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On the sign-changing solutions for strong singular
one-dimensional p-Laplacian problems with p-superlinearity

By HONG-XU LI (Chengdu) and Li-Li Zhang (Chengdu)

Abstract. We consider the one-dimensional p-Laplacian problem{
(ϕp(u

′(t)))′ + h(t)f(u(t)) = 0, a.e. in (0, 1),

u(0) = u(1) = 0,
(P )

where ϕp(s) = |s|p−2s, p > 1, h(t) ≥ 0 and 0 <
∫
I
h(t)dt < ∞ for any compact

subinterval I ⊂ (0, 1), and f ∈ C(R,R) with f p-superlinear at ∞. By applying

the global bifurcation argument and nonlinear eigenvalue theory, we establish an exis-

tence and multiplicity result of sign-changing solutions for (P ). Our result generalizes

and improves some recent result from the case h ∈ L1(0, 1) to a strong singular case

h ∈ A , {h ∈ L1
loc(0, 1) :

∫ 1

0
(s(1− s))p−1h(s)ds <∞}.

1. Introduction

In this paper, we present an existence and multiplicity result of sign-changing

solutions for the singular boundary value problem{
(ϕp(u

′(t)))′ + h(t)f(u(t)) = 0, a.e. in (0, 1),

u(0) = u(1) = 0,
(P )

where ϕp(s) = |s|p−2s, p > 1, h(t) ≥ 0 and 0 <
∫
I
h(t)dt < ∞ for any compact

subinterval I ⊂ (0, 1), and f ∈ C(R,R). We assume that the basic conditions
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on h and f given here are satisfied in this paper without any specific mention.

Recently, many attentions are focused on the study of the existence, none-

xistence and multiplicity of positive solutions as well as sign-changing solutions

for one-dimensional p-Laplacian problems with Dirichlet boundary condition (see

e.g. [1], [4], [5], [9], [8], [12], [11], [20], [22], [23] and references therein).

Since our main concern is the sign-changing solutions for the problem (P )

with a nonnegative indefinite weight h in this paper, let us summarize the re-

lative results along this line in the literature briefly. For the continuous weight

case h ∈ C1[0, 1], Naito and Tanaka [17] established the existence of sign-

changing solutions to (P ) for the case p = 2 by employing the shooting method

and Sturm’s comparison theorem. Then in [18], using similar arguments based

on the shooting method together with the qualitative theory for half-linear diffe-

rential equations, they extended their results to (P ). When h ∈ C1([0, 1], [0,∞)),

Ma and Thompson [13] and Ma [14] showed the existence and multiplicity re-

sults of sign-changing solutions of (P ) for the case p = 2 by using the global

continuation techniques.

For the singular weight case h ∈ L1(0, 1), Lee and Sim [11] gave an existence

and multiplicity result of sign-changing solutions for (P ) under assumptions f0 ,
limu→0 f(u)/up−1 = 0, f∞ , limu→∞ f(u)/up−1 =∞ and

(F) sf(s) > 0 for s 6= 0.

Moreover, similar result was presented for the case f0 =∞, f∞ = 0 with additio-

nal assumptions that h ∈ C1(0, 1) ∩ L1(0, 1), and limt→0+ th(t) and limt→1−(1−
t)h(t) exist. Their proofs are based on the global bifurcation theorem and deriving

the shape of the unbounded subcontinua of solutions for the auxiliary problem{
(ϕp(u

′(t)))′ + λh(t)ϕp(u(t)) + h(t)f(u(t)) = 0, a.e. in (0, 1),

u(0) = u(1) = 0.
(AP1)

where λ ∈ R. When h ∈ L1(0, 1), 0 < f0 < ∞, Lee and Sim [12] proved some

existence, uniqueness, nonexistence and multiplicity results of positive solutions

as well as sign-changing solutions with respect to given positive parameter λ for

the following problem{
(ϕp(u

′(t)))′ + λh(t)f(u(t)) = 0, a.e. in (0, 1),

u(0) = u(1) = 0,
(Pλ)

For the strong singular weight case h ∈ A , {h ∈ L1
loc(0, 1) :

∫ 1

0
(s(1 −

s))p−1h(s)ds <∞}, Kajikiya, Lee and Sim [8] gave some existence, uniqueness,
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nonexistence and multiplicity results of positive solutions as well as sign-changing

solutions of (Pλ) for the case 0 < f0 <∞.

We note that, from Theorem 2.1 and Proposition 2.6 in Kajikiya, Lee

and Sim [7], the assumption h ∈ A should be the weakest one to guarantee the

existence of nontrivial solutions in C1[0, 1] because it is necessary for the existence

of nontrivial solutions having C1-regularity at the boundary. One may also refer

to [2] for more details of the class A of indefinite weights which is larger than

L1-weight.

The main purpose of this paper is to relax the condition on the indefinite

weight h in [11] from h ∈ L1(0, 1) to the strong singular case h ∈ A without losing

the existence and multiplicity result for (P ) in the case f0 = 0, f∞ =∞. Proofs of

results in the literature mainly based on the unboundedness of continua Ck, k ∈ N
of solutions for (AP1) (see [11], [12], [8]). However, we consider the special part

C0
k , {(λ, u) ∈ Ck : λ ≥ 0} instead, and then the unboundedness of the continua is

not indispensable. By using the Rabinowitz’s bifurcation argument and Picone’s

type identity, we get a result of alternative of the continua (see Theorem 2.1) and

some essential properties of C0
k (see Proposition 3.1–3.3). Applying these results,

we prove the existence and multiplicity of sign-changing solutions for (P ). Here

we state our main result in this paper.

Theorem 1.1. Assume h ∈ A, f0 = 0, f∞ = ∞ and (F). Then for each

k ∈ N, Problem (P ) has two solutions u+
k and u−k such that u+

k has exactly k− 1

zeros in (0, 1) and is positive near t = 0, and u−k has exactly k − 1 zeros in (0, 1)

and is negative near t = 0.

We shall set C0[0, 1] = {x ∈ C[0, 1] : x(0) = x(1) = 0} with norm ‖x‖ =

maxt∈[0,1] |x(t)| and C1
0 [0, 1]=C1[0, 1]∩C0[0, 1] with norm ‖x‖1= maxt∈[0,1] |x′(t)|.

By a solution (λ, u) of (AP1) we mean a pair (λ, u) ∈ R× C1
0 [0, 1] with ϕp(u

′) ∈
W 1,1(0, 1) satisfying (AP1).

The paper is organized as follows. In Section 2, we transform the problem

(AP1) into operator equation, then show a bifurcation result of solutions for (AP1)

by employing the global bifurcation theorem. In Section 3, we prove Theorem 1.1

by making use of the properties of C0
k and the bifurcation result obtained in the

previous section.

2. Bifurcation

In this section, we transform the auxiliary problem (AP1) into operator equa-

tion on Banach space C1
0 [0, 1], then present a bifurcation results of solutions for
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(AP1). We assume that f0 = 0 and h ∈ A without any further mention in the

sequel.

Consider the problem{
(ϕp(u

′(t)))′ = g, a.e. in (0, 1),

u(0) = u(1) = 0,
(AP )

where g ∈ L1(0, 1) and p is as in (P ). Problem (AP ) is equivalently written as

u(t) = Gp(g)(t) ,
∫ t

0

ϕ−1
p

(
a(g) +

∫ s

0

g(τ)dτ

)
ds,

where a : L1(0, 1)→ R is a continuous function satisfying∫ 1

0

ϕ−1
p

(
a(g) +

∫ s

0

g(τ)dτ

)
dt = 0.

It is known that a is homogeneous and sends bounded sets of L1(0, 1) into bounded

sets of R, and Gp : L1(0, 1)→ C1
0 [0, 1] is continuous and maps equi-integrable sets

of L1(0, 1) into relatively compact sets of C1
0 [0, 1] (see [3], [15], [16]). Moreover,

it is easy to see that

cGp(u) = Gp(ϕp(c)u) for c ∈ R and u ∈ L1(0, 1). (2.1)

For u ∈ C1
0 [0, 1] we have

‖u(t)‖ ≤ 2‖u‖1t(1− t) for t ∈ [0, 1], (2.2)

and then hϕp(u) ∈ L1(0, 1) since h ∈ A. By f0 = 0, there exists Mu > 0 such

that

|f(s)| ≤Mu|ϕp(s)| for t ∈ [0, 1], |s| ≤ 2‖u‖1. (2.3)

So by (2.2) and (2.3),

|f(u(t))| ≤Mu(2‖u‖1)p−1(t(1− t))p−1 for t ∈ [0, 1],

which implies that hf(u) ∈ L1(0, 1). Thus we can define the Nemitskii operator

H : R× C1
0 [0, 1]→ L1(0, 1) by

H(λ, u)(t) , −λh(t)ϕp(u(t))− h(t)f(u(t)).
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Furthermore, it is easy to get from (2.2) and (2.3) that H is continuous and sends

bounded sets of R× C1
0 [0, 1] into equi-integrable sets of L1(0, 1). Let

F (λ, u) = Gp(H(λ, u)).

Then F : R×C1
0 [0, 1]→ C1

0 [0, 1] is completely continuous and F (λ, 0) = 0,∀λ ∈ R.

Now problem (AP1) can be equivalently written as

u = F (λ, u). (AP1)

Next, consider the eigenvalue problem{
(ϕp(u

′(t)))′ + λh(t)ϕp(u(t)) = 0, a.e. t ∈ (0, 1),

u(0) = u(1) = 0.
(Eλ)

Define the operator Tλ : C1
0 [0, 1]→ C1

0 [0, 1] by

Tλ(u)(t) = Gp(−λhϕp(u))(t).

Then (Eλ) can be rewritten as

u = Tλ(u). (Eλ)

From the argument to get the complete continuity of F , we can see easily that

Tλ is completely continuous. The properties of eigenvalues and corresponding

eigenfunctions for (Eλ) are as follows.

Lemma 2.1 (Theorem 2.1, [7]). Assume h ∈ A. Then there exists a coun-

table set of eigenvalues {λk : k ∈ N} for (Eλ) which satisfies the following:

(i) λk is strictly increasing on k and diverges to ∞ as k →∞.

(ii) Its corresponding eigenfunctions u belong to C1
0 [0, 1] and ϕp(u

′)∈W 1,1(0, 1).

(iii) Each eigenspace is one-dimensional.

(iv) Any eigenfunction corresponding to λk has exactly k−1 simple zeros in (0, 1).

(v) If λ is an eigenvalue for (Eλ) with λ 6= λk, then corresponding eigenfunctions

are not of C1
0 [0, 1].

λk in Lemma 2.1 is called the kth eigenvalue of (Eλ), and we note that

λk > 0 for each k ∈ N. Let Br(0) = {u ∈ C1
0 [0, 1] : ‖u‖ < r} with r > 0. For the

Leray–Schauder degree of I − Tλ we have
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Lemma 2.2 (Theorem 3.2, [8]). Assume h ∈ A, we have

dLS(I − Tλ, Br(0), 0) =

{
1, if 0 ≤ λ < λ1,

(−1)k, if λ ∈ (λk, λk+1).

To show the bifurcation phenomenon for (AP1), we will make use of the

following well-known global bifurcation theorem.

Lemma 2.3 ([21]). Let F : R×E → E with E a Banach space be completely

continuous such that F (λ, 0) = 0 for all λ ∈ R. Suppose that there exist constants

ρ, η ∈ R, with ρ < η, such that (ρ, 0) and (η, 0) are not bifurcation points for the

equation

u− F (λ, u) = 0. (2.4)

Furthermore, assume that

dLS(I − F (ρ, ·), Br(0), 0) 6= dLS(I − F (η, ·), Br(0), 0),

where Br(0) = {u ∈ E : ‖u‖E < r} is an isolating neighborhood of the trivial

solution for both constants ρ and η. Let

S = {(λ, u) : (λ, u) is a solution of (2.4) with u 6= 0} ∪ ([ρ, η]× 0),

and let C be the component of S containing [ρ, η]× 0. Then either

(i) C is unbounded in R× E, or

(ii) C ∩ [(R\[ρ, η])× {0}] 6= ∅.

The following lemma will be useful in the proof of the main result in this

section.

Lemma 2.4. Assume h ∈ A and f0 = 0. Then there is no bifurcation point

of (AP1) except for {(λk, 0) : k ∈ N}.

Proof. Suppose (λ, 0) is a bifurcation point of (AP1). Then there exists

{(γn, un)} ⊂ R×C1
0 [0, 1] such that (γn, un) is a solution of (AP1) with (γn, un)→

(λ, 0) in R×C1
0 [0, 1] and un 6≡ 0. Let vn ,

un

‖un‖1 . Then ‖vn‖1 = 1, and by (2.1),

vn =
F (γn, un)

‖un‖1
= Gp

(
H(γn, un)

‖un‖p−1
1

)
= Gp

(
−γnhϕp(vn)− h f(un)

‖un‖p−1
1

)
(2.5)
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Notice that ‖un‖1 → 0 implies ‖un‖ → 0. By f0 = 0, for any ε > 0, there exists

N > 0 such that |f(un(t))| ≤ ε|ϕp(un(t))| for t ∈ [0, 1] and n > N , and by (2.2)

we have

h(t)
|f(un(t))|
‖un‖p−1

1

≤ h(t)
ε|ϕp(un(t))|
‖un‖p−1

1

= εh(t)|ϕp(vn(t))| ≤ εh(t)(2t(1− t))p−1.

This implies that hf(un)/‖un‖p−1
1 → 0 in L1(0, 1) and

{γnhϕp(vn)+hf(un)/‖un‖p−1
1 } is an equi-integrable set of L1(0, 1). Thus by (2.5),

{vn} is relatively compact in C1
0 [0, 1] since Gp sends equi-integrable sets of L1(0, 1)

into relatively compact sets of C1
0 [0, 1]. So {vn} has a subsequence (denoted again

by {vn}) converging to some v ∈ C1
0 [0, 1], and then

γnhϕp(vn) + hf(un)/‖un‖p−1
1 → λhϕp(v) in L1(0, 1).

By (2.5) we have,

v = Gp(−λhϕp(v)) = Tλ(v),

which yields that λ is an eigenvalue of (Eλ) with an eigenfunction v ∈ C1
0 [0, 1].

Then it follows from Lemma 2.1 that λ ∈ {λk : k ∈ N}. This completes the

proof. �

Now we have the following result of bifurcation.

Theorem 2.1. Assume h ∈ A and f0 = 0. Each (λk, 0) is a bifurcation

point of (AP1) and the associated bifurcation branch Ck of solutions of (AP1)

satisfies the alternatives in Lemma 2.3.

Proof. Let ρ = λk − δk and η = λk + δk with such a small δk > 0 that

λk−1 < ρ < η < λk+1 for k > 1 and 0 < ρ < λ1 < η < λ2 for k = 1. If there

exists r > 0 such that

dLS(I − F (ρ, ·), Br(0), 0) = (−1)k−1 (2.6)

and

dLS(I − F (η, ·), Br(0), 0) = (−1)k, (2.7)

then we have

dLS(I − F (ρ, ·), Br(0), 0) 6= dLS(I − F (η, ·), Br(0), 0),

and the conclusion is a consequence of Lemma 2.3 and 2.4. So it is enough to

prove (2.6) and (2.7).

Here we prove (2.6). The proof of (2.7) is similar and we omit the details.

For this purpose, consider the following statement:
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(C) There exists r > 0 such that the equation u = J(τ, u) , τTρ(u) + (1 −
τ)F (ρ, u) has only trivial solution 0 in Br(0) for all τ ∈ [0, 1].

If statement (C) is true, dLS(I − J(τ, ·), Br(0), 0) is well defined for all

τ ∈ [0, 1] and by the property of homotopy invariance, we have

dLS(I − J(1, ·), Br(0), 0) = dLS(I − J(0, ·), Br(0), 0), that is

dLS(I − Tρ, Br(0), 0) = dLS(I − F (ρ, ·), Br(0), 0).

Meanwhile, it follows from Lemma 2.2 that dLS(I−Tρ, Br(0), 0) = (−1)k−1 since

ρ ∈ (λk−1, λk) for k > 1 and 0 < ρ < λ1 for k = 1, and then (2.6) holds. So we

only need to prove that statement (C) holds.

Suppose on the contrary that there exist sequences {un} ⊂ C1
0 [0, 1] and

{τn} ⊂ [0, 1] such that un = J(τn, un) 6≡ 0 and ‖un‖1 → 0 as n → ∞. Assume

τn → τ0 ∈ [0, 1] and let vn ,
un

‖un‖1 , then ‖vn‖1 = 1 and by (2.1),

vn =
J(τn, un)

‖un‖1
= τnGp(−ρhϕp(vn))

+ (1− τn)Gp

(
− ρhϕp(vn)− h f(un)

‖un‖p−1
1

)
. (2.8)

By the same argument of the proof of Lemma 2.4 we can get that {vn} has a

subsequence converging to some v ∈ C1
0 [0, 1] and hf(un)/‖un‖p−1

1 → 0 in L1(0, 1).

Then (2.8) implies that

v = Gp(−ρhϕp(v)) = Tρ(v),

which yields that ρ is an eigenvalue of (Eλ) with an eigenfunction v. This cont-

radicts Lemma 2.1 and the proof is complete. �

3. Proof of Theorem 1.1

For each k ∈ N, let us denote N+
k = {u ∈ C1

0 [0, 1] : u has exactly k − 1

simple zeros in (0, 1), u > 0 near 0}, N−k = −N+
k and Nk = N−k ∪N

+
k . It is clear

that Nk is open in C1
0 [0, 1], N+

k ∩ N
−
k = ∅, Nk ∩ Nj = ∅ for k 6= j and u has a

double zero t∗ ∈ [0, 1] for u ∈ ∂Nk (i.e., u(t∗) = 0 = u′(t∗)). Let T +
k = R×N+

k ,

T −k = R × N−k , Tk = R × Nk and C0
k , {(λ, u) ∈ Ck : λ ≥ 0}, where Ck is as in

Theorem 2.1.

Notice that (AP1) becomes (P ) if λ = 0. Then Theorem 1.1 can be gotten

immediately from the following theorem.
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Theorem 3.1. Assume h ∈ A, f0 = 0, f∞ =∞ and (F). For each k ∈ N and

ν ∈ {+,−, }, there exists a continuum Cνk of solutions for (AP1) such that

Cνk ∩ ({λ} ×Nν
k ) 6= ∅ for λ ∈ [0, λk). (3.1)

So, to prove Theorem 1.1, it is sufficient to prove Theorem 3.1. For this

purpose, we need to study the properties of C0
k. Let us start with the following

lemma.

Lemma 3.1. Assume h ∈ A and f0 = 0. For Λ > 0, there exists δ > 0 such

that if (λ, u) is a solution of (AP1) in (t1, t2) with |λ| ≤ Λ, u(t1) = u(t2) = 0,

0 ≤ t1 ≤ t2 ≤ 1 and t2 − t1 < δ, then u ≡ 0 in [t1, t2].

Proof. Let (λ, u) be as in the lemma. By f0 = 0, we have |f(u(t))| ≤
Cu|u(t)|p−1 for t ∈ [t1, t2] and some Cu > 0. Since h ∈ A, we may choose δ > 0

sufficiently small that

2p−1(Λ + Cu)

∫ t2

t1

(t(1− t))p−1h(t)dt ≤ 1/2.

Multiplying (AP1) by u and integrating over (t1, t2), then we get

∫ t2

t1

|u′|pdt =

∫ t2

t1

(λhϕp(u) + hf(u))udt ≤ (|λ|+ Cu)

∫ t2

t1

h|u|pdt.

By Lemma 3.1 in [7] we have

|u(t)|p ≤ (2t(1− t))p−1

∫ t2

t1

|u′(s)|pds, t ∈ [t1, t2].

Combining the three inequalities above, we get∫ t2

t1

|u′|pdt ≤ 2p−1(|λ|+ Cu)

∫ t2

t1

(t(1− t))p−1h(t)dt

∫ t2

t1

|u′|pdt ≤ 1

2

∫ t2

t1

|u′|pdt,

which implies that u ≡ 0 in [t1, t2] and the proof is complete. �

Lemma 3.2. Assume h ∈ A and f0 = 0. For each k ∈ N, there is a

neighborhood Ok of (λk, 0) such that u ∈ Nk if (λ, u) ∈ Ok is a nontrivial solution

of (AP1).
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Proof. Suppose on the contrary that there is a sequence {(µn, un)} of nont-

rivial solutions for (AP1) such that un /∈ Nk and (µn, un)→ (λk, 0) in R×C1
0 [0, 1].

Then by the same argument of the proof of Lemma 2.4, we can get a subsequ-

ence of {un/‖un‖1} converging to an eigenfunction v ∈ C1
0 [0, 1] corresponding

to eigenvalue λk for the problem (Eλ). Thus v ∈ Nk by Lemma 2.1, and then

un/‖un‖1 ∈ Nk for sufficiently large n since Nk is open. This contradicts un /∈ Nk
and the proof is complete. �

Proposition 3.1. Assume h ∈ A, f0 = 0 and (F). Then C0
k ⊂ Tk ∪{(λk, 0)}.

Proof. Suppose on the contrary that there exists (λ, u)∈C0
k\(Tk∪{(λk, 0)}).

Without loss of generality, we may assume that λ < λk. It is easy to get from

Lemma 3.2 that there exists (µ, u1) ∈ ∂Tk ∩C0
k with λ ≤ µ < λk. Then u1 ∈ ∂Nk

and u1 has a double zero t∗ ∈ [0, 1]. If u1 ≡ 0, µ = λj for some j 6= k by

Lemma 2.4. Let {(µn, un)} ⊂ Tk ∩ C0
k such that (µn, un) → (µ, u1) = (λj , 0) in

R×C1
0 [0, 1]. Then un ∈ Nj for sufficiently large n by Lemma 3.2. This contradicts

the fact that Nj ∩Nk = ∅ for j 6= k. So u1 6≡ 0. By Lemma 3.1, there exists δ > 0

such that u1(t) 6= 0, say, u1(t) > 0 for t ∈ (t∗, t∗ + δ) (consider t ∈ (t∗ − δ, t∗) if

t∗ = 1 and we can analyze similarly). By (F) and µ ≥ 0 we have (ϕp(u
′
1))′ < 0

in (t∗, t∗ + δ), and u′1(t) < 0 for t ∈ (t∗, t∗ + δ) since u′1(t∗) = 0. Thus u1(t) < 0

for t ∈ (t∗, t∗ + δ) because u1(t∗) = 0. This is a contradiction and the proof is

complete. �

The following lemma is known as the generalized Picone identity [6], [7], [10].

Lemma 3.3. Let b1(t) and b2(t) be measurable functions on an interval I.

If y, z, ϕp(y
′) and ϕp(z

′) are differentiable a.e. in I and z(t) 6= 0 in I, then the

following identity holds

d

dt

{
|y|pϕp(z′)
ϕp(z)

− yϕp(y′)
}

= (b1 − b2)|y|p

−
[
|y′|p + (p− 1)

∣∣∣∣yz′z
∣∣∣∣p − pϕp(y)y′ϕp

(
z′

z

)]
− ylp(y) +

|y|p

ϕp(z)
Lp(z), (3.2)

where lp(y) = (ϕp(y
′))′ + b1(t)ϕp(y) and Lp(z) = (ϕp(z

′))′ + b2(t)ϕp(z).

We note that, by Young’s inequality, we get

|y′|p + (p− 1)

∣∣∣∣yz′z
∣∣∣∣p − pϕp(y)y′ϕp

(
z′

z

)
≥ 0.

Proposition 3.2. Assume h ∈ A, f0 = 0 and (F). Then λ ≤ λk for all

(λ, u) ∈ C0
k.
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Proof. Let (λ, u) ∈ C0
k and φk ∈ Nk be an eigenfunction corresponding to

the kth eigenvalue λk of (Eλ). If (λ, u) = (λk, 0), the proof is done. Otherwise,

we have u ∈ Nk by Proposition 3.1. Let t∗0, t
∗
1, . . . , t

∗
k and t0, t1, . . . , tk be the

zeroes of u and φk in [0, 1], respectively. We note that t∗0 = t0 = 0, t∗k = tk = 1.

Then it is easy to see that there exists some i ∈ {0, 1, . . . , k − 1} such that

(ti, ti+1) ⊂ (t∗i , t
∗
i+1). We claim that

∫ ti+1

ti

{
|φk|pϕp(u′)
ϕp(u)

− φkϕp(φ′k)

}′
dt = 0. (3.3)

In fact, if t∗i < ti < ti+1 < t∗i+1, it is clear that that (3.3) is true. Suppose t∗i+1 =

ti+1. We prove (3.3) only for the case u(t) > 0 and φk(t) > 0 for t ∈ (ti, ti+1). The

proof for the other cases is similar. Noticing that u′(ti+1) 6= 0 and φ′k(ti+1) 6= 0,

if 1 < p ≤ 2, by L’Hospital’s rule, we have

lim
t→ti+1−

|φk(t)|p

ϕp(u(t))
= lim
t→ti+1−

p(φk(t))p−1φk
′(t)

(p− 1)(u(t))p−2u′(t)

=
pφk
′(ti+1)

(p− 1)u′(ti+1)
lim

t→ti+1−

|φk(t)|p−1

(u(t))p−2
= 0.

If k < p ≤ k + 1, k ≥ 2, then applying the L’Hospital’s rule k times, we get

lim
t→ti+1−

|φk(t)|p

ϕp(u(t))
=

p(φk
′(ti+1))k

(p− k)(u′(ti+1))k
lim

t→ti+1−

|φk(t)|p−k

(u(t))p−k−1
= 0.

So, for all p > 1,

lim
t→ti+1−

|φk|pϕp(u′(t))
ϕp(u(t))

= ϕp(u
′(ti+1)) lim

t→ti+1−

|φk(t)|p

ϕp(u(t))
= 0.

Similarly, if ti = t∗i , we can prove that

lim
t→ti+

|φk|pϕp(u′(t))
ϕp(u(t))

= 0.

Therefore, if ti = t∗i or ti+1 = t∗i+1, we always have

∫ ti+1

ti

{
|φk|pϕp(u′(t))
ϕp(u(t))

}′
dt = lim

t→ti+1−

|φk|pϕp(u′(t))
ϕp(u(t))

− lim
t→ti+

|φk|pϕp(u′(t))
ϕp(u(t))

= 0.

This implies that (3.3) also holds if ti = t∗i or ti+1 = t∗i+1.
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Meanwhile, either u > 0 or u < 0 in (ti, ti+1), by (F) we have

0 =
1

ϕp(u(t))
[(ϕp(u

′(t)))′ + λh(t)ϕp(u(t)) + h(t)f(u(t))]

≥ 1

ϕp(u(t))
[(ϕp(u

′(t)))′ + λh(t)ϕp(u(t))]

and

0 = (ϕp(φ
′
k(t)))′ + λkh(t)ϕp(φk(t))

If we take y = φk, b1(t) = λkh(t) and z = u, b2(t) = λh(t) and integrate (3.2)

from ti to ti+1, we obtain∫ ti+1

ti

(λkh(t)− λh(t))|u(t)|pdt ≥ 0,

which implies that λ ≤ λk. The proof is complete. �

We note that C0
k = {(λ, u) ∈ Ck : 0 ≤ λ ≤ λk} by Proposition 3.2. Let

(t1, t2) ⊂ (0, 1). Then we have the following Lemma.

Lemma 3.4. Suppose h ∈ A, f0 = 0 and (F). Let (λ, u) ∈ C0
k such that

u(t1) = u(t2) = 0 and |u(t)| ≤ M0 for t ∈ [t1, t2] and some M0 > 0. Then

|u′(t)| ≤ M1 for t ∈ [t1, t2] and some M1 > 0. Here M1 depends only on M0 but

does not on t1, t2.

Proof. By f0 = 0, there exists C0 > 0 such |f(u)| ≤ C0|u|p−1 for u ∈
[0,M0]. Since h ∈ A, it is easy to see that there exists δ ∈ (0, 1/2) such that

2p(λk + C0)

∫ β

α

h(s)(s(1− s))p−1ds ≤ 1 (3.4)

for any interval [α, β] ⊂ [0, 1] with β − α ≤ δ. Clearly, δ depends only on C0,

and thus only on M0. Let (λ, u) ∈ C0
k be as in the Lemma. Then |f(u(t))| ≤

C0|u(t)|p−1 for t ∈ [t1, t2]. We may assume that u(t) > 0 for t ∈ (t1, t2). Let

u(t̄) = maxt∈[t1,t2] u(t). We prove that

t̄− t1 > δ if t̄ ≤ 1/2; t2 − t̄ > δ if t̄ ≥ 1/2. (3.5)

If t̄ ≤ 1/2, suppose on the contrary that t̄ − t1 ≤ δ. By (F), u is concave

in (t1, t2), and then u(t)/(t − t1) is decreasing in (t1, t2). By (3.4) we have, for

t ∈ [t1, t̄],

ϕp(u
′(t)) =

∫ t̄

t

[λh(s)ϕp(u(s)) + h(s)f(u(s))]ds
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≤ (λ+ C0)

∫ t̄

t

h(s)ϕp(u(s))ds

= (λ+ C0)

∫ t̄

t

h(s)

(
u(s)

(s− t1)(1− s)

)p−1

((s− t1)(1− s))p−1ds

≤
(
u(s)

t− t1

)p−1

2p−1(λ+ C0)

∫ t̄

t

h(s)(s(1− s))p−1ds ≤ 1

2

(
u(s)

t− t1

)p−1

.

Letting t → t1+, we get ϕp(u
′(t1)) ≤ (1/2)(u′(t1))p−1. That is u′(t1) = 0, and

t1 is a double zero of u. This contradicts Proposition 3.1 and then t̄ − t1 > δ.

By an argument symmetric to that for the case t̄ ≤ 1/2, we can also prove that

t2 − t̄ > δ and then (3.5) is true.

Since h ∈ A, there exists η ∈ (0, δ) such that

(λk + C0) max

{∫ β1

α1

h(s)sp−1ds,

∫ β2

α2

h(s)(1− s)p−1ds

}
≤ 1

2
(3.6)

for all α1, β1 ∈ [0, 1 − δ], α2, β2 ∈ [δ, 1] satisfying that 0 ≤ βi − αi ≤ η, i = 1, 2.

It is clear that η depends only on δ and C0, and consequently only on M0.

If t1 + η ≤ t̄, then 0 ≤ u′(t1 + η) ≤ u(t1 + η)/η ≤M0/η since u is concave in

(t1, t2). Let t̃ = min{t̄, t1 + η}, then 0 ≤ u′(t̃) ≤ M0/η. For t ∈ (t1, t̃), by (3.5)

and the fact that 0 < η < δ < 1/2 we can get easily that

[t1, t̃] ⊂ [t1, t̄] ⊂ [0, 1− δ].

Noticing that u(t)/(t− t1) is decreasing in (t1, t2), by (3.6)

ϕp(u
′(t)) = ϕp(u

′(t̃)) +

∫ t̃

t

[λh(s)ϕp(u(s)) + h(s)f(u(s))]ds

≤ (M0/η)p−1 + (λk + C0)

∫ t̃

t

h(s)

(
u(s)

s− t1

)p−1

(s− t1)p−1ds

≤ (M0/η)p−1 + (λk + C0)

(
u(t)

t− t1

)p−1 ∫ t̃

t

h(s)sp−1ds

≤ (M0/η)p−1 +
1

2

(
u(t)

t− t1

)p−1

.

Letting t→ t1+, we get ϕp(u
′(t1)) ≤ (M0/η)p−1 + (1/2)(u′(t1))p−1. This implies

that

u′(t1) ≤ 21/(p−1)M0/η.

Similarly, we can also prove that |u′(t2)| ≤ 21/(p−1)M0/η. Let M1= 21/(p−1)M0/η.

Then |u′(t)| ≤M1 for t ∈ [t1, t2] since u is concave in [t1, t2]. This completes the

proof. �
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Proposition 3.3. Assume f0 = 0, f∞ = ∞, h ∈ A and (F). Then there

exists bk > 0 such that ‖u‖1 ≤ bk for all (λ, u) ∈ C0
k.

Proof. Set

Ch = min


∫ β

α

ϕ−1
p

(∫ β

s

h(τ)dτ

)
ds+

∫ β

α

ϕ−1
p

(∫ s

α

h(τ)dτ

)
ds :

α, β ∈ [1/(4k), 1− 1/(4k)], β − α = 1/4k

 .

Then 0 < Ch < ∞ since 0 <
∫
I
h(t)dt < ∞ for any compact interval I ⊂ (0, 1).

We may choose η > 0 so large that

ϕ−1
p (η)Ch

16k2
> 1. (3.7)

Clearly, η depends only on k. Since f∞ =∞, there exists M0 > 0 such that

f(u) ≥ ηϕp(u) for u >
M0

16k2
and f(u) ≤ ηϕp(u) for u < − M0

16k2
. (3.8)

Notice that M0 depends only on k and η, and consequently only on k.

Let (λ, u) ∈ C0
k with u 6≡ 0. Then u ∈ Nk by Proposition 3.1. Denote by

t0, t1, . . . , tk the zeroes of u in [0, 1] and Ii = [ti, ti+1] for 0 ≤ i ≤ k − 1. Then

there exists some j ∈ {0, 1, . . . , k− 1} such that tj+1− tj ≥ 1/k. We may assume

that u(t) > 0 for t ∈ (tj , tj+1). Noticing that condition (F) implies that u is

concave in Ij , by the same argument of the proof of Lemma 1 in [20], we can get

that, for any 0 < ε < 1/(2k), u(t) ≥ ε2‖u‖Ij for all t ∈ [tj + ε, tj+1 − ε], where

‖u‖Ij , maxt∈Ij |u(t)|. Choosing ε = 1/(4k), we have

u(t) ≥
‖u‖Ij
16k2

for t ∈ [tj + 1/(4k), tj+1 − 1/(4k)], (3.9)

We assert that

‖u‖Ij ≤M0. (3.10)

In fact, suppose on the contrary that ‖u‖Ij > M0. Then by (3.8) and (3.9),

f(u(t)) ≥ ηϕp(u(t)) for t ∈ [tj + 1/(4k), tj+1 − 1/(4k)]. (3.11)

Let u(δ) = maxt∈Ij u(t), and suppose that δ ≥ (tj+1 + tj)/2 (for the case δ ≤
(tj+1 + tj)/2, we can analyze exactly the same way on [δ, tj+1] and we omit the

details). Then

[tj + 1/(4k), tj + 1/(2k)] ⊂ [tj + 1/(4k), tj+1 − 1/(4k)] ∩ [tj , δ].
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Hence by (3.7), (3.9) and (3.11) we have

‖u‖Ij = u(δ) =

∫ δ

tj

ϕ−1
p

(∫ δ

s

h(τ)(λϕp(u(t)) + f(u(τ)))dτ

)
ds

≥
∫ tj+1/(2k)

tj+1/(4k)

ϕ−1
p

(∫ tj+1/(2k)

s

h(τ)ηϕp(u(t))dτ

)
ds

≥
∫ tj+1/(2k)

tj+1/(4k)

ϕ−1
p

(∫ tj+1/(2k)

s

h(τ)ηϕp

(‖u‖Ij
16k2

)
dτ

)
ds

= ϕ−1
p (η)

‖u‖Ij
16k2

∫ tj+1/(2k)

tj+1/(4k)

ϕ−1
p

(∫ tj+1/(2k)

s

h(τ)dτ

)
ds

≥
ϕ−1
p (η)Ch

16k2
‖u‖Ij > ‖u‖Ij .

This contradiction shows that (3.10) holds.

By (3.10) and Lemma 3.4, there exists M1 > 0 such that |u′(t)| ≤M1 for all

t ∈ [tj , tj+1]. Here M1 depends only on M0 but does not on Ij , and thus only on

k. Consider Ij−1 or Ij+1, since u is convex (or concave) on Ij−1 or Ij+1 because

of (F), we have |u(t)| ≤ M1 for t ∈ Ij−1 or t ∈ Ij+1. Then again by Lemma 3.4,

we get |u′(t)| < M2 for t ∈ Ij−1 or t ∈ Ij+1 and some M2 > 0. Here M2 depends

only on M1, and thus only on k. In k − 1 steps, this procedure shows that there

exists some constant bk > 0 such that |u′(t)| ≤ bk for t ∈ [0, 1]. Here bk depends

only on k. This completes the proof. �

Proof of Theorem 3.1. Fix k ∈ N. We first prove that

Ck ∩ ({λ} ×Nk) 6= ∅ for λ ∈ [0, λk). (3.12)

In fact, if Ck ⊂ Tk ∪ {(λk, 0)}. Then Ck is unbounded by Theorem 2.1, and it

follows from Propositions 3.1-3.3 that (3.12) is true. If Ck 6⊂ Tk ∪ {(λk, 0)}, there

exists (µ, u) ∈ Ck ∩ ∂Tk such that (µ, u) 6= (λk, 0) and u ∈ ∂Nk. Then µ < 0

by Proposition 3.1. Thus Ck ∩ ({λ} × C1
0 [0, 1]) 6= ∅ for λ ∈ [µ, λk], and again by

Proposition 3.1 we get (3.12).

By (3.12) and Lemma 2.4, the result is true for at least one set, say, there

exists a continuum C+
k of solutions for (AP1) such that (3.1) holds for ν = +. To

prove that (3.1) holds for ν = −, we employ the idea of the reflection argument

as in Rabinowitz [19].
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Let T 0
k = (R×C1

0 [0, 1]) \ (T +
k ∪T

−
k ) and defined F̃k : R×C1

0 [0, 1]→ C1
0 [0, 1]

by

F̃k(u)(t) =


F (λ, u), (λ, u) ∈ T −k ,
0, (λ, u) ∈ T 0

k ,

−F (λ,−u), (λ, u) ∈ T +
k ,

where F is as in the operator equation (AP1). Then it is not hard for us to verify

that F̃k possesses the same properties as does F such that (3.12) is also valid to

system u = F̃k(λ, u), i.e. there exists a continuum C̃k of solutions for u = F̃k(λ, u)

such that

C̃k ∩ ({λ} ×Nk) 6= ∅ for λ ∈ [0, λk). (3.13)

Suppose (3.1) does not hold for ν = −. Then for any continuum C−k of solutions

for (AP1), there exists some λ− ∈ [0, λk) such that C−k ∩ ({λ−} × N−k ) = ∅. So

we have C̃k ∩ ({λ̃} × N−k ) = ∅ for some λ̃ ∈ [0, λk) since F̃ (λ, u) = F (λ, u) for

(λ, u) ∈ T −k . The oddness of F̃ implies that C̃k is symmetric, namely, (λ,−u) ∈ C̃k
if (λ, u) ∈ C̃k. Thus C̃k ∩ ({λ̃} × N+

k ) = ∅. Therefore C̃k ∩ ({λ̃} × Nk) = ∅, this

contradicts (3.13), and then (3.1) holds for ν = −. The proof is complete. �
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[15] R. Manásevich and J. Mawhin, Periodic solutions of nonlinear systems with
p-Laplacian-like operators, J. Differential Equations 145 (1998), 367–393.
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