomorphic to one and only one of the

groups listed in 1(a)–1(c) of Theorem 1.1, according to the conditions listed there.

Proof. Let α > β ≥ γ ≥ 1, and let G be the group (α, β, γ; ρ, σ). By The-

orem 3.4, any isomorphism is determined by a pair of elements akb` and asp
α−β

bt,

with gcd(kt, p) = 1. The exponent of c in (3.5) simplifies to kpρ+ `pσ+α−β , while

the exponent in (3.6) simplifies to spρ+ tpσ. If ρ ≤ σ, then the highest power of p

that divides the former is exactly pρ (since gcd(p, k) = 1), and the highest power

of p that divides the latter is at least pρ, possibly larger depending on the value of

s+tpσ−ρ; this is condition (ii). If we have ρ ≥ σ+α−β, then the highest power of

p that divides the exponent of c in (3.5) is at least pσ+α−β , possibly larger depend-

ing on the value of kpρ−σ−α+β+`; whereas the highest power of p that divides the

exponent of c in (3.6) is exactly pσ since gcd(p, t) = 1. Thus, we are in the case

contemplated in condition (iii). Finally, if σ < ρ < σ + α − β, then the highest

power of p that divides the exponent of c in (3.5) is exactly pρ since gcd(p, k) = 1,

and the largest power in (3.6) is exactly pσ (again, since gcd(p, t) = 1), and we

are in the case contemplated in (i). Thus, the given conditions are necessary for

an isomorphism.

Conversely, condition (i) is trivially sufficient. Assume next that ρ = ρ̄, ρ ≤ σ

and ρ̄ ≤ σ̄, and we want to prove that (α, β, γ; ρ, σ) is isomorphic to (α, β, γ; ρ̄, σ̄).

Setting k = 1, ` = 0, s = pσ̄−ρ̄ − pσ−ρ, and t = 1, the exponent of c in (3.5)

is of course pρ = pρ, while the exponent of c in (3.6) is (pσ̄−ρ − pσ−ρ)pρ + pσ =

pσ̄−pσ+pσ = pσ̄, proving that (α, β, γ; ρ, σ) is isomorphic to (α, β, γ; ρ̄, σ̄). Thus,

(ii) is sufficient. Finally, suppose that σ = σ̄, ρ ≥ σ + α− β, and ρ̄ ≥ σ̄ + α− β.

Then set k = 1, ` = pρ̄−(σ+α−β) − pρ−(σ+α−β), s = 0, and t = 1. The exponent

in (3.5) is pρ + (pρ̄−(σ+α−β) − pρ−(σ+α−β))pσ+α−β = pρ̄, while the exponent in

(3.6) is pσ = pσ̄, proving that (α, β, γ; ρ, σ) is indeed isomorphic to (α, β, γ; ρ̄, σ̄)

as claimed. ¤

Theorem 3.8. Let p be a prime, and fix α = β ≥ γ ≥ 1. If p > 2 or

β > γ, then the groups (α, β, γ; ρ, σ) and (α, β, γ; ρ̄, σ̄) are isomorphic if and only

if min(ρ, σ) = min(ρ̄, σ̄). In particular, the group (α, β, γ; ρ, σ) is isomorphic to

(α, β, γ;min(ρ, σ), γ), as in (2) of Theorem 1.1.

Proof. For the necessity of the condition, note that selecting k = 0, ` = 1,

s = 1, and t = 0 as in Theorem 3.4 shows we may assume without loss of generality
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that ρ ≤ σ. Then the exponents of c in (3.5) and (3.6) simplify to pρ(k + `pσ−ρ)

and pρ(s + tpσ−ρ). If σ > ρ, since at most one of k and s are multiples of p we

obtain that at least one of these two expressions will be divisible by exactly pρ

and no higher power, so min(ρ̄, σ̄) is equal to ρ. On the other hand, if σ = ρ and

k + ` is divisible by p, then kt − `s ≡ kt + ks ≡ k(t + s) (mod p) and the fact

that kt− `s is prime to p yields that s+ t is prime to p; symmetrically, if s+ t is

divisible by p then k+ ` is prime to p, so once again we have min(ρ̄, σ̄) = ρ. This

proves the necessity.

For sufficiency, we may assume without loss of generality that ρ = ρ̄, ρ ≤ σ,

and ρ̄ ≤ σ̄. Then set k = 1, ` = 0, s = pσ̄−ρ − pσ−ρ, and t = 1; the exponent

of c in (3.5) is pρ = pρ̄, and the exponent in (3.6) simplifies to pσ̄, proving that

(α, β, γ; ρ, σ) is isomorphic to (α, β, γ; ρ̄, σ̄), as claimed. ¤

Theorem 3.9. Let p = 2 and fix α = β = γ ≥ 1. The groups (α, β, γ; ρ, σ)

and (α, β, γ; ρ̄, σ̄), where 0 ≤ ρ, σ, ρ̄, σ̄ ≤ γ, are isomorphic if and only if:

(i) min(ρ, σ) = min(ρ̄, σ̄) and max(ρ, σ) = max(ρ̄, σ̄); or

(ii) exactly one of ρ, σ, ρ̄, σ̄ is equal to γ − 1 and the remaining three are equal

to γ; or

(iii) min(ρ, σ) = min(ρ̄, σ̄) < γ − 1.

In particular, the group (α, β, γ; ρ, σ) is isomorphic to exactly one of the groups

in 3(a)–3(c) of Theorem 1.1 according to the conditions listed there.

Proof. Let G be the group (α, β, γ; ρ, σ); without loss of generality we

may assume that ρ ≤ σ, since all conditions are symmetric and picking k = 0,

` = 1, s = 1, and t = 0 will yield an isomorphism between (α, β, γ; ρ, σ) and

(α, β, γ;σ, ρ).

Since p = 2 and α = β = γ, the binomial coefficients in (3.5) and (3.6)

are congruent to 2γ−1 modulo 2γ . Thus, the exponent of c in (3.5) simplifies to

k2ρ + `2σ + k`2γ−1, while the exponent of c in (3.6) becomes s2ρ + t2σ + st2γ−1.

To prove necessity of the conditions, assume first that ρ = σ = γ − 1; since

k + ` + k` and s + t + st are both odd, the highest power of 2 that divides the

exponents of c in both (3.5) and (3.6) is exactly 2γ−1, so we are in case (i). If

ρ = γ − 1 and σ = γ, then the exponents of c simplify to k2γ−1(1 + `) and

s2γ−1(1+ t). At most one of ` and t are even, so at least one of the two exponents

is divisible by 2γ , and the other is divisible by at least 2γ−1, yielding either case

(i) or (ii). If ρ = σ = γ, then the exponents simplify to k`2γ−1 and st2γ−1.

We cannot have all of k, s, t, and ` odd, so at least one of the two exponents

is divisible by 2γ and the other by at least 2γ−1, again yielding cases (i) or (ii).

Finally, consider the case where ρ < γ−1; then the exponent in (3.5) simplifies to
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2ρ(k+`2σ−ρ+k`2γ−1−ρ), and the one in (3.6) simplifies to 2ρ(s+t2σ−ρ+st2γ−1−ρ).

If σ = ρ, since at most one of k + ` and s + t is even (as kt − `s is odd), then

at least one of the two exponents is divisible by 2ρ and no higher power of 2,

yielding case (iii). And if σ > ρ, since at most one of k and s is even, we again

have that at most one of the two exponents is divisible by a power of 2 higher

than 2ρ, again yielding case (iii). Thus, the three conditions are necessary.

The sufficiency of (i) follows since α = β, as noted above. For (ii), we simply

note that (γ, γ, γ; γ − 1, γ) is isomorphic to (γ, γ, γ; γ, γ) by setting k = ` = t = 1

and s = 0. Finally, if ρ is chosen with ρ < γ−1, and σ and σ̄ are both greater than

or equal to ρ and less than or equal to γ, then we want to show that (γ, γ, γ; ρ, σ)

is isomorphic to (γ, γ, γ, ρ, σ̄); this can be seen by setting k = t = 1, ` = 0, and

s = 2s−ρ − 2σ−ρ − 2γ−1−ρ(2σ̄−ρ − 2σ−ρ). ¤

Putting the previous three theorems together yields Theorem 1.1 in Section 1.

4. The number of nonisomorphic groups in Gp(α, β, γ)

In this section we use our classification to give a formula for the number

of groups in Gp(α, β, γ), the set of nonisomorphic groups of class two that have

abelianization isomorphic to Cpα ×Cpβ and commutator subgroup isomorphic to

Cpγ . We seek a formula for the cardinality of Gp(α, β, γ) in terms of α, β, and γ

(the analysis below will show the number of elements does not depend on p).

Consider first the case where α = β. If p > 2 or β > γ, Theorem 1.1

says that each group in the class we are interested in is isomorphic to one and

only one of (α, β, γ; ρ, γ) with 0 ≤ ρ ≤ γ, giving γ + 1 nonisomorphic groups.

If p = 2 and β = γ, then all of these are pairwise nonisomorphic, with the

exception of (α, β, γ; γ−1, γ) and (α, β, γ; γ, γ) which are isomorphic, giving only

γ nonisomorphic groups. However, in this case there is a further group, namely

(α, β, γ; γ − 1, γ − 1), which is not isomorphic to any of the γ groups already

counted, so we again obtain γ +1 nonisomorphic groups. Thus, when α = β, the

set Gp(α, β, γ) has exactly γ + 1 elements.

Next, we consider the case where α− β > γ. In addition to the γ +1 groups

given by (α, β, γ; ρ, γ) with 0 ≤ ρ ≤ γ, we also have one group for each choice of

a pair (ρ, σ) satisfying 0 ≤ σ < ρ ≤ γ; this gives
(
γ+1
2

)
further groups. Adding

the two totals, we obtain (γ + 1) + 1
2γ(γ + 1) elements in Gp(α, β, γ) (we will see

below the reason for expressing the count in this manner).

Finally, we come to the case where 0 < α − β ≤ γ. There are γ + 1 non-

isomorphic groups corresponding to the 5-tuple (α, β, γ; ρ, γ) with 0 ≤ ρ ≤ γ. In
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addition, we also have α−β groups of the form (α, β, γ; ρ, σ) with σ < ρ ≤ σ+α−β

for each choice of σ that satisfies 0 ≤ σ ≤ γ−(α−β). Finally, for σ = γ−(α−β)+k

with 0 < k < α−β, we will have exactly (α−β)−k choices of ρ that satisfy ρ ≤ γ

and σ < ρ ≤ σ + α− β, and each such choice of ρ yields a further nonisomorphic

group. The total number is then q, where:

q = (γ + 1) + (α− β)(γ − (α− β) + 1) + ((α− β − 1) + · · ·+ 1)

= (γ + 1) + (α− β)(γ − (α− β − 1)) +
1

2
(α− β − 1)(α− β)

= (γ + 1) +
1

2
(α− β)(2γ + 1− (α− β)).

Consider now the expression (γ + 1) + 1
2κ(2γ + 1 − κ). If we set κ = 0, we

obtain the number of nonisomorphic groups when α = β. If κ = γ, we obtain the

number of nonisomorphic groups when γ < α − β. And if κ = α − β, we obtain

the number of nonisomorphic groups when 0 < α− β < γ. Therefore, we obtain

the following result:

Theorem 4.1. Let p be a prime, and let α ≥ β ≥ γ ≥ 1 be integers. The

cardinality of Gp(α, β, γ) is:

|Gp(α, β, γ)| = (γ + 1) +
1

2
min(γ, α− β)(2γ + 1−min(γ, α− β)).

Note that if γ = 0, the expression in Theorem 4.1 evaluates to 1, which

corresponds to the unique group with trivial commutator subgroup and abelia-

nization isomorphic to Cpα × Cpβ . Thus, if instead of considering only positive

values of α, β, γ with α+β+γ = n we consider nonnegative values, we obtain the

number of nonisomorphic 2-generator p-groups of order pn and class at most two

(recall that a group is a k generator group if it can be generated by k elements,

although it may be generated by fewer). Thus, we have:

Theorem 4.2. Let p be a prime and n be a positive integer. The number

of nonisomorphic 2-generator p-groups of order pn and class 2 is given by

∑

α+β+γ=n
α≥β≥γ>0

(
(γ + 1) +

1

2
min(γ, α− β) (2γ + 1−min(γ, α− β))

)
.

The number of nonisomorphic 2-generator p-groups of order pn and class at most 2

is given by:

∑

α+β+γ=n
α≥β≥γ≥0

(
(γ + 1) +

1

2
min(γ, α− β) (2γ + 1−min(γ, α− β))

)
.
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n 1 2 3 4 5 6 7 8 9 10

class two 0 0 2 3 5 9 13 18 26 34

class at most two 1 2 4 6 8 13 17 23 31 40

n 11 12 13 14 15 16 17 18 19 20

class two 44 58 72 89 111 134 160 193 227 266

class at most two 50 65 79 97 119 143 169 203 237 277

n 21 22 23 24 25 26 27 28 29 30

class two 312 361 415 479 545 619 703 792 888 998

class at most two 323 373 427 492 558 633 717 807 903 1014

Table 1. Number of nonisomorphic 2-generator p-groups of order pn

and class at most 2.

In Table 1 we give the number of nonisomorphic 2-generator p-groups of order

pn and class 2, and of class at most 2, for 1 ≤ n ≤ 30.

We note that Voll has computed the Dirichlet generating function for the

sequence given in the second line of Table 1; see [12]. The counts obtained this

way agree with the ones there.

5. Conjugacy classes

The goal of this section is to prove Theorem 1.2. We start by counting the

number of conjugates for an arbitrary element of G in Gp(α, β, γ) and computing

Cδ(G) (Propositions 5.1 and 5.4). Our formula of Cδ(G), however, depends on α,

β, and γ whereas Theorem 1.2 depends only on n and γ. Corollary 5.10 remedies

this situation. We conclude with two corollaries to Theorem 1.2: Corollary 5.11

shows the distinct values of C(G) are bounded by n for the groups in Gpn and

Corollary 5.12 provides a formula for the abundance of G.

Proposition 5.1. Let G be an element of Gp(α, β, γ) and let g = aibj [a, b]k

be an arbitrary element of G where 0 ≤ i < pα, 0 ≤ j < pβ , and 0 ≤ k < pγ .

Then g has pγ−ζ conjugates in G where pζ is the largest p-power factor of i, j

and pγ .

The following lemma will facilitate our proof of Proposition 5.1.
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Lemma 5.2. Let ı̄, ̄, s, and t be integers, with 0≤ s< t, and let gcd(̄ı, ̄)= d.

If gcd(d, t) = 1 then there exist integers i′ and j′ such that 0 ≤ i′, j′ < t and

(̄ıj′ − i′̄) ≡ s (mod t).

Proof. Let x and y be integers such that ı̄x − ̄y = d, and let w and z be

integers such that wd+ zt = 1. Then

s = s(wd+ zt) ≡ swd ≡ sw(̄ıx− ̄y) ≡ ı̄(swx)− ̄(swy) (mod t).

So we may take i′ and j′ to be the integers, 0 ≤ i′, j′ < t, such that i′ ≡ swy

(mod t) and j′ ≡ swx (mod t). ¤

Proof of Proposition 5.1. Let g = aibj [a, b]k and h = ai
′
bj

′
[a, b]k

′
be

arbitrary elements of G following (2.2). Set pζ to be the largest common p-power

factor of i and j. If ζ ≥ γ then pγ is a common factor of both i and j so

g ∈ Z(G) (see Proposition 2.3). Therefore without loss of generality 0 ≤ ζ ≤ γ.

Conjugating g with h we obtain

gh = aibj [a, b]ij
′−i′j [a, b]k = aibj [a, b]p

ζ(ı̄j′−i′ ̄)+k (5.3)

where i = ı̄pζ and j = ̄pζ . Hence the conjugates of g are parameterized by i′

and j′ where 0 ≤ i′ < pα and 0 ≤ j′ < pβ .

If ζ = γ then g is in the center of G and has 1 = pγ−ζ element, namely itself,

conjugate to it.

Suppose that ζ < γ. Set d = gcd(̄ı, ̄). Since ζ < γ then gcd(d, pγ) = 1.

Applying Lemma 5.2 with t = pγ , for each value s, 0 ≤ s < pγ there exist i′

and j′ such that ı̄j′ − i′̄ ≡ s (mod pγ). Thus the expression pζ (̄ıj′ − i′̄) + k has

pγ−ζ distinct values modulo pγ . Hence for any element g = aı̄p
ζ

b̄p
ζ

[a, b]k of G

with 0 ≤ ζ ≤ γ, the number of elements conjugate to g is pγ−ζ . ¤

Proposition 5.4. Let G be any group in Gp(α, β, γ) and set

Φδ
α = φ

(
pα−(γ−δ)

)
and Φδ

β = φ
(
pβ−(γ−δ)

)
,

where φ is Euler’s Totient function and 1 ≤ δ ≤ γ. Then for each δ = 1, 2, . . . , γ

Cδ(G) = pγ−δ

(
Φδ

α+Φδ
β +Φδ

αΦ
δ
β +Φδ

α

β−1∑

i=γ−δ+1

φ(pβ−i)+Φδ
β

α−1∑

i=γ−δ+1

φ(pα−i)

)
. (5.5)
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Proof. Let G ∈ Gp(α, β, γ) and g = aibj [a, b]k be an arbitrary element of G.

By (5.3), the conjugates of g have the form aibj [a, b]k
′
where k′ = pζ (̄ıj′− i′̄)+k.

Moreover, each k′ ≡ k (mod pζ) defines an element conjugate to g. Hence for

any given i, j pair, all elements of the form aibj [a, b]k have conjugacy classes of

the same size, and each of the pζ distinct values of k define elements in distinct

conjugacy classes.

To count the number of conjugacy classes of order pδ, we set ζ = γ − δ.

Then for each i, j pair with greatest common p-power divisor equal to pζ , there

are pζ = pγ−δ distinct values of k that form distinct conjugacy classes. This

observation reduces the problem to determining all i, j pairs that define elements

with conjugacy classes of order pδ. We break this analysis into five pairwise

mutually exclusive cases.

Case 1. If i = ı̄pζ and j = 0. There are pα−ζ multiples of pζ between 1

and pα; ı̄ needs to be a number between 1 and pγ−ζ that is relatively prime to p;

hence, there are φ(pα−ζ) = φ(pα−(γ−δ)) = Φδ
α possible values for ı̄.

Case 2. If i = 0 and j = ̄pζ . The analysis follows as in Case 1, so there are

Φδ
β possible values for ̄.

Case 3. If i = ı̄pζ , j = ̄pζ , where p - ı̄, and p - ̄. Since the largest

p-power divisor of both i and j is pζ , the number of possible ı̄ and ̄ pairs is

φ(pα−(γ−δ))φ(pβ−(γ−δ)) = Φδ
αΦ

δ
β , by our analysis from Case 1 and 2.

Case 4. If i = ı̄pζ , j = ̄pζ , where p - ı̄, and p | ̄. In this case p divides ̄ and

we have to account for all p-powers from ζ+1 to β−1. Once this largest p-power

that divides j is fixed, the argument for counting the number of conjugacy classes

of size pδ follows from Case 3. Hence we sum over the possible p-powers to obtain

β−1∑

i=ζ+1

φ(pα−ζ)φ(pβ−i) = φ(pα−ζ)

β−1∑

i=ζ+1

φ(pβ−i) = Φδ
α

β−1∑

i=γ−δ+1

φ(pβ−i).

Case 5. If i = ı̄pζ , j = ̄pζ , where p | ı̄, and p - ̄, the analysis follows as in

Case 4 to yield

α−i∑

i=ζ+1

φ(pα−i)φ(pβ−ζ) = φ(pβ−ζ)

α−1∑

i=ζ+1

φ(pα−i) = Φδ
β

α−1∑

i=γ−δ+1

φ(pα−i).

The five cases now correspond to the five summands on the right hand side of the

expression for Cδ(G) in the statement of Proposition 5.4. ¤

The following lemma and corollary are used to simplify (5.5).
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Lemma 5.6. Let k > ` > j > 0 be integers and set m = k − `. Then:

k−1∑

i=j

φ(pk−i) = pm
( `−1∑

i=j

φ(p`−i) + p−m
m∑

i=1

φ(pi)

)
, (5.7)

`−1∑

i=j

φ(p`−i) = p−m

( k−1∑

i=j

φ(pk−i)−
m∑

i=1

φ(pi)

)
, (5.8)

m∑

i=1

φ(pi) = pm − 1. (5.9)

Proof. These follow immediately using φ(pm) = (p− 1)pm−1 for all m ≥ 1

and applying the formula for a finite geometric series. ¤

Corollary 5.10. Let G and H be 2-generator p-groups of order pn and

class 2 whose derived subgroups have order pγ . Then G and H have the same

number of conjugacy classes.

Proof. Fix n and let (α, β, γ) and (α′, β′, γ) be two positive partitions of n.

If α = α′, then β = β′, and then both G and H are elements of Gp(α, β, γ), hence

they have the same number of conjugacy classes by Proposition 5.4. Suppose then

that α 6=α′, and without loss generality take α > α′. Then α−α′ =β′ −β=µ.

Since α + β = α′ + β′, the centers of G and H have the same orders by Propo-

sition 2.3. Hence it suffices to show that Cδ(G) = Cδ(H) for δ = 1, . . . , γ. Since

α = α′ + µ and β = β′ − µ, we set

Φδ
α = φ(pα−(γ−δ)) = (p− 1)pα

′+µ−(γ−δ)−1 = (p− 1)pα
′−(γ−δ)−1pµ = Φδ

α′pµ

and similarly we obtain Φδ
β = Φδ

β′p−µ. Thus,

Φδ
αΦ

δ
β = Φδ

α′pµΦδ
β′p−µ = Φδ

α′Φδ
β′ .

We complete the proof by showing that the sum of the remaining four terms of

(5.5) for Cδ(G) and Cδ(H) are equal. We express the sum

Φδ
α +Φδ

β +Φδ
α

β−1∑

i=γ−δ+1

φ(pβ−i) + Φδ
β

α−1∑

i=γ−δ+1

φ(pα−i)

in terms of α′ and β′ using (5.7) and (5.8) to obtain
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Φδ
α′pµ +Φδ

β′p−µ +Φδ
α′pµ

(
p−µ

( β′−1∑

i=γ−δ+1

φ(pβ
′−i)−

µ∑

i=1

φ(pi)

))

+Φδ
β′p−µ

(
pµ

(
α′−1∑

i=γ−δ+1

φ(pα
′−i) + p−µ

µ∑

i=1

φ(pi)

))
.

Simplifying, we get

Φδ
α′pµ +Φδ

β′p−µ +Φδ
α′

β′−1∑

i=γ−δ+1

φ(pβ
′−i)− Φδ

α′

µ∑

i=1

φ(pi)

+ Φδ
β′

α′−1∑

i=γ−δ+1

φ(pα
′−i) + Φδ

β′p−µ

µ∑

i=1

φ(pi)

= Φδ
α′

β′−1∑

i=γ−δ+1

φ(pβ
′−i) + Φδ

β′

α′−1∑

i=γ−δ+1

φα′−i

+Φδ
α′

(
pµ −

µ∑

i=1

φ(pi)

)
+Φδ

β′p−µ

(
1 +

µ∑

i=1

φ(pi)

)

= Φδ
α′ +Φδ

β′ +Φδ
α′

β′−1∑

i=γ−δ+1

φ(pβ
′−i) + Φδ

β′

α′−1∑

i=γ−δ+1

φ(pα
′−i),

where the last equality is obtained using (5.9). Hence Cδ(G) = Cδ(H) as desired.

¤

Proof of Theorem 1.2. Let G be a 2-generator p-group of order pn and

class 2 and suppose that G′ has order pγ . To count the number of conjugacy

classes we may, without loss of generality, assume that G ∈ Gp(n − 2γ, γ, γ) by

Corollary 5.10.

(i) For δ = 0, by Proposition 2.3, the order of the center is

pn−2γ+γ−γ = pn−2γ .

For δ > 0, we have µ = n− 3γ. Then Φδ
α = φ(pµ+δ), Φδ

β = φ(pδ),

α−1∑

i=γ−δ+1

φ(pα−i) =

µ+δ−1∑

i=1

φ(pi), and

β−1∑

i=γ−δ+1

φ(pβ−i) =

δ−1∑

i=1

φ(pi).

Using (5.9) to simplify the equations above we obtain:

Cδ(G) = pγ−δ
(
φ(pµ+δ) + φ(pδ) + φ(pµ+δ)φ(pδ)

)
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+ pγ−δ
(
φ(pµ+δ)(pδ−1 − 1) + φ(pδ)(pµ+δ−1 − 1)

)

= pγ−δ
(
φ(pµ+δ)φ(pδ) + φ(pµ+δ)pδ−1 + φ(pδ)pµ+δ−1

)

= pγ−δφ(pδ)pµ+δ−1(p+ 1) = pn−2γ−1φ(pδ)(p+ 1).

ii) Summing over δ ∈ {0, . . . , γ}, we obtain the formula for the total number

of conjugacy classes of G again with the help of (5.9):

γ∑

δ=0

Cδ(G) = pn−2γ + pn−2γ−1(p+ 1)

γ∑

δ=1

φ(pδ)

= pn−2γ + pn−2γ−1(p+ 1)(pγ − 1) = pn−γ
(
1 + p−1 − p−(γ+1)

)
,

as claimed. ¤

We conclude this section with direct consequences of Corollary 5.10 and

Theorem 1.2, respectively.

Corollary 5.11. Let (α, β, γ) and (α′, β′, γ′) be two partitions of n of length

3, and let G ∈ Gp(α, β, γ) and H ∈ Gp(α
′, β′, γ′). Then G and H have the same

number of conjugacy classes if and only if γ = γ′. Moreover, the set

{
k | there exists G ∈ Gpnsuch that G has exactly k conjugacy classes

}

has exactly bn/3c elements.

Proof. If γ = γ′, then the number of conjugacy classes are equal by Corol-

lary 5.10.

Conversely, if the number of conjugacy classes of G and H are equal, then

pn−γ + pn−γ−1 − pn−1 = pn−γ′
+ pn−γ′−1 − pn−1

by Theorem 1.2 (ii). Since 0 < γ < n, the largest power of p that divides the left

hand side is pn−γ−1, and the highest power of p that divides the right hand side

is pn−γ′−1, so γ = γ′. Since 0 < γ ≤ bn/3c must hold, there are exactly bn/3c
possible values of γ. ¤

Corollary 5.12. Let G be a 2-generator p-group of order pn and class 2. If

G has derived subgroup of order pγ , then a(G), the abundance of G, is

a(G) =
pn−γ

(
1 + p−1 − p−(γ+1)

)− pe −m(p2 − 1)

(p2 − 1)(p− 1)
,

where m = bn/2c and e ∈ {0, 1}, e ≡ n (mod 2).
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6. Connections to previously published descriptions

As mentioned in the introduction, the attempts to classify the 2-generated

p-groups of class 2 that appeared in [6], [1] were incomplete, and in the case of

p = 2, two families that were claimed to be disjoint are not. There is also overlap

between our Theorem 1.1 and the results in [9]. In these cases the two results

agree. Theorem 1.1 and the results in [9], where the two agree.

In this final section, we connect our description with those given in the works

mentioned above; this is particularly important for the classifications in [6], [1],

since the lists given there have been used in subsequent work by these authors

and others, e.g., [2], [7], [8].

We begin with the work of Miech, since it is closest to our description. Mi-

ech considers 2-generated nonabelian p-groups with cyclic commutator subgroup.

Miech uses x, y, z where we use a, b, c, and uses a, b, c where we use α, β, γ,

but otherwise his approach is essentially the same as ours, with the added comp-

lications necessitated by not assuming the groups are of class two. The three

parameters, a, b, c describe the same quantities as our α, β, γ: pa ≥ pb are the

abelian invariants of the abelianization of the group, and pc is the order of the

commutator subgroup. Because of the more general situation considered in [9],

only the inequalities a ≥ b, a ≥ c may be taken a priori.

Once these three quantities are fixed, Miech parameterizes the groups with

4-tuples, [Rpr, Sps, pm, pn], that describe the groups

〈
x, y

∣∣∣∣∣
[x, y]p

c

= [x, y, x]p
m

= [x, y, y]p
n

= 1,

xpa

= [x, y]Rpr

, yp
b

= [x, y]Sps

〉
,

with the parameters satisfying certain inequalities. Because the groups considered

include groups of higher class, one cannot restrict attention to r and s in general,

as we did, hence the need to keep track of the parameters R and S. The groups

then break down into 21 families that are described in eight theorems, depending

on the relative values of b and c, and of a−b and c; these families, like ours, specify

inequalities between the parameters R, S, r, s, m, and n. Only those families

in which m = n = c is possible correspond to groups of class two; in those, the

inequalities always force R = S = 1, as we expect from our classification. The

parameters r and s then correspond to our ρ and σ, respectively. The only other

difference is that rather than use pc as the parameter when xpa

= 1 or yp
b

= 1,

Miech sometimes sets Rpr = 0 or Sps = 0.

Our four families for odd p (Families 1(a)–1(c) and 2 from Theorem 1.1) fall

into seven of the families described by Miech; setting m = n = c and simplifying
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the ancillary inequalities and conditions on the parameters to account for this,

they are:

(I) [pr, 0, 0, 0] when b ≥ c and a− b > c [9, Theorem 2(a)], which are included

in our Family 1(a).

(II) [pr, ps, 0, 0] when b ≥ c, a − b > c, and 0 ≤ s < r ≤ c [9, Theorem 2(c)],

which fall either in our Family 1(b) or in 1(c).

(III) [0, ps, 0, 0] when a > b ≥ c, a−b ≤ c, and s < c− (a−b) [9, Theorem 3(b)],

which are included in our Family 1(b).

(IV) [pr, 0, 0, 0] when a > b ≥ c, a − b ≤ c, and r ≤ c [9, Theorem 3(c)]; these

are included in our Family 1(a).

(V) [pr, ps, 0, 0] when a > b ≥ c, a− b ≤ c, s < r < s+ a− b+ 1, and s < c [9,

Theorem 3(f)], which are in our Family 1(c).

(VI) [0, ps, 0, 0] when a > b ≥ c, a − b ≤ c, s ≤ c − (a − b) [9, Theorem 3(h)],

which are in our Family 1(b).

(VII) [0, ps, 0, 0] when a = b and 0 ≤ s ≤ c [9, Theorem 5(b)]; these correspond

to our Family 2, with the roles of a and b reversed.

None of the other families or possible values of the parameters given by Miech

correspond to groups of class 2.

Moving now to the descriptions found in [1], [6], the groups are described

in terms of four families, one of which can only occur in the case p = 2. The

notation in these papers is very hard to reconcile with our own, since they use

both a, b, c and α, β, γ but for purposes very different from ours. We replace

these variables in the descriptions that follow with x, y, z for the elements, and

τ , υ, ϑ, ω for the parameters at play. The descriptions below for p > 2 appear in

[1]*Theorem 2.4, and in [6]*Theorem 2.5 for p = 2.

(i)
(〈z〉 × 〈x〉) o 〈y〉, with [x, y] = z, |z| = pτ , |y| = pυ, and τ ≥ υ ≥ ϑ ≥ 1.

By setting a = x, b = y, and c = z, we see that these groups are of type

(τ, υ, ϑ;ϑ, ϑ).

(ii) 〈x〉o 〈y〉, with [x, y] = xpτ−ϑ

, |x| = pτ , |y| = pυ, |[x, y]| = pϑ, τ ≥ υ, τ ≥ 2ϑ,

υ ≥ ϑ ≥ 1; when p = 2, we also place the restriction τ + υ > 3. If τ − ϑ ≥ υ,

then the groups are of type (τ − ϑ, υ, ϑ;ϑ, 0), which can be seen by setting

a = x, b = y, and c = xpτ−ϑ

; if τ − ϑ < υ, then we get (υ, τ − ϑ, ϑ; 0, ϑ) by

setting a = y, b = x, and c = xpτ−ϑ

.

(iii)
(〈z〉 × 〈x〉) o 〈y〉, with [x, y] = xpτ−ϑ

z, [z, y] = x−p2(τ−ϑ)

z−pτ−ϑ

, |x| = pτ ,

|y| = pυ, |z| = pω, |[x, y]| = pϑ, ϑ > ω ≥ 1, τ + ω ≥ 2ϑ, υ ≥ ϑ; if p is odd

we also require τ ≥ υ. If τ + ω − ϑ ≥ υ, then we let a = x, b = y, and
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c = xpτ−ϑ

z and we obtain that the group is of type (τ + ω − ϑ, υ, ϑ;ω, ϑ). If

τ + ω − ϑ < υ, we reverse the choice of a and b and get that the group is of

type (υ, τ + ω − ϑ, ϑ;ϑ, ω).

(iv)
(〈z〉×〈x〉)〈y〉, with |x| = |y| = 2ϑ+1, |z| = 2ϑ−1, [x, y] = x2z, [z, y] = x−4y−2,

|[x, y]| = 2ϑ, x2ϑ = y2
ϑ

, ϑ > 0. These groups have no counterparts for

odd prime, and they correspond to our family 3(b), groups of type (ϑ, ϑ, ϑ;

ϑ− 1, ϑ− 1), with a = x, b = y, and c = x2z.

As is clear, these families miss all the groups in family 1(c). The smallest

group that does not occur in these families is group (4, 2, 2; 1, 0), of order p8;

it was the realization by the first author that this group (with p = 2) was not

included in any of the families (i)–(iv) above that led to our Theorem 1.1.

In addition to this omission, when p = 2 the four families are not disjoint. If

we let υ = ϑ = τ − 1 = ω + 1 in family (iii) above, the values lead to the group

(ϑ, ϑ, ϑ;ϑ − 1, ϑ), which is isomorphic to the group (ϑ, ϑ, ϑ;ϑ, ϑ) that occurs in

family (i). The condition τ + υ > 3 in family (ii) prevents this group from

occurring for a third time when ϑ = 1. This overlap shows up inadvertently in

[8, Theorem 8.1(d)].
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