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Averaged Riemannian metrics and connections with application
to locally conformal Berwald manifolds
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Dedicated to Professor Kazunari Yamauchi on the occasion of his 65 birthday

Abstract. In this article, we investigate the class of Finsler manifolds which are

locally conformal to a Berwald manifold using the so-called averaged Riemannian metric

and averaged connection defined in [Ma-Ra-Tr-Ze] and [To-Et], respectively.

1. Introduction

A Finsler function for a smooth manifold M is a smooth assignment of a

Minkowski norm to the tangent space TpM at each point p ∈ M . If the function

satisfies the strong convexity condition, then there exists a natural Finsler con-

nection D in the vertical subbundle of TTM called the Berwald connection of

(M,L). If D is induced from a symmetric linear connection on M , then (M,L)

is called a Berwald manifold. By a clever observation of Z. I. Szabó, if (M,L) is

a Berwald manifold, then its Berwald connection is induced from the Levi–Civita

connection of a Riemannian metric on M (Theorem 4.1). Such a Riemannian

metric is given by the so-called averaged Riemannian metric obtained from the

given Finsler function [Ma-Ra-Tr-Ze, Vi].
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Landsberg manifolds also form a special class of Finsler manifolds, which

includes Berwald manifolds. Modifying the definition in [To-Et], we shall define

the averaged connection obtained from the Berwald connection. The first purpose

of this paper is to generalize Szabó’s theorem to the case of Landsberg manifolds:

if (M,L) is a Landsberg manifold, then the averaged connection is the Levi–Civita

connection of the averaged Riemannian metric (Theorem 5.1). Szabó’s theorem

is obtained as a special case of this theorem.

In a previous paper [Ai2], the author has introduced the notion of locally

conformal Berwald manifolds, which form a special class of the so-called Wagner

manifolds (see [Ha], [Sz-Sz]). The Weyl connection of the conformal class of a

Riemannian metric on M plays an important role when studying these spaces.

The second purpose of this paper is to show that the averaged connection is

the Weyl connection of the conformal class of the averaged Riemannian metric

(Theorem 6.1).

The author wishes to express here his sincere gratitude to Professor Dr. J. Szi-

lasi for the invaluable suggestions and encouragement.

2. Minkowski spaces and the Mazur–Ulam theorem

Let V be a real vector space of dimension n.

Definition 2.1. A function ‖·‖V : V −→ R is called a Minkowski norm if it

satisfies the following conditions:

(1) ‖v‖V ≥ 0, and ‖v‖V = 0 if and only if v = 0;

(2) for every v ∈ V and positive real number λ

‖λ · v‖V = λ · ‖v‖V (positive homogeneity); (2.1)

(3) for all v, w ∈ V

‖v + w‖V ≤ ‖v‖V + ‖w‖V (triangle inequality). (2.2)

In this case the pair (V, ‖·‖V ) is called a Minkowski space.

Notice that we do not assume the reversibility condition ‖v‖V = ‖−v‖V .
Therefore the indicatrix I = {v ∈ V | ‖v‖V = 1} is not necessarily symmetric

around the origin of V .
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If a Minkowski space (V, ‖·‖V ) is given, we can define the symmetrization

‖·‖0V of the norm ‖·‖V by

‖v‖0V =
‖v‖V + ‖−v‖V

2
, v ∈ V.

Then (V, ‖·‖0V ) is a normed vector space in the usual sense, i.e., besides the con-

ditions above the norm is also symmetric and thus absolute-homogeneous.

Definition 2.2. Let (V, ‖·‖V ) and (W, ‖·‖W ) be two Minkowski spaces. A

map P : V −→ W is said to be norm-preserving if it satisfies

‖v‖V = ‖P (v)‖W (2.3)

for every v ∈ V . If the relation

‖v − w‖V = ‖P (v)− P (w)‖W (2.4)

holds for all v, w ∈ V , then P is called an isometry. If there exists an isometry P

from V onto W , we say that V is congruent to W .

If an isometry P : V −→ W satisfies P (0) = 0, then by substituting w = 0

into (2.4) we obtain (2.3), and therefore in this case P is norm-preserving. It is

obvious that any norm-preserving map satisfies the condition P (0) = 0, but P is

not an isometry in general. However, if a norm-preserving map P : V −→ W is

linear, then it is an isometry.

Assume that P : V −→ W is an isometry. Then using the symmetrized

norms we have

‖P (v)− P (w)‖0W =
1

2
{‖P (v)− P (w)‖W + ‖−P (v) + P (w)‖W }

=
1

2
{‖v − w‖V + ‖−v + w‖V } = ‖v − w‖0V ,

and thus P : V −→ W is an isometry between the normed vector spaces (V, ‖·‖0V )
and (W, ‖·‖0W ). Therefore, from the Mazur–Ulam theorem (see [Ma-Ul] or The-

orem 3.1.2 in [Th]) we have

Theorem 2.1 (Mazur–Ulam). If V and W are Minkowski spaces and P is

an isometry from V onto W with P (0) = 0, then P is linear.
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3. Finsler metrics and Berwald connections

Throughout in the following, M will be a connected n-dimensional smooth

manifold and π : TM → M its tangent bundle. We denote by Γ (TM) the space

of smooth sections of TM , i.e., the C∞(M)-module of vector fields on M . The

deleted bundle for π is E := TM \ o(M), where o ∈ Γ (TM) is the zero section.

If f ∈ C∞(M), then f v := f ◦ π ∈ C∞(TM) is its vertical lift, and the function

f c : TM → R, v 7→ f c(v) := v(f)

is the complete lift of f .

We denote by V the vertical subbundle of TTM ; it is the kernel of the

tangent linear map π∗ : TTM → TM . The fibre of V at v ∈ TM may be

identified naturally with the tangent vector space TvTπ(v)M . Γ (V) and Γ (TTM)

stand for the C∞(TM)-modules of smooth sections of V and TTM , respectively.

Generic sections in Γ (TTM) will be denoted by Greek letters ξ, η, . . . . For each

vector field X on M there exists a unique section Xv ∈ Γ (V) such that

Xvf c = (Xf)v for all f ∈ C∞(M),

and we have a unique vector field Xc ∈ Γ (TTM) such that

Xcf c = (Xf)c and Xcf v = (Xf)v for all f ∈ C∞(M).

We say that Xv is the vertical lift, Xc is the complete lift of X.

There exists a canonical type (1, 1) tensor field J on TM such that

JXv = 0, JXc = Xv for all X ∈ Γ (TM).

J is called the vertical endomorphism of TTM . It follows immediately that

Im(J) = Ker(J) = V, J2 = 0.

If (U , (u1, . . . , un)) =: (U , u) is a chart on M , then



(π−1(U), (x1, . . . , xn, y1, . . . , yn)) =: (π−1(U), (x, y)),
xi := (ui)v, yi := (ui)c, i ∈ {1, . . . , n}

is a chart on TM , called the chart induced by (U , u). Then ∂
∂yi =

(
∂

∂ui

)v
, and

Γ (V) is locally generated by
(

∂
∂yi

)n
i=1

. We have a canonical section E in Γ (V)
such that

E ¹ π−1(U) =
n∑

i=1

yi
∂

∂yi
.
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Definition 3.1. A function L : TM → R is called a Finsler function (or a

Finsler structure on M) if

(F1) L(v) ≥ 0 for all v ∈ TM and L(v) = 0 if and only if v = 0;

(F2) L(λv) = λL(v) for all v ∈ TM and for all real number λ > 0;

(F3) L is smooth on E;

(F4) L(v+w) ≤ L(v)+L(w) for all v, w ∈ TpM, p ∈ M (triangle inequality).

Then the pair (M,L) is said to be a Finsler manifold. A Finsler structure on M

gives rise to a Minkowski norm

‖v‖ := L(v), v ∈ TpM

on each tangent space to M .

Let p and q be two points of a Finsler manifold (M,L), and denote by C(p, q)
the set of all piecewise smooth, regular, oriented curve segments γ : [a, b] → M

from p to q. Define a functional FL : C(p, q) → R by

FL(γ) :=

∫ b

a

‖γ̇(t)‖dt =
∫ b

a

L(γ̇(t))dt.

By the homogeneity condition (F2), FL(γ) is well-defined; it is called the length

of γ. The (Finslerian) distance of p and q is defined by

dL(p, q) := inf
γ∈C(p,q)

FL(γ).

Then the function

dL : M ×M → R, (p, q) 7→ dL(p, q)

is a quasi-distance on M : it satisfies the distance axioms except that dL(p, q) is

not necessarily equal to dL(q, p) since we did not require the reversibility condition

L(v) = L(−v).

By a geodesic of (M,L) we mean a positive constant speed extremal of

the functional FL, i.e., a curve γ : [a, b] → M such that in any induced chart

(π−1(U), (x, y))

∂L

∂xi
◦ γ̇ −

(
∂L

∂yi
◦ γ̇

)′
= 0, i ∈ {1, . . . , n}

(γ satisfies the Euler–Lagrange equations of FL), and for some positive λ ∈ R

L(γ̇(t)) = λ, t ∈ [a, b].
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The type (0, 2) tensor field

G : Γ (V)× Γ (V) → C∞(TM)

specified on the vertical lifts of vector fields on M by

G(Xv, Y v) :=
1

2
Xv(Y vL2); X,Y ∈ Γ (TM)

is called the metric tensor associated to L. The components of G with respect to

an induced chart are the functions

Gij := G

((
∂

∂ui

)v

,

(
∂

∂uj

)v)
= G

(
∂

∂yi
,

∂

∂yj

)
=

1

2

∂2L2

∂yi∂yj
.

A function L : TM → R is said to be a strongly convex Finsler structure on M if

it satisfies (F1)–(F3) and

(F4+) G is fibrewise positive definite.

In local coordinates this means that the vertical Hessian

(Gij) =
1

2

(
∂2L2

∂yi∂yj

)

of L is positive definite at each point v ∈ π−1(U) ∩ E.

It is well-known that, under (F1)–(F3), (F4+) implies (F4); see e.g.

[Ba-Ch-Sh]. Traditionally, a Finsler structure is defined by the stronger conditions

(F1)–(F3) and (F4+).

From now on all Finsler structure will be assumed strongly convex.

There exists a unique spray S : E → TE for M satisfying:

(GS1) if γ is a geodesic of (M,L), then γ̇ is an integral curve of S;

(GS2) if α is an integral curve of S, then π ◦ α is a geodesic of (M,L).

This spray is called the geodesic spray of (M,L).

The vertical subbundle V of TE has a canonical complementary subbundle

H such that the C∞(E)-module Γ (H) is generated by the (H-) horizontal lifts

XH :=
1

2
(Xc + [Xv, S]), X ∈ Γ (TM). (3.1)

H is called the Berwald nonlinear connection of (M,L). Specifying this nonlinear

connection in E, any vector field ξ ∈ Γ (E) has a unique decomposition of the

form

ξ = vξ + hξ; vξ ∈ Γ (V), hξ ∈ Γ (H).
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This leads to two type (1, 1) tensors on E, the vertical projection v and the

horizontal projection h associated to H.

A fundamental property of the Berwald nonlinear connection is its compati-

bility with the Finsler function in the following sense:

XHL = 0 for all X ∈ Γ (TM). (3.2)

The (1, 1)-tensor h (as every vector-valued 1-form on E) determines a graded

derivation of degree 1 of the exterior algebra of E, denoted by dh, by the following

rules:

(i) (dhF )(ξ) := (hξ)F , for all F ∈ C∞(E) and ξ ∈ Γ (E);

(ii) dh ◦ d = −d ◦ dh, where d is the standard exterior derivative.

With the help of the operator dh, relation (3.2) may be expressed in the

concise form

dhL = 0. (3.3)

The Berwald nonlinear connection induces a covariant derivative operator

D : Γ (E)× Γ (V) → Γ (V), (ξ,Jη) 7→ DξJη (η ∈ Γ (E))

given by
DhξJη : = v[hξ,Jη], (3.4)

DJξJη : = J[Jξ, η]. (3.5)

This covariant derivative is called the Berwald derivative (or Berwald connection)

of the Finsler manifold (M,L). With the choice ξ := Xc, η := Y c (X,Y ∈
Γ (TM)) (3.4) takes the form

DXHY v = [XH, Y v] = LXHY v (3.6)

(since hXc = XH, JY c = Y v and [XH, Y v] ∈ Γ (V)). It may be shown that

DXHY v −DY HXv − [X,Y ]v = 0 (X,Y ∈ Γ (TM)); (3.7)

this expresses that the Berwald derivative (or, more precisely, the Berwald non-

linear connection) is torsion-free.

4. Berwald manifolds and Landsberg manifolds

First we recall the concept of parallel displacement on a Finsler manifold

with respect to the Berwald nonlinear connection H.
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Let I ⊂ R be an open interval containing 0. Let c : I → M be a (smooth)

curve and X : I → E a vector field along c. X is called H-parallel (or simply

parallel) along c if

Ẋ(t) ∈ Hċ(t) for all t ∈ I.

Given a tangent vector v ∈ Tc(0)M \ {o}, there exists a unique H-parallel vector

field X along c such that Ẋ(0) = v. If t ∈ I, q := c(t), p := c(0), then the

mapping

Pc : TpM → TqM, v 7→ Pc(v) := Ẋ(t)

is said to be the parallel displacement along c from p to q with respect to H. It

is positive-homogeneous, i.e.,

Pc(λv) = λPc(v); v ∈ TpM \ {o}, 0 < λ ∈ R.
The compatibility of H and L (see (3.2) or (3.3)) implies that Pc preserves the

Minkowski norms of tangent vectors, i.e.,

‖Pc(v)‖ = ‖v‖ for all v ∈ TpM \ {o}.
The H-parallel displacements, however, are not isometries in general. As it was

shown in [Ic2], this extra property holds if, and only if, the Finsler manifold is

a Berwald manifold. In our paper we take Ichijyō’s characterization as a cue for

giving an alternative, geometrical definition of Berwald manifolds.

Definition 4.1. A Finsler manifold is said to be a Berwald manifold if the

parallel displacements with respect to the Berwald nonlinear connection are isom-

etries between the tangent spaces as Minkowski spaces.

With the notation of the previous paragraph, this means that

‖Pc(v)− Pc(w)‖ = ‖v − w‖ for all v, w ∈ TpM.

Corollary 4.1. In a Berwald manifold the parallel displacements with res-

pect to the Berwald nonlinear connection are linear isometries between the tan-

gent spaces.

Indeed, this is an immediate consequence of the Mazur–Ulam theorem.

Now it is not difficult to deduce the following well-known characterization of

Berwald manifolds (see, e.g., [Sz-Lo-Ke]): a Finsler manifold (M,L) is a Berwald

manifold if, and only if, the ‘horizontal part’ of the Berwald connection D is

induced by a torsion-free covariant derivative ∇ on M such that

DXHY v = (∇XY )v for all X,Y ∈ Γ (TM). (4.1)

Actually, due to the clever observation of Z. I. Szabó mentioned in the Introduc-

tion, we have more precise information on the covariant derivative ∇.
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Theorem 4.1 ([Sz]). If (M,L) is a Berwald manifold, then its Berwald

derivativeD is induced by the Levi–Civita derivative∇g of a Riemannian metric g

on M such that

DXHY v = (∇g
XY )v; X,Y ∈ Γ (TM).

The metric tensor G of a Finsler manifold (M,L) induces a Riemannian

metric G̃p, for each p ∈ M , on the punctured tangent space TpM \{0} by the rule





(G̃p)u(v, w) :=

n∑

i,j=1

Gij(u)y
i(v)yj(w),

v, w ∈ TpM ∼= TuTpM ∼= Vu.

Following [Ic2] again (see also [Ba]), we introduce the concept of a Landsberg

manifold as follows:

Definition 4.2. A Finsler manifold is said to be a Landsberg manifold if the

parallel displacements with respect to the Berwald nonlinear connection are local

Riemannian isometries between the punctured tangent spaces as Riemannian

manifolds.

Landsberg manifolds also have well-known tensorial characterizations:

Theorem 4.2. A Finsler manifold is a Landsberg manifold if, and only if,

its metric tensor has vanishing horizontal Berwald derivatives or, equivalently,

LXHG = 0 for all X ∈ Γ (TM).

It has been known for a long time that every Berwald manifold is a Landsberg

manifold, while the existence or the non-existence of Landsberg structures that

are not of Berwald type has not been clearly decided until now.

5. Averaged Riemannian metrics and connections

The indicatrix of a Finsler manifold (M,L) at a point p ∈ M is the unit

sphere

Ip :=
{
v ∈ TpM

∣∣ ‖v‖ = L(v) = 1
}

of the Minkowski space TpM . The unit sphere bundle associated to TM is I(M) =⋃
p∈M Ip. We define a volume form µ in V by

µ(Xv
1 , . . . , X

v
n) =

√
detG(Xi, Xj); Xi ∈ Γ (TM).
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In an induced chart (π−1(U), (x, y))

µ

(
∂

∂y1
, . . . ,

∂

∂yn

)
=

√
detGij =

√
detG,

so in these coordinates

µ =
√
detG dy1 ∧ · · · ∧ dyn.

The (n− 1)-form

µI := iEµ, (5.1)

where iE is the substitution operator by E , induces a volume form in I(M), which

gives rise to a volume form µIp on each indicatrix Ip, p ∈ M .

Lemma 5.1. If (M,L) is a Landsberg manifold, then

LXHµI = 0 for all X ∈ Γ (TM), (5.2)

therefore the volume

vol(Ip) =

∫

Ip

µI

of the indicatrix Ip does not depend on the choice of the point p ∈ M .

Proof. It has already been shown in [Ai4] that if (M,L) is a Landsberg

manifold, then

LXHµ = 0 for all X ∈ Γ (TM).

Hence

LXHµI = LXHiEµ = iELXHµ+ i[XH,E]µ = 0,

taking into account that [XH, E ] = 0 by the homogeneity of the Berwald nonlinear

connection. ¤

Lemma 5.2 ([Ma-Ra-Tr-Ze, Vi]). Let (M,L) be a Finsler manifold with

metric tensor G. Then the mapping

g : Γ (TM)× Γ (TM) → C∞(M), (X,Y ) 7→ g(X,Y )

given by

g(X,Y )(p) :=
1

vol(Ip)

∫

Ip

G(Xv, Y v)µIp (5.3)

is a Riemannian metric on M .

The Riemannian metric given by (5.3) is said to be the averaged Riemannian

metric for (M,L). If g =
∑

i,j gijdu
i ⊗ duj in a chart (U , (ui)ni=1), then the

component functions gij of the averaged Riemannian metric are given by

gij(p) =
1

vol(Ip)

∫

Ip

GijµIp , p ∈ U .
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Lemma 5.3. Let g be the averaged Riemannian metric for a Finsler manifold

(M,L). Then the mapping

∇ : Γ (TM)× Γ (TM) → Γ (TM), (X,Y ) 7→ ∇XY

given by

g (∇XY,Z) (p) :=
1

vol(Ip)

∫

Ip

G (DXHY v, Zv)µIp (5.4)

(Z ∈ Γ (TM), p ∈ M) is a torsion-free covariant derivative on the manifold M .

Proof. The mapping ∇ is obviously additive both in X and Y . Since for all

f ∈ C∞(M), (fX)H = f vXH and f v is fibrewise constant, it follows immediately

that ∇ is tensorial in X.

We show that∇ is a derivation in Y . Let f ∈ C∞(M). ThenXHf v = (Xf)v,

(fY )v = f vY v, so we obtain

g (∇XfY, Z) (p) =
1

vol(Ip)

∫

Ip

G(DXH(fY )v, Zv)µIp

=
1

vol(Ip)

∫

Ip

G
(
(Xf)vY v + f vDXHY v, Zv

)
µIp

=
(Xf)(p)

vol(Ip)

∫

Ip

G(Y v, Zv)µIp +
f(p)

vol(Ip)

∫

Ip

G (DXHY v, Zv)µIp

=:
(
(Xf)g(Y, Z) + fg(∇XY, Z)

)
(p) = g

(
(Xf)Z + f∇XY, Z

)
(p)

therefore ∇XfY = (Xf)Y + f∇XY .

Finally, the torsion-freeness of ∇ is an immediate consequence of the defini-

tion and (3.7). ¤

We say that the torsion-free covariant derivative ∇ is the averaged covariant

derivative obtained from (or associated to) the Berwald derivative of (M,L);

cf. [To-Et].

To prepare our next result, let X be a vector field on M , and let

ϕ : W ⊂ R×M → M, (t, p) 7→ ϕ(t, p) = ϕt(p) = ϕp(t)

be its (local) flow. (The domainW of ϕ is a radial open neighbourhood of {0}×M

in R×M .) The local flow of the horizontal lift XH of X is ϕH : W̃ → E, (t, v) 7→
ϕH(t, v) = ϕH

t (v) = ϕH
v , where W̃ =

{
(t, v) ∈ R× E

∣∣(t, π(v)) ∈ W
}
and, for any

fixed v ∈ E, ϕH
v is the horizontal lift of the curve ϕπ(v) : t 7→ ϕ(t, π(v)) starting

from v given by the conditions{
π ◦ ϕH

v = ϕπ(v),

ϕ̇H
v (t) ∈ HϕH

v (t), ϕH
v (0) = v.

For a proof of this simple observation we refer to [Sz-Lo-Ke].



190 Tadashi Aikou

Theorem 5.1. Let (M,L) be a Landsberg manifold and g the averaged

Riemannian metric for (M,L). The averaged covariant derivative ∇ obtained

from the Berwald derivative D of (M,L) is the Levi–Civita derivative of g.

Proof. As we have seen in Lemma 5.1, in a Landsberg manifold (M,L) the

function

M → R, p 7→ vol(Ip)

is constant. Keeping the notation of the previous paragraph, let X be a vector

field on M and ϕ its flow. Relation (5.2) implies that (ϕH
t )∗µI = µI for each t ∈ R

such that (t, v) ∈ W̃ for all v ∈ E. Now, for any vector fields Y,Z ∈ Γ (TM) and

at each point p ∈ M we have

(ϕ∗
t )(g(Y,Z))(p) = g(Y,Z)(ϕt(p)) =

1

vol(Iϕt(p))

∫

Iϕt(p)

G(Y v, Zv)µI

=
1

vol(ϕH
t (Ip))

∫

ϕH
t (Ip)

G(Y v, Zv)µI

=
1

vol(Ip)

∫

Ip

(ϕH
t )∗

(
G(Y v, Zv)µI

)

=
1

vol(Ip)

∫

Ip

(
(ϕH

t )∗G(Y v, Zv)
)
µI

which implies

Xp g(Y,Z) =
1

vol(Ip)

∫

Ip

(
XHG(Y v, Zv)

)
µI . (5.5)

Applying (5.5), (5.4) and Theorem 4.2 we obtain

(Xg(Y, Z)− g(∇XY,Z)− g(Y,∇XZ))(p)

=
1

vol(Ip)

∫

Ip

(
XHG(Y v, Zv)−G(DXHY v, Zv)−G(Y,DXHZv)

)
µI

=
1

vol(Ip)

∫

Ip

(DXHG)(Y v, Zv)µI = 0.

Thus ∇ is compatible with the metric tensor g. Since it is torsion-free at the

same time, ∇ is the Levi–Civita connection of the averaged metric g. ¤

Having this result, Theorem 4.1 can be refined as follows.

Theorem 5.2 (see also [Vi]). If (M,L) is a Berwald manifold, then its

Berwald derivative is induced by the Levi–Civita derivative ∇g of the averaged

Riemannian metric g for (M,L).
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Proof. In the Berwaldian case the Berwald derivative is induced by a co-

variant derivative ∇′ on M according to (4.1). Thus for the averaged covariant

derivative ∇ obtained from the Berwald derivative we have

g(∇XY, Z)(p)
(5.4)
=

1

vol(Ip)

∫

Ip

G((∇′
XY )v, Zv)µI

(5.3)
= g(∇′

XY, Z)(p)

(X,Y, Z ∈ Γ (TM), p ∈ M); hence ∇ = ∇′. Since a Berwald manifold is also

a Landsberg manifold, by the preceding theorem ∇ = ∇g = the Levi–Civita

derivative of g. ¤

Remark 5.1. Suppose (M,L) is a Landsberg manifold. Let ∇̃ be the co-

variant derivative on the vertical bundle V induced by the averaged covariant

derivative ∇ for (M,L). Then, for any vector fields X,Y on M ,

∇̃XvY v = 0, ∇̃XHY v = (∇XY )v.

Since ∇ is compatible with the averaged Riemannian metric g, applying (5.5)

and (5.3) we obtain

0 = (Xg(Y,Z)− g(∇XY, Z)− g(Y,∇XZ))(p)

=
1

vol(Ip)

∫

Ip

(
XHG(Y v, Zv)−G

(
(∇XY )v, Zv

)−G
(
Y v, (∇XZ)v

))
µI

=
1

vol(Ip)

∫

Ip

(
XHG(Y v, Zv)−G

(∇̃XHY v, Zv
)−G

(
Y v, ∇̃XHZv

))
µI

=
1

vol(Ip)

∫

Ip

(∇̃XHG
)
(Y v, Zv)µI .

Thus, in a Landsberg manifold (M,L) we have

∫

Ip

(∇̃XHG
)
(Y v, Zv)µI = 0 (5.6)

for all X,Y, Z ∈ Γ (TM), p ∈ M . If, in particular, (M,L) is a Berwald manifold,

then (5.6) is satisfied since ∇̃ = D = the Berwald derivative of (M,L). So, to

find a Landsberg structure which is not of Berwald type, one has to construct a

Finsler function satisfying (5.6), but for which ∇̃XHG 6= 0, X ∈ Γ (TM).
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6. L.c. Berwald manifolds and Finsler–Weyl structures

Let (M,L) be a Finsler manifold, and let ∇ be a torsion-free covariant de-

rivative on M , whose Christoffel symbols with respect to a chart (U , u) are the

functions γi
jk (i, j, k ∈ {1, . . . , n}). The covariant derivative ∇ induces a horizon-

tal subbundle H∇ of TTM spanned in the induced chart (π−1(U), (x, y)) by the

local vector fields

∂

∂xj
−
∑

k,l

ykγl
jk

∂

∂yl
, j ∈ {1, . . . , n}. (6.1)

Let h∇ be the horizontal projection associated to H∇. It may easily be shown

that if dh∇L = 0 (c.f. (3.3)), then the Berwald derivative of (M,L) is induced

by ∇. Therefore we have

Proposition 6.1. A Finsler manifold (M,L) is a Berwald manifold if, and

only if, there exists a torsion-free covariant derivative∇ onM such that dh∇L=0.

This covariant derivative is just the Levi–Civita derivative of the averaged Rie-

mannian metric for (M,L).

Let σ be a smooth function on M , and denote by eσ the composite function

exp ◦σ. Consider a conformal change

L −→ L̄ := (eσ)vL (6.2)

of the Finsler function L. Then, obviously, L̄ is also a (strongly convex) Finsler

function. Under this conformal change, the metric tensor G, the indicatrix Ip at

a point p ∈ M , and the volume form µ on V change as follows:

Ḡ = (e2σ)v G, (6.3)

µ̄ = (enσ)v µ, (6.4)

Īp = {e−σ(p)v ∈ TpM | v ∈ Ip} = ψ(Ip), (6.5)

where

ψ : E −→ E; v 7→ e−σ(p)v, if v ∈ TpM.

From relation (6.4) we obtain

µ̄I = (enσ)v µI . (6.6)
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Lemma 6.1. Under the conformal change (6.2), the volume of an indicatrix

Ip changes by

vol(Īp) = eσ(p) vol(Ip) (6.7)

and the change of the averaged Riemannian metric for (M,L) is given by

ḡ = (e2σ)vg. (6.8)

Proof. Using (6.6) and the change of variables theorem,

vol(Īp) : =

∫

Īp

µ̄I =

∫

ψ(Ip)

(enσ)vµI = enσ(p)
∫

Ip

ψ∗µI

= enσ(p)
∫

Ip

(e−(n−1)σ)vµI = eσ(p)
∫

Ip

µI = eσ(p) vol(Ip),

as we claimed.

Let ḡ be the averaged Riemannian metric for (M,L). Then for all X,Y ∈
Γ (TM),

ḡ(X,Y )(p) :=
1

vol(Īp)

∫

Īp

Ḡ(Xv, Y v)µ̄I

(6.3),(6.6),(6.8)
=

e−σ(p)

vol(Ip)

∫

ψ(Ip)

(e2σ)v · (enσ)vG(Xv, Y v)µI

=
e(n+1)σ(p)

vol(Ip)

∫

Ip

ψ∗(G(Xv, Y v)µI

)

=
e(n+1)σ(p)

vol(Ip)

∫

Ip

(
G(Xv, Y v) ◦ ψ)ψ∗µI

(∗)
=

e(n+1)σ(p)

vol(Ip)

∫

Ip

G(Xv, Y v)(e−(n−1)σ)vµI

=
e2σ(p)

vol(Ip)

∫

Ip

G(Xv, Y v)µI =: (e2σ)vg(X,Y )(p)

taking into account at step (∗) that the function G(Xv, Y v) : E → R is positive-

homogeneous of degree zero, and hence G(Xv, Y v) ◦ ψ = G(Xv, Y v). ¤

Motivated by Proposition 6.1, we say that a Finsler manifold (M,L) is con-

formally Berwald if there exists a conformal change of type (6.2) and a torsion-free

covariant derivative ∇ on M such that dh∇L̄ = 0.



194 Tadashi Aikou

Lemma 6.2 (cf. [Ai2]). A Finsler manifold (M,L) is conformally Berwald

if, and only if, there exists a function σ ∈ C∞(M) and a torsion-free covariant

derivative ∇ on M such that

dh∇+dσv⊗EL = 0. (6.9)

Proof. For any vector field X on M , we have

(dh∇L̄)(Xc) = XH∇
((eσ)vL) =

(
XH∇

(eσ)v
)
L+ (eσ)v

(
XH∇

L
)

= (Xeσ)vL+ (eσ)v(h∇Xc)L = (eσ)v
(
(Xσ)vL+ (h∇Xc)L

)

= (eσ)v
(
(Xcσv)EL+ (h∇Xc)L) = (eσ)v

(
(dσv ⊗ E)Xc + h∇Xc

)
L

= (eσ)vdh∇+dσv⊗E(X
c).

Hence dh∇L̄ = (eσ)vdh∇+dσv⊗EL, therefore dh∇L̄ vanishes if, and only if, relation

(6.9) is satisfied. ¤

Definition 6.1. A Finsler manifold (M,L) is said to be a locally conformal

Berwald (l.c. Berwald) manifold, if there exist an open covering (Uα)α∈A of M ,

a family (σα)α∈A of smooth functions σα : Uα → R and a torsion-free covariant

derivative ∇ on M such that

dh∇
(
(eσα)vL

)
= 0 for all α ∈ A. (6.10)

Lemma 6.3. If (M,L) is an l.c. Berwald manifold, then the family (dσα)α∈A

of local 1-forms defines a single closed 1-form βL on M .

Proof. Let (by a slight abuse of notation) for each α ∈ A

h̄α := h∇ + dσv
α ⊗ E .

Then, by Lemma 6.2, dh̄α
= 0 (α ∈ A). So for any α, β ∈ A with Uα ∩ Uβ 6= 0

and for any vector field X on M we have

0 = (dh̄α
L− dh̄β

L)(Xc) = (Xcσv
α −Xcσv

β)L

= (Xσα −Xσβ)
vL =

(
(dσα − dσβ)X

)v
L

whence dσα ¹ Uα ∩Uβ = dσβ ¹ Uα ∩Uβ . So if we set βL ¹ Uα := dσα, α ∈ A, then

we obtain the desired 1-form on M . ¤

From Lemma 6.3 we conclude immediately
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Proposition 6.2 (cf. [Ai2, Ha, Sz-Sz]). A Finsler manifold (M,L) is an l.c.

Berwald manifold if, and only if, there exists a torsion-free covariant derivative

∇ and a closed 1-form βL on M such that dh∇+βL⊗EL = 0. Then ∇̄ := ∇ −
βL ⊗ 1Γ (TM) is a semi-symmetric covariant derivative on M (i.e., its torsion T ∇̄

satisfies T ∇̄(X,Y ) = βL(Y )X−βL(X)Y ), and dh∇L = 0. Thus (M,L) (or, more

accurately, the quadruple (M,L,∇, βL)) is a Wagner manifold.

Notice that the covariant derivative ∇̄ is compatible with the averaged Rie-

mannian metric g for (M,L), i.e., ∇̄g = 0.

Example 6.1 ([Ai3]). Let (M, g) be a Riemannian manifold and ξ a semi-

parallel vector field on M , i.e., a vector field satisfying g(ξ, ξ) = 1 and

∇gξ = ρ(1Γ (TM) − β ⊗ ξ),

where ∇g is the Levi–Civita derivative of (M, g), ρ is a real number, and β is the

1-form metrically equivalent to ξ, i.e.,

β(X) = g(X, ξ) for all X ∈ Γ (TM).

Now we define a Finsler function L by the rule

L(v) :=
√
gπ(v)(v, v) + cβπ(v)(v), v ∈ TM,

where c is a fixed scalar in ] 0, 1 [ . Such a Finsler function is called (by an abuse

of language) a Randers metric on M . Assumption 0 < c < 1 guarantees that L

is indeed strongly convex (see [An-In-Ma]). It is easy to check that β is closed,

and the formula

∇XY := ∇g
XY + ρ(g(X,Y )ξ − β(Y )X); X,Y ∈ Γ (TM)

defines a semi-symmetric covariant derivative on M satisfying dh∇L = 0. There-

fore this Randers manifold is an l.c. Berwald manifold and hence also a Wagner

manifold.

In the rest of the paper we assume that (M,L) is an l.c. Berwald manifold

with the data ∇, (Uα)α∈A, (σα)α∈A as in Definition 6.1.

Observe first that (M,L) remains an l.c. Berwald manifold under any con-

formal change of the form (6.2). Indeed, for all α ∈ A we have

0 = dh∇((eσα)vL) = dh∇((eσα−σ)vL̄),
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and the 1-form βL̄ described in Lemma 6.3 is given by βL̄ = βL − dσ.

Let C be the conformal class of the Finsler function L ([Ai2]), and let A1(M)

denote the C∞(M)-module of 1-forms on M . If

β : C −→ A1(M), L̄ 7→ β(L̄) := βL̄,

then (C, β) is a Finsler–Weyl structure in the sense of [Ko]. Thus we obtain

Proposition 6.3. On any l.c. Berwald manifold there exists a natural Fins-

ler–Weyl structure.

Now let g be the averaged Riemannian metric for (M,L), and let (by an

abuse of notation)

gα := e2σαg for all α ∈ A.

By Lemma 6.1, gα is the averaged Riemannian metric for the local Finsler function

(σα)v L ¹ π−1(Uα), briefly for (σα)v L. This Finsler function is of Berwald type

on its domain, so by Proposition 6.1 we have

0 = ∇gα = ∇(e2σαg) = e2σα(∇g + 2dσα ⊗ g)

whence ∇g = −2βL ⊗ g. Thus we have proved

Theorem 6.1. If (M,L) is an l.c. Berwald manifold and g is the averaged

Riemannian metric for (M,L), then the torsion-free covariant derivative ∇ satis-

fying (6.10) is the Weyl connection for the conformal class of g.
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