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On weakly symmetric and weakly Ricci symmetric warped
product manifolds

By ABSOS ALI SHAIKH (Burdwan) and HARADHAN KUNDU (Burdwan)

Abstract. This paper is concerned with some results on weakly symmetric and

weakly Ricci symmetric warped product manifolds. We prove the necessary and suffici-

ent condition for a warped product manifold to be weakly symmetric and weakly Ricci

symmetric. On the basis of these results two proper examples of warped product weakly

symmetric and weakly Ricci symmetric manifolds are presented.

1. Introduction

Let M , dimM = n ≥ 3, be a semi-Riemannian manifold with Levi–Civita

connection ∇ and semi-Riemannian metric g. Let R, S and κ be the curvature

tensor of type (0, 4), Ricci tensor of type (0, 2) and scalar curvature of (M, g)

respectively. The manifold M is locally symmetric if ∇R = 0, which is equivalent

to the fact that for each point x ∈ M , the local geodesic symmetry is an isometry.

For 2-dimensional manifolds being of locally symmetric and being of constant

curvature are equivalent. But for n ≥ 3, the locally symmetric manifolds are

a generalization of the manifolds of constant curvature. A full classification of

locally symmetric manifolds is given by Cartan [3] for Riemannian case and

Cahen and Parker ([4], [5]) for indefinite case. The semi-Riemannian manifold

M is said to be Ricci-symmetric if ∇S = 0. Every locally symmetric manifold is

Ricci-symmetric but not conversely, in general. However, the converse is true for

dimension 3.
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During the last six decades the notion of locally symmetric manifolds has been

weakened by many authors in different directions such as recurrent manifolds by

Walker [50], generalized recurrent manifolds by Dubey [20], quasi-generalized

recurrent manifolds by Shaikh and Roy [43], weakly generalized recurrent mani-

folds by Shaikh and Roy [44], hyper-generalized recurrent manifolds by Shaikh

and Patra [42], semi-symmetric manifolds by Szabó [46], pseudosymmetric ma-

nifolds by Chaki [6], pseudosymmetric manifolds by Deszcz [19], weakly sym-

metric manifolds by Selberg [31] and weakly symmetric manifolds by Tamássy

and Binh [47]. We note that the notion of pseudosymmetry by Deszcz [19] is

different to that by Chaki [6]. Also, the notion of weakly symmetric manifolds by

Selberg [31] is different to that by Tamássy and Binh [47] and throughout the

paper we will confined ourselves with the notion of weakly symmetric manifolds

by Tamássy and Binh [47].

Let U = {x ∈ M : ∇R 6= 0 and R 6= 0 at x}. Then (M, g) is said to be

recurrent [50] if on U ⊂ M , we have ∇R = H ⊗R, where H is an unique 1-form.

It is obvious that the 1-form H is non-zero at every point of U . Such a manifold

is denoted by Kn.

Let UR = {x ∈ M : R 6= 0 and ∇R − A ⊗ R 6= 0 at x for all 1-forms A}.
Then (M, g) is said to be weakly symmetric [47] if on UR ⊂ M , we have ∇R = L,

where L is a tensor of type (0,5) defined by

L(X,X1, X2, X3, X4) = A(X)R(X1, X2, X3, X4) +B(X1)R(X,X2, X3, X4)

+ C(X2)R(X1, X,X3, X4)r +D(X3)R(X1, X2, X,X4)

+ E(X4)R(X1, X2, X3, X), (1.1)

for all vector fields X, Xi ∈ χ(M) (i = 1, 2, 3, 4), χ(M) being the Lie algebra of

all smooth vector fields on M , where A, B, C, D, E are 1-forms on M . It is clear

that the 1-forms A, B, C, D, E can not be zero at every point of UR. Such a

manifold is denoted by WSn. From the definition it follows that every Kn is a

WSn but not conversely. The existence of a WSn is proved by Prvanović [29].

We note that all 1-forms A, B, C, D, E in (1.1) are not distinct. In fact, in a

WSn the 1-form B = C and D = E [11]. Hence the reduced defining condition

of a WSn is given by

(∇XR)(X1, X2, X3, X4) = A(X)R(X1, X2, X3, X4) +B(X1)R(X,X2, X3, X4)

+B(X2)R(X1, X,X3, X4) +D(X3)R(X1, X2, X,X4)

+D(X4)R(X1, X2, X3, X). (1.2)
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Especially, if (i) B = D = 1
2A, (ii) B = D 6= A, then a WSn turns into a pseu-

dosymmetric manifold in the sense of Chaki [6] and extended recurrent manifold

by Prvanović [30] respectively. If in (1.2), the 1-form A is replaced by 2A and D

is replaced by A, then a WSn turns into a generalized pseudosymmetric manifold

by Chaki [8]. Again Prvanović [29] proved that if a WSn is not pseudosym-

metric in the sense of Chaki, then it is a B-space by Venzi [49]. For a WSn

we refer the survey work by De [10] and also references therein. Decomposable

WSn is studied by Binh [1]. The non-trivial examples of WSn and decomposable

WSn are given by Shaikh and Jana [38]. Also Shaikh and his coauthors studied

weakly symmetric manifolds with various generalized curvature tensors ([23], [32],

[33], [34], [35], [36], [37], [40], [41], [45]). Weakly symmetric contact structure is

also studied by De, Shaikh and others ([12], [18]).

Let V = {x ∈ M : S 6= 0 and ∇S 6= 0 at x}. Then (M, g) is said to be Ricci

recurrent [28] if on V ⊂ M , we have ∇S = W ⊗S, where W is an unique 1-form.

Every recurrent manifold is Ricci recurrent but not conversely.

Let VS = {x ∈ M : S 6= 0 and ∇S − I ⊗ S 6= 0 at x for all 1-forms I}. Then
(M, g) is said to be weakly Ricci symmetric [48] if on VS ⊂ M , we have ∇S = N ,

where N is a tensor of type (0, 3) defined by

N(X,X1, X2) = I(X)S(X1, X2) + J(X1)S(X,X2) +K(X2)S(X1, X), (1.3)

for all vector fields X, X1, X2 ∈ χ(M), where I, J , K are three 1-forms. It is clear

that the 1-forms I, J , K can not be zero at every point of VS . Such a manifold

is denoted by WRSn. Especially, if J = K = 1
2I, then a WRSn turns into a

pseudo Ricci symmetric manifold in the sense of Chaki [7]. Also, if the 1-form I

is replaced by 2I, then a WRSn reduces to a generalized pseudo Ricci symmetric

manifold by Chaki and Koley [9]. Hence the defining condition of a WRSn is

given by,

(∇XS)(X1, X2) = I(X)S(X1, X2) + J(X1)S(X,X2) +K(X2)S(X1, X). (1.4)

The existence of WRSn is ensured by Shaikh and Jana by several examples [39].

WRSn is also studied by De and his coauthors ([13], [14], [15], [16]). Again in

[25] Mantica and Molinari proved that if the Ricci tensor is non-singular, then

J = K, and they also obtained a necessary and sufficient condition for the 1-form

I to be closed. Recently, Mantica and Molinari [26] studied WZSn, where Z

is a generalized symmetric tensor of type (0, 2).
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The object of the present paper is to study WSn and WRSn warped pro-

duct manifolds. We obtain the necessary and sufficient condition for a warped

product manifold to be WSn and WRSn. As a particular case of our results (see,

Theorem 3.1 and 4.1), we can obtain the result of Binh [1] and also the results of

[17]. Basing on these results two proper examples of warped product WSn and

WRSn are presented.

2. Warped product manifolds

The study of warped product manifolds was initiated by Kručkovič [24]

in 1957. Again in 1969 Bishop and O’Neill [2] also obtained the same notion

of the warped product manifolds while they were constructing a large class of

complete manifolds of negative curvature. Warped product manifolds are genera-

lizations of the Cartesian product of semi-Riemannian manifolds. Let (M̄, ḡ) and

(M̃, g̃) be two semi-Riemannian manifolds of dimension p and (n−p) respectively

(1 ≤ p < n), and f is a positive smooth function on M̄ . Let M̄ and M̃ be covered

with coordinate charts (U ;x1, x2, . . . , xp) and (V ; y1, y2, . . . , yn−p) respectively.

Then the warped product M = M̄ ×f M̃ is the product manifold M̄ × M̃ of di-

mension n furnished with the metric g = π∗(ḡ)+ (f ◦π)σ∗(g̃), where π : M → M̄

and σ : M → M̃ are natural projections such that M = M̄ × M̃ is covered with

the coordinate chart (U×V ;x1, x2, . . . , xp, xp+1 = y1, xp+2 = y2, . . . , xn = yn−p).

Then the local components of the metric g with respect to this coordinate chart

are given by

gij =





ḡij for i = a and j = b,

f g̃ij for i = α and j = β,

0 otherwise.

(2.1)

Here a, b ∈ {1, 2, . . . , p} and α, β ∈ {p+1, p+2, . . . , n}. We note that throughout

the paper we consider a, b, c, · · · ∈ {1, 2, . . . , p} and α, β, γ, · · · ∈ {p+1, p+2, . . . , n}
and i, j, k, · · · ∈ {1, 2, . . . , n}. Here M̄ is called the base, M̃ is called the fiber and

f is called warping function of the warped product M = M̄ ×f M̃ . We denote

by Γi
jk, Rijkl, Sij and κ as the components of Levi–Civita connection ∇, the

Riemann–Chirstoffel curvature tensor R, Ricci tensor S and the scalar curvature

of (M, g) respectively. Moreover we consider that, when Ω is a quantity formed

with respect to g, we denote by Ω̄ and Ω̃, the similar quantities formed with

respect to ḡ and g̃ respectively.

Then the non-zero local components of Levi–Civita connection ∇ of (M, g)
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are given by

Γa
bc = Γ̄a

bc, Γα
βγ = Γ̃α

βγ , Γa
βγ = −1

2
ḡabfbg̃βγ , Γα

aβ =
1

2f
faδ

α
β , (2.2)

where fa = ∂af = ∂f
∂xa . The local components Rhijk = ghlR

l
ijk = ghl(∂kΓ

l
ij −

∂jΓ
l
ik+Γm

ijΓ
l
mk−Γm

ikΓ
l
mj), ∂k = ∂

∂xk , of the Riemann–Christoffel curvature tensor

R of (M, g) which may not vanish identically are the following:

Rabcd = R̄abcd, Raαbβ = fTabg̃αβ , Rαβγδ = fR̃αβγδ − f2PG̃αβγδ, (2.3)

where Gijkl = gilgjk − gikgjl are the components of Gaussian curvature and

Tab = − 1

2f

(
∇bfa − 1

2f
fafb

)
, tr(T ) = gabTab,

Q = f((n− p− 1)P − tr(T )), P =
1

4f2
gabfafb.

Again, the non-zero local components of the Ricci tensor Sjk = gilRijkl of (M, g)

are given by

Sab = S̄ab − (n− p)Tab, Sαβ = S̃αβ +Qg̃αβ . (2.4)

The scalar curvature κ of (M, g) is given by

κ = κ̄+
κ̃

f
− (n− p)[(n− p− 1)P − 2 tr(T )]. (2.5)

Again, the non-zero local components of ∇R and ∇S are given by [22]:





(i) ∇eRabcd = ∇̄eR̄abcd,

(ii) ∇eRaαbβ = f∇̄eTabg̃αβ ,

(iii) ∇eRαβγδ = −feR̃αβγδ + f2PeG̃αβγδ,

(iv) ∇εRαβγδ = f∇̃εR̃αβγδ,

(v) ∇εRαβγd = −fd
2
R̃αβγε +

f2

2 PdG̃αβγε,

(vi) ∇εRabcδ =
1

2
g̃εδ(faTbc − fbTac) +

1

2
fdRabcdg̃εδ, f b = ḡabfa,

(2.6)
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



(i) ∇eSab = ∇̄eS̄ab − (n− p)∇̄eTab,

(ii) ∇eSαβ = Qeg̃αβ − fe
f
(S̃αβ +Qg̃αβ),

(iii) ∇εSαβ = ∇̃εS̃αβ ,

(iv) ∇εSαa = − 1

2f
S̃αεfa +

1

2
g̃αε

[
f c

(
S̄ca − (n− p)Tca

)− Q

f
fa

]
.

(2.7)

For more detail informations about warped product we refer the reader to see [27].

3. Weakly symmetric warped product manifolds

Theorem 3.1. Let M = M̄ ×f M̃ be a non-flat warped product manifold.

Then M is a WSn

(i.e. ∇lRhijk = AlRhijk +BhRlijk +BiRhljk +DjRhilk +DkRhijl) (3.1)

if and only if the following conditions hold:

(1) base M̄ is WSp (i.e. ∇̄eR̄abcd = ĀeR̄abcd + B̄aR̄ebcd + B̄bR̄aecd + D̄cR̄abed +

D̄dR̄abce),

(2) ∇̃εR̃αβγδ −
[
ÃεR̃αβγδ + B̃αR̃εβγδ + B̃βR̃αεγδ + D̃γR̃αβεδ + D̃δR̃αβγε

]
=

−fP
[
ÃεG̃αβγδ + B̃αG̃εβγδ + B̃βG̃αεγδ + D̃γG̃αβεδ + D̃δG̃αβγε

]
,

(3) ÃαR̄abcd = B̃αR̄abcd = D̃αR̄abcd = 0,

(4) ∇̄eTab = ĀeTab + B̄aTeb + D̄bTae, Tab

(
B̃αg̃βγ − B̃β g̃αγ

)
=

Tab

(
D̃αg̃βγ − D̃β g̃αγ

)
= Tab

(
Ãγ g̃αβ + B̃αg̃γβ + D̃β g̃γα

)
= 0,

(5) fdR̄abcd + (fa + 2fB̄a)Tbc − (fb + 2fB̄b)Tac = 0,

fdR̄abcd + (fa + 2fD̄a)Tbc − (fb + 2fD̄b)Tac = 0,

(6) (fĀe + fe)R̃αβγδ = f2(Pe − PĀe)G̃αβγδ,

(2fB̄e + fe)R̃αβγδ = f2(Pe − 2PB̄e)G̃αβγδ,

(2fD̄e + fe)R̃αβγδ = f2(Pe − 2PD̄e)G̃αβγδ,

where

Ai =

{
Āi for i = 1, . . . , p

Ãi otherwise,
Bi =

{
B̄i for i = 1, . . . , p

B̃i otherwise,

Di =

{
D̄i for i = 1, . . . , p

D̃i otherwise.
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Proof. Let M be a non-flat weakly symmetric manifold. Then considering

all possible cases of equation (3.1) for h, i, j, k, l ∈ {1, 2, . . . , p}∪{p+1, p+2, . . . , n}
and by putting their values from (2.3) and (2.6), we get our assertion easily. ¤

As an immediate consequence of Theorem 3.1, we get the following results:

Corollary 3.1. Let M = M̄ ×f M̃ be a non-flat weakly symmetric warped

product manifold such that

∇lRhijk = AlRhijk +BhRlijk +BiRhljk +DjRhilk +DkRhijl.

Then

(1) base is weakly symmetric,

(2) fiber is

(i) of constant curvature if any one of

(a) fAe + fe (b) 2fBe + fe (c) 2fDe + fe is non-zero and

(ii) weakly symmetric if

P
[
ÃεG̃αβγδ + B̃αG̃εβγδ + B̃βG̃αεγδ + D̃γG̃αβεδ + D̃δG̃αβγε

]
= 0.

Remark. We note that if in a weakly symmetric warped product manifold

the fiber is not of constant curvature, then fAe+fe = 2fBe+fe = 2fDe+fe = 0

and hence the manifold reduces to a pseudo symmetric manifold in the sense of

Chaki.

Since the warped product is the generalization of a decomposable manifold,

from Theorem 3.1 we get the following result of Binh [1].

Corollary 3.2 ([1]). Let M = M̄ × M̃ be a non-locally symmetric decom-

posable manifold. Then M is WSn if and only if one of the decomposition is

weakly symmetric and another is flat.

Proof. A warped product manifold is decomposable if the warping function

f ≡ 1. Then the conditions of Theorem 3.1 reduce to

∇̄eR̄abcd = ĀeR̄abcd + B̄aR̄ebcd + B̄bR̄aecd + D̄cR̄abed + D̄dR̄abce,

∇̃εR̃αβγδ = ÃεR̃αβγδ + B̃αR̃εβγδ + B̃βR̃αεγδ + D̃γR̃αβεδ + D̃δR̃αβγε,

ÃαR̄abcd = B̃αR̄abcd = D̃αR̄abcd = 0, ĀeR̃αβγδ = B̄eR̃αβγδ = D̄eR̃αβγδ = 0.
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Now for a decomposable manifold we have Rabcd = R̄abcd, Rαβγδ = R̃αβγδ. Then

from the above reduced conditions the result follows. ¤

Since a pseudosymmetric manifold in the sense of Chaki [6] is a special case

of a WSn, Theorem 3.1 leads to the following:

Corollary 3.3. Let M = M̄ ×f M̃ be a non-flat warped product manifold.

Then M is a pseudosymmetric manifold in the sense of Chaki (i.e. ∇lRhijk =

2AlRhijk+AhRlijk+AiRhljk+AjRhilk+AkRhijl) if and only if all the following

conditions hold:

(1) base M̄ is pseudosymmetric (i.e. ∇̄eR̄abcd = 2ĀeR̄abcd+ĀaR̄ebcd+ĀbR̄aecd+

ĀcR̄abed + ĀdR̄abce),

(2) ∇̃εR̃αβγδ −
[
2ÃεR̃αβγδ + ÃαR̃εβγδ + ÃβR̃αεγδ + ÃγR̃αβεδ + ÃδR̃αβγε

]
=

−fP
[
2ÃεG̃αβγδ + ÃαG̃εβγδ + ÃβG̃αεγδ + ÃγG̃αβεδ + ÃδG̃αβγε

]
,

(3) ÃαR̄abcd = 0,

(4) ∇̄eTab = 2ĀeTab + ĀaTeb + ĀbTae and TabÃα = 0,

(5) fdR̄abcd + (fa + 2fĀa)Tbc − (fb + 2fĀb)Tac = 0,

(6) (fĀe + fe)R̃αβγδ = f2(Pe − 2PĀe)G̃αβγδ.

Again, as an immediate consequence of Corollary 3.3, we get following results:

Corollary 3.4. [17] Let M = M̄ ×f M̃ be a non-flat pseudosymmetric war-

ped product manifold (i.e. ∇lRhijk = 2AlRhijk +AhRlijk +AiRhljk +AjRhilk +

AkRhijl). Then

(1) base is pseudosymmetric,

(2) fiber is

(i) of constant curvature if fAe + fe 6= 0, and

(ii) pseudosymmetric if

P
[
2ÃεG̃αβγδ + ÃαG̃εβγδ + ÃβG̃αεγδ + ÃγG̃αβεδ + ÃδG̃αβγε

]
= 0.

Corollary 3.5. If M = M̄×f M̃ is a non-flat pseudosymmetric (in the sense

of Chaki) warped product manifold with non-flat base of constant curvature, then

pseudosymmetry and local symmetry are equivalent for M .

Proof. Let M be non-flat pseudosymmetric manifold (in the sense of Cha-

ki). Then

∇lRhijk = 2AlRhijk +AhRlijk +AiRhljk +AjRhilk +AkRhijl.
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Now as base is non-flat and of constant curvature, Corollary 3.3 yields Ãα = 0

and

2ĀeR̄abcd + ĀaR̄ebcd + ĀbR̄aecd + ĀcR̄abed + ĀdR̄abce = 0, (3.2)

which turns into

∇̄aR̄abab = 2ĀaR̄abab + ĀaR̄abab + ĀaR̄abab.

Since base is of non-flat, then from above we get Āa = 0. Thus A = 0 on M ,

and M becomes locally symmetric. The converse part is obvious as every locally

symmetric manifold is pseudosymmetric. Hence the theorem. ¤

Again, since a recurrent manifold is also a special case of weakly symmetric

manifold, Theorem 3.1 leads to the following:

Corollary 3.6. Let M = M̄ ×f M̃ be a non-flat warped product mani-

fold. Then M is recurrent (i.e. ∇lRhijk = AlRhijk) if and only if the following

conditions hold:

(1) base is recurrent (i.e. ∇̄eR̄abcd = ĀeR̄abcd),

(2) ∇̃εR̃αβγδ − ÃεR̃αβγδ = −fPÃεG̃αβγδ and Āe(R̃αβγδ − fPG̃αβγδ) = 0,

(3) ÃαR̄abcd = 0,

(4) ∇̄eTab = ĀeTab and TabÃγ = 0,

(5) fdR̄abcd + (fa)Tbc − (fb)Tac = 0,

(6) feR̃αβγδ = f2PeG̃αβγδ.

4. Weakly Ricci symmetric warped product manifolds

Theorem 4.1. Let M = M̄ ×f M̃ be a non-Ricci-flat warped product ma-

nifold. Then M is WRSn (i.e.

∇lSij = AlSij +BiSlj +DjSil) (4.1)

if and only if the following conditions hold:

(1) ∇̄eS̄ab− ĀeS̄ab− B̄aS̄eb− D̄bS̄ae = (n− p)(∇eTab− ĀeTab− B̄aTeb− D̄bTae),

(2) ∇̃εS̃αβ − ÃεS̃αβ − B̃αS̃εβ − D̃βS̃αε = Q(Ãεg̃αβ + B̃αg̃εβ + D̃β g̃αε),

(3) Ãα

[
S̄ab − (n− p)Tab

]
= B̃α

[
S̄ab − (n− p)Tab

]
= D̃α

[
S̄ab − (n− p)Tab

]
= 0,
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(4) (fĀe + fe)S̃αβ = (fQe − fQĀe − feQ)g̃αβ ,

(2fB̄e + fe)S̃αβ =
[
ff c

(
Sce − (n− p)Tce

)−Qfe − 2fQB̄e

]
g̃αβ ,

(2fD̄e + fe)S̃αβ =
[
ff c

(
Sce − (n− p)Tce

)−Qfe − 2fQD̄e

]
g̃αβ ,

where

Ai =

{
Āi for i = 1, . . . , p

Ãi otherwise,
Bi =

{
B̄i for i = 1, . . . , p

B̃i otherwise,

Di =

{
D̄i for i = 1, . . . , p

D̃i otherwise.

Proof. Let M be a non-Ricci-flat weakly Ricci symmetric manifold. Then

considering all possible cases of equation (4.1) for h, i, j, k, l ∈ {
1, 2, . . . , p

} ∪{
p+ 1, p+ 2, . . . , n

}
and by putting their values from (2.4) and (2.7), we get our

assertion easily. ¤

As an immediate consequence of Theorem 4.1, we get the following results:

Corollary 4.1. LetM = M̄×fM̃ be a non-Ricci-flat weakly Ricci symmetric

warped product manifold such that

∇lSij = AlSij +BiSlj +DjSil.

Then

(1) base is weakly Ricci symmetric if ∇eTab −AeTab −BaTeb −DbTae = 0,

(2) fiber is

(i) weakly Ricci symmetric if Q(Ãεg̃αβ + B̃αg̃εβ + D̃β g̃αε) = 0,

(ii) Ricci symmetric if [S̄ab − (n− p)Tab] 6= 0, and

(iii) Einstein if any one of

(a) 2fĀe + fe (b) 2fB̄e + fe (c) 2fĀe + fe is non-zero.

Corollary 4.2. Let M = M̄ × M̃ be a not locally symmetric decomposable

manifold. Then M is WRSn if and only if one of the decomposition is weakly

Ricci symmetric and the other is Ricci-flat.

Proof. A warped product manifold is decomposable if the warping function

f ≡ 1. Then the conditions of Theorem 4.1 reduce to

∇̄eS̄ab − ĀeS̄ab − B̄aS̄eb − D̄bS̄ae = 0,

∇̃εS̃αβ − ÃεS̃αβ − B̃αS̃εβ − D̃βS̃αε = 0,
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ÃαS̄ab = 0 and ĀeS̃αβ = 0.

Now for a decomposable manifold, we have Sab = S̄ab, Sαβ = S̃αβ . Then from

the above reduced conditions the result follows. ¤

Since every pseudo Ricci symmetric manifold in the sense of Chaki [7] is a

WRSn, so Theorem 4.1 leads to the following:

Corollary 4.3. Let M = M̄×f M̃ be a non-Ricci-flat warped product. Then

M is pseudo Ricci symmetric in the sense of Chaki (i.e. ∇lSij = 2AlSij +AiSlj +

AjSil) if and only if the following conditions hold:

(1) ∇̄eS̄ab−2ĀeS̄ab−ĀaS̄eb−ĀbS̄ae = (n−p)(∇eTab−2AeTab−AaTeb−AbTae),

(2) ∇̃εS̃αβ − 2ÃεS̃αβ − ÃαS̃εβ − ÃβS̃αε = Q(2Ãεg̃αβ + Ãαg̃εβ + Ãβ g̃αε),

(3) Ãα(S̄ab − (n− p)Tab) = 0,

(4) (2fĀe + fe)S̃αβ = (fQe − 2fQĀe − feQ)g̃αβ = (ff c(Sce − (n− p)Tce)−
Qfe − 2fQAe)g̃αβ .

Again as an immediate consequence of Corollary 4.3, we get the following

result:

Corollary 4.4 ([17]). Let M = M̄ ×f M̃ be a non-flat pseudo Ricci sym-

metric warped product manifold (i.e. ∇lSij = 2AlSij +AiSlj +AjSil). Then

(1) base is pseudo Ricci symmetric if ∇eTab −AeTab −AaTeb −AbTae = 0,

(2) fiber is

(i) pseudo Ricci symmetric if Q(2Ãεg̃αβ + Ãαg̃εβ + Ãβ g̃αε) = 0,

(ii) Ricci symmetric if (S̄ab − (n− p)Tab) 6= 0, and

(iii) Einstein if (2fĀe + fe) 6= 0.

Since the class of Ricci recurrent manifolds is a subclass of weakly Ricci

symmetric manifolds, Theorem 4.1 leads to the following:

Corollary 4.5. Let M = M̄ ×f M̃ be a non-Ricci-flat warped product

manifold. Then M is a Ricci recurrent manifold (∇lSij = AlRij) if and only if

the following conditions hold:

(1) ∇̄eS̄ab − ĀeS̄ab = (n− p)(∇eTab −AeTab),

(2) ∇̃εS̃αβ − ÃεS̃αβ = QÃεg̃αβ ,

(3) Ãα[S̄ab − (n− p)Tab] = 0,

(4) (fĀe + fe)S̃αβ = (fQe − fQĀe − feQ)g̃αβ ,

faS̃αβ = [ff c(S̃ac − (n− p)Tac)−Qfa]g̃αβ .
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5. Examples of WSn and WRSn warped product manifolds

Example 1. We consider the warped product manifold M = M̄ ×f M̃ , where

(M̄, ḡ) is given by Example 2, f(x1, x2, x3) = ex
1+x3

is a smooth function on M̄

and (M̃, g̃) be a connected semi-Riemannian manifold of dimension 4, endowed

with the metric

g̃44 = −1, g̃55 = −x5ex
4

, g̃66 = −x6ex
4

, g̃77 = −x7ex
4

,

g̃ij = 0 for i 6= j, i, j = 4, 5, 6, 7.

Then the non-zero components of curvature tensor R̃ (upto symmetry) and Ricci

tensor S̃ of M̃ are given by

R̃4545 = −1

4
x5ex

4

, R̃4646 = −1

4
x6ex

4

, R̃4747 = −1

4
x7ex

4

,

R̃5656 = −1

4
x5x6e2x

4

, R̃5757 = −1

4
x5x7e2x

4

, R̃6767 = −1

4
x6x7e2x

4

,

and S̃44 = −3

4
, S̃55 = −3

4
x5ex

4

, S̃66 = −3

4
x6ex

4

, S̃77 = −3

4
x7ex

4

.

Then M̃ is a manifold of constant curvature with scalar curvature κ̃ = 3. The

warped product manifold M is of dimension 7 endowed with the metric g, whose

non-zero components are given by

g11 = ex
1

, g22 = ex
1

, g33 = ex
1+x3

, g44 = −ex
1+x3

,

g55 = −x5ex
1+x3+x4

, g66 = −x6ex
1+x3+x4

, g77 = −x7ex
1+x3+x4

.

Then the non-zero components of curvature tensor (upto symmetry) of (M, g) are

given by

R2i2i =
1

4
gii for i = 3, 4, . . . , 7, R3i3i =

1

4
giie

x3

for i = 4, 5, . . . , 9,

R4i4i = −1

4
gii for i = 5, 6, 7,

R5i5i = −1

4
x5giie

x3+x4

for i = 6, 7, R6i6i = −1

4
x6giie

x3+x4

for i = 7.
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Then the non-zero components of covariant derivatives of R (upto symmetry) are

given by

R1jji,i = −1

2
Rjiji and R2i2i,1 = R2i2i for i, j = 2, 3, . . . , 7.

The only non-zero components of Ricci tensor and its covariant derivatives (upto

symmetry) are given by

Sii = −5

4
e−x1

gii for i = 2, 3, . . . , 7.

S1i,i =
1

2
Sii and Sii,1 = Sii for all i.

Then it is clear that the manifold M satisfies the defining condition (3.1) for all

h, i, j, k, l ∈ {1, 2, . . . , 9} with

Ai =

{
−1 for i = 1

0 otherwise,
Bi =




−1

2
for i = 1

0 otherwise,

Di =




−1

2
for i = 1

0 otherwise.
(5.1)

Thus the warped product manifold M = M̄ ×f M̃ is WS7.

Example 2. Let (M̄, ḡ) be a 3-dimensional connected semi-Riemannian ma-

nifold endowed with the metric

ḡ11 = ḡ22 = ex
1

, ḡ33 = ex
1+x3

, ḡij = 0 for i 6= j, i, j = 1, 2, 3

and f(x1, x2, x3) = 2
5e

x1+x3

be a smooth function on M̄ . Then the only non-zero

components of curvature tensor R̄ (upto symmetry) and its covariant derivatives

are given by

R̄2323 =
ex

1+x3

4

R̄1223,3 =
ex

1+x3

8
, R̄1323,2 = −ex

1+x3

8
, R̄2323,1 = −ex

1+x3

4
.
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The only non-zero components of Ricci tensor, its covariant derivatives (upto

symmetry) and scalar curvature are given by

S̄22 = −1

4
, S̄33 = −ex

3

4
,

S̄12,2 =
1

8
, S̄13,3 =

ex
3

8
, S̄22,1 =

1

4
, S̄33,1 =

ex
3

4

and κ̄ = −e−x1

2
.

Again let (M̃, g̃) be a 6-dimensional connected semi-Riemannian manifold endo-

wed with the metric

g̃44 = −1, g̃55 = −ex
4

, g̃66 = −ex
4

(x5)2,

g̃77 = − 1, g̃88 = − ex
7

, g̃99 = − ex
7

(x8)2, g̃ij =0 for i 6= j, i, j=4, 5, . . . , 9.

Then the non-zero components of curvature tensor R̃ (upto symmetry) are

R̃4545 = −ex
4

4
, R̃4646 = −ex

4

(x5)2

4
, R̃5656 = −e2x

4

(x5)2

4
,

R̃7878 = −ex
7

4
, R̃7979 = −ex

7

(x8)2

4
, R̃8989 = −e2x

7

(x8)2

4

and the non-zero components of Ricci tensor and scalar curvature are

S̃44 = −1

2
, S̃55 = −ex

4

2
, S̃66 = −ex

4

(x5)2

2
, S̃77 = −1

2
, S̃88 = −ex

7

2
,

S̃99 = −ex
7

(x8)2

2
, κ̃ = 3.

Then this manifold M̃ is locally symmetric and Einstein but not of constant

curvature. Now the warped product manifold M = M̄ ×f M̃ is of dimension 9

endowed with the metric g = ḡ ×f g̃, whose non-zero components are given by

g11 = ex
1

, g22 = ex
1

, g33 = ex
1+x3

, g44 = −2

5
ex

1+x3

, g55 = −2

5
ex

1+x3+x4

g66 = −2

5
ex

1+x3+x4

(x5)2, g77 = −2

5
ex

1+x3

, g88 = −2

5
ex

1+x3+x7

,
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g99 = −2

5
ex

1+x3+x7

(x8)2.

Again, the only non-zero components of curvature tensor R (upto symmetry) are

given by

R2i2i =
1

4
gii for i = 3, 4, . . . , 9, R3i3i =

1

4
giie

x3

for i = 4, 5, . . . , 9,

R4i4i =




− 1

20
gii(2e

x3 − 3) for i = 5, 6,

− 1

10
gii(e

x3

+ 1) for i = 7, 8, 9,

R5i5i =




− 1

20
giie

x4

(2ex
3 − 3) for i = 6,

− 1

10
giie

x4

(ex
3

+ 1) for i = 7, 8, 9,

R6i6i = − 1

10
giie

x4

(ex
3

+ 1)(x5)2 for i = 7, 8, 9,

R7i7i = − 1

20
gii(2e

x3 − 3) for i = 8, 9, R8989 = − 1

20
giie

x7

(2ex
3 − 3).

The non-zero components of covariant derivatives of R (upto symmetry) are gi-

ven by

R1jji,i = −1

2
Rjiji for i, j = 2, 3, . . . , 9 and i 6= j,

Rjiji,1 = Rjiji for i, j = 2, 3, . . . , 9 and i 6= j,

R344i,i =





3

40
gii for i = 5, 6,

− 1

20
gii for i = 7, 8, 9,

R355i,i =





3

40
ex

4

gii for i = 4, 6,

− 1

20
ex

4

gii for i = 7, 8, 9,

R366i,i =





3

40
ex

4

gii(x
5)2 for i = 4, 5,

− 1

20
ex

4

gii(x
5)2 for i = 7, 8, 9,

R377i,i =




− 1

20
gii for i = 4, 5, 6,

3

40
gii for i = 8, 9,

R388i,i =




− 1

20
ex

7

gii for i = 4, 5, 6,

3

40
ex

7

gii for i = 7, 9,
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R399i,i =




− 1

20
ex

7

gii(x
8)2 for i = 4, 5, 6,

3

40
ex

7

gii(x
8)2 for i = 7, 8,

R4i4i,3 =




− 3

20
gii for i = 5, 6,

1

10
gii for i = 7, 8, 9,

R5i5i,3 =




− 3

20
ex

4

gii for i = 6,

1

10
ex

4

gii for i = 7, 8, 9,

R6i6i,3 =
1

10
ex

4

gii(x
5)2 for i = 7, 8, 9,

R7i7i,3 = − 3

40
gii for i = 8, 9, R8i8i,3 = − 3

40
ex

7

gii for i = 9.

The only non-zero components of Ricci tensor and its covariant derivatives (upto

symmetry) are given by

Sii = −7

4
e−x1

gii for i = 2, 3, . . . , 9,

S1i,i =
1

2
Sii and Sii,1 = Sii for all i.

Then it is clear that in the manifold M satisfies the defining condition (4.1) for

all l, i, j ∈ {1, 2, . . . , 9} with

Ai =

{
−1 for i = 1

0 otherwise,
Bi =




−1

2
for i = 1

0 otherwise,

Di =




−1

2
for i = 1

0 otherwise.
(5.2)

Thus the warped product manifold M = M̄ ×f M̃ is WRS9.

Remark. We note that the warped product M given in Example 1 is also

WRS7, and the warped product given in Example 2 is WRS9 but not WS9.
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